劉利琴郭 穎 趙海祥 唐友剛
(天津大學(xué)水利工程仿真與安全國(guó)家重點(diǎn)實(shí)驗(yàn)室,天津300072)
浮式垂直軸風(fēng)機(jī)的動(dòng)力學(xué)建模、仿真與實(shí)驗(yàn)研究1)
劉利琴2)郭 穎 趙海祥 唐友剛
(天津大學(xué)水利工程仿真與安全國(guó)家重點(diǎn)實(shí)驗(yàn)室,天津300072)
考慮氣動(dòng)力和水動(dòng)力的耦合研究浮式垂直軸風(fēng)機(jī)系統(tǒng)的運(yùn)動(dòng)響應(yīng),將固定式垂直軸風(fēng)機(jī)的氣動(dòng)載荷計(jì)算方法進(jìn)一步推廣到海上浮式垂直軸風(fēng)機(jī)的氣動(dòng)載荷計(jì)算.考慮阻尼力、波浪力、風(fēng)載荷、系泊力等,建立了浮式垂直軸風(fēng)機(jī)系統(tǒng)的縱蕩--垂蕩--縱搖運(yùn)動(dòng)方程.考慮動(dòng)態(tài)失速和浮式基礎(chǔ)運(yùn)動(dòng),基于雙致動(dòng)盤多流管理論,推導(dǎo)了風(fēng)機(jī)葉片氣動(dòng)載荷計(jì)算公式,編制了數(shù)值計(jì)算程序.以Sandia 17m風(fēng)機(jī)為例,驗(yàn)證了氣動(dòng)載荷計(jì)算程序的正確性.最后進(jìn)行了模型實(shí)驗(yàn),其中模型的風(fēng)機(jī)為Φ型達(dá)里厄垂直軸風(fēng)機(jī),支撐基礎(chǔ)為桁架式Spar型浮式基礎(chǔ),將模型實(shí)驗(yàn)結(jié)果與數(shù)值計(jì)算結(jié)果進(jìn)行了對(duì)比,驗(yàn)證了耦合計(jì)算程序.結(jié)果表明,數(shù)值計(jì)算得到的風(fēng)機(jī)系統(tǒng)的垂蕩、縱搖運(yùn)動(dòng)的RAO(幅值響應(yīng)算子)曲線與模型實(shí)驗(yàn)結(jié)果吻合較好,驗(yàn)證了耦合程序的正確性.然而,由于數(shù)值計(jì)算與模型實(shí)驗(yàn)在運(yùn)動(dòng)自由度、阻尼、風(fēng)載荷等方面存在差別,數(shù)值計(jì)算結(jié)果與模型實(shí)驗(yàn)結(jié)果仍有一定的差異.
浮式垂直軸風(fēng)機(jī),氣動(dòng)力--水動(dòng)力耦合,數(shù)值模擬,模型實(shí)驗(yàn)
隨著單機(jī)功率的增加(從30年前的50kW增至目前的5MW以及計(jì)劃中的10MW~20MW),海上浮式風(fēng)機(jī)的尺寸越來(lái)越大.置于水平軸風(fēng)機(jī)頂部的巨大傳動(dòng)系統(tǒng)造成了風(fēng)機(jī)系統(tǒng)的不穩(wěn)定,其大型化發(fā)展受到制約.而垂直軸風(fēng)機(jī)的傳動(dòng)系統(tǒng)位于風(fēng)機(jī)底部,不會(huì)對(duì)風(fēng)機(jī)塔架造成影響,這使得垂直軸風(fēng)機(jī)在海上風(fēng)電的大型化發(fā)展中具有更大的優(yōu)勢(shì)[1].
各國(guó)學(xué)者針對(duì)水平軸風(fēng)機(jī)開展了大量的研究,例如浮式水平軸風(fēng)機(jī)氣動(dòng)載荷、不同浮式基礎(chǔ)支撐下風(fēng)機(jī)系統(tǒng)的運(yùn)動(dòng)、浮式風(fēng)機(jī)系統(tǒng)的氣動(dòng)力與水動(dòng)力的耦合等[2-5].相對(duì)而言,目前關(guān)于浮式垂直軸風(fēng)機(jī)系統(tǒng)的研究較少.Cahay等[6]概念性地設(shè)計(jì)了安裝于半潛式平臺(tái)的三葉片2MW達(dá)里厄型風(fēng)機(jī)模型. Vita[7]研究并分析了Spar型5MW垂直軸風(fēng)機(jī)的可行性.Blusseau等[8]在頻域中分析了陀螺效應(yīng)對(duì)半潛式垂直軸風(fēng)機(jī)運(yùn)動(dòng)的影響.Cheng等[9]分析了Spar型、半潛型和張力腿(TLP)型三種不同浮式基礎(chǔ)支撐的垂直軸風(fēng)機(jī)的運(yùn)動(dòng)響應(yīng).研究發(fā)現(xiàn),由于TLP型垂直軸風(fēng)機(jī)的2P(2倍轉(zhuǎn)子頻率)氣動(dòng)力對(duì)整個(gè)浮式風(fēng)機(jī)系統(tǒng)的運(yùn)動(dòng)影響顯著,因此TLP型浮式基礎(chǔ)不適合支撐垂直軸風(fēng)機(jī).Collu等[10]采用FloVAWT程序研究了浮式垂直軸風(fēng)機(jī)6個(gè)自由度的運(yùn)動(dòng)響應(yīng),并分析了氣動(dòng)力、浮式基礎(chǔ)水動(dòng)力以及系泊力對(duì)風(fēng)機(jī)系統(tǒng)運(yùn)動(dòng)的影響.
針對(duì)浮式水平軸風(fēng)機(jī),目前已開發(fā)了大量的商業(yè)計(jì)算軟件,如Fast/Aerodyn/Hydrodyn,Adms,Bladed, 3Dfloat Simo/Rifl x/Hawc2等[11-15]都廣泛應(yīng)用于海上浮式水平軸風(fēng)機(jī)的設(shè)計(jì)、計(jì)算中.Berg等[16-18[19]、改進(jìn)的Hawc2[7]、Simo-Rifl x-DMS[20]以及美國(guó)圣地亞國(guó)家實(shí)驗(yàn)室開發(fā)的剛?cè)狁詈铣绦騕21],這些程序主要用于內(nèi)部計(jì)算.關(guān)于浮式垂直軸風(fēng)機(jī)系統(tǒng)的動(dòng)力響應(yīng)、氣動(dòng)力--水動(dòng)力--系泊力--結(jié)構(gòu)動(dòng)力的耦合特性及動(dòng)力控制等方面,還需要進(jìn)一步研究.
本工作研究浮式垂直軸風(fēng)機(jī)的運(yùn)動(dòng)響應(yīng),考慮氣動(dòng)力和水動(dòng)力的耦合,建立了浮式垂直軸風(fēng)機(jī)系統(tǒng)縱蕩--垂蕩--縱搖運(yùn)動(dòng)微分方程.考慮動(dòng)態(tài)失速[18]和浮式基礎(chǔ)運(yùn)動(dòng),推導(dǎo)了垂直軸風(fēng)機(jī)的氣動(dòng)載荷計(jì)算公式,編制了計(jì)算程序并對(duì)程序進(jìn)行了驗(yàn)證.
1.1 耦合運(yùn)動(dòng)方程
將整個(gè)浮式垂直軸風(fēng)機(jī)系統(tǒng)處理為剛體,考慮慣性力(矩)、阻尼力(矩)、回復(fù)力(矩)、系泊力、風(fēng)載荷和波浪載荷,參考深水Truss Spar平臺(tái)的運(yùn)動(dòng)方程[22-23],得到浮式風(fēng)機(jī)系統(tǒng)的縱蕩--垂蕩--縱搖耦合運(yùn)動(dòng)微分方程為
式中,ξ1,ξ3和ξ5分別為風(fēng)機(jī)系統(tǒng)的縱蕩、垂蕩和縱搖位移;m為風(fēng)機(jī)系統(tǒng)的質(zhì)量;m11和m33分別為縱蕩和垂蕩附加質(zhì)量;I為風(fēng)機(jī)系統(tǒng)的縱搖轉(zhuǎn)動(dòng)慣量,I55為縱搖附加轉(zhuǎn)動(dòng)慣量;C11,C31和C51分別為風(fēng)機(jī)系統(tǒng)的縱蕩、垂蕩和縱搖一階阻尼;C12,C32和C52分別為風(fēng)機(jī)系統(tǒng)的縱蕩、垂蕩和縱搖二階阻尼;Aw為浮式基礎(chǔ)的水線面面積,為風(fēng)機(jī)系統(tǒng)的縱穩(wěn)性高,?為排水體積,ρ為海水密度;Fw1(t)和Fw3(t)分別為作用于浮式基礎(chǔ)的縱蕩和垂蕩波浪力,Mw5(t)為作用于浮式基礎(chǔ)的縱搖波浪力矩;Fkx和Fkz分別為作用于風(fēng)機(jī)系統(tǒng)縱蕩和垂蕩方向上的系泊力;Fa1和Fa3分別為作用于風(fēng)機(jī)系統(tǒng)縱蕩和垂蕩方向上的風(fēng)載荷,包括氣動(dòng)載荷和風(fēng)壓載荷;Ma5為作用于風(fēng)機(jī)系統(tǒng)縱搖方向上的風(fēng)傾力矩,包括氣動(dòng)載荷和風(fēng)壓載荷產(chǎn)生的力矩.
1.2 浮式風(fēng)機(jī)氣動(dòng)載荷
1.2.1 速度矢量關(guān)系
基于雙致動(dòng)盤多流管理論[24]計(jì)算作用于葉片上的氣動(dòng)載荷.將整個(gè)浮式風(fēng)機(jī)系統(tǒng)處理成剛體,考慮動(dòng)態(tài)失速及浮式基礎(chǔ)縱蕩、垂蕩、縱搖運(yùn)動(dòng)位移和速度的影響進(jìn)行推導(dǎo).
將流管分為上風(fēng)區(qū)和下風(fēng)區(qū),分別計(jì)算上、下風(fēng)區(qū)浮式基礎(chǔ)的運(yùn)動(dòng)對(duì)流管內(nèi)速度的影響.風(fēng)機(jī)系統(tǒng)的坐標(biāo)及速度矢量關(guān)系如圖1所示.浮式風(fēng)機(jī)運(yùn)動(dòng)的坐標(biāo)原點(diǎn)取為整個(gè)風(fēng)機(jī)系統(tǒng)的重心,縱蕩和垂蕩運(yùn)動(dòng)的正方向分別沿x軸和z軸(圖1(a))正方向,縱搖運(yùn)動(dòng)的正方向?yàn)轫槙r(shí)針?lè)较?
圖1 風(fēng)機(jī)系統(tǒng)坐標(biāo)和速度矢量關(guān)系圖Fig.1 Coordinate system and vector relation of the wind turbine
考慮平均風(fēng)速,即風(fēng)速為水平面以上高度的函數(shù).對(duì)于局部高度zi,風(fēng)速可由下式表示
式中,V∞為參考高度zref處的平均風(fēng)速,zref取葉片中心到水面的距離,a=0.14[25].
假定平行于流管方向的速度僅影響誘導(dǎo)速度,垂直于流管方向的速度只對(duì)局部合速度產(chǎn)生影響.對(duì)于上風(fēng)區(qū),葉片局部到浮式風(fēng)機(jī)重心的距離由下式表示
式中,r為風(fēng)機(jī)局部半徑,θ為轉(zhuǎn)子的方位角,H0為每個(gè)流管到葉片底部的距離,L1為靜止時(shí)葉片底部到水平面的距離,Hg為靜止時(shí)風(fēng)機(jī)系統(tǒng)的重心到水平面的距離.葉片局部位置與塔柱之間的夾角可表示為
葉片局部位置來(lái)流風(fēng)速可表示為
式中,H為葉片半高.平行和垂直于塔柱方向的流管局部合速度可分別表示為
基于類似的推導(dǎo),可得到下風(fēng)區(qū)平行和垂直于流管方向的合速度為
式中,u<1為上風(fēng)區(qū)的干擾因子.
1.2.2 作用于葉片上的力和力矩
上、下風(fēng)區(qū)的誘導(dǎo)速度V和V′可分別由下式確定
式中,u′為二次干擾因子.
對(duì)于上風(fēng)區(qū)轉(zhuǎn)子,即方位角 θ 的范圍為[-π/2,π/2],局部相對(duì)速度可由下式表示
式中,δ為葉片法向面與赤道平面的夾角,ω為葉片的旋轉(zhuǎn)速度.
局部攻角可由下式確定
將上風(fēng)區(qū)的方位角θ等分為若干個(gè)角管,每個(gè)角管大小為?θ.假設(shè)在每個(gè)角管內(nèi),誘導(dǎo)速度為常數(shù),即每個(gè)角管內(nèi)的干擾因子為常數(shù),并表示為
式中,η=r/R,R為赤道處葉片半徑.K,K0和f(θ)的表達(dá)式分別為
式(19)中,n為葉片數(shù)量,c為弦長(zhǎng).式(21)中,CN和CT分別為局部葉素法向力系數(shù)和切向力系數(shù),由下式確定
式中,CL和CD分別為升力系數(shù)和阻力系數(shù),根據(jù)局部雷諾數(shù)和局部攻角由實(shí)驗(yàn)數(shù)據(jù)[24]插值,并采用Gormont-Berg動(dòng)態(tài)失速模型[26]修正后得到.
局部雷諾數(shù)可表示為
對(duì)于給定的轉(zhuǎn)子幾何型線、轉(zhuǎn)速以及各流管來(lái)流速度,假定干擾因子初值u(θ)=1,可通過(guò)式(14)~式(24)進(jìn)行迭代計(jì)算,得到最終的干擾因子,進(jìn)而確定切向力系數(shù)CT和法向力系數(shù)CN.
葉片法向力FN和葉片切向力FT均可表示為葉片位置θ的函數(shù),對(duì)處于上風(fēng)區(qū)的轉(zhuǎn)子,F(xiàn)N和FT可表示為
式中,S風(fēng)機(jī)葉片的掃掠面積.
與式(26)對(duì)應(yīng)的無(wú)因次切向力系數(shù)為
根據(jù)各葉素的旋轉(zhuǎn)中心計(jì)算扭矩,將各葉素扭矩沿葉片型線積分,得θ處葉片整體扭矩為
轉(zhuǎn)子上風(fēng)區(qū)功率系數(shù)的表達(dá)式為
將法向力和切向力分解,可得到作用于浮式風(fēng)機(jī)垂蕩和縱蕩方向的升力和推力;對(duì)重心取矩,可得到作用于浮式風(fēng)機(jī)系統(tǒng)縱搖運(yùn)動(dòng)的氣動(dòng)力矩.將以上計(jì)算得到的氣動(dòng)力(矩)代入系統(tǒng)運(yùn)動(dòng)方程(1)~方程(3),可進(jìn)一步分析浮式風(fēng)機(jī)系統(tǒng)在時(shí)域內(nèi)的運(yùn)動(dòng)響應(yīng).
1.3 浮式基礎(chǔ)水動(dòng)力計(jì)算
浮式基礎(chǔ)的水動(dòng)力參數(shù)由 Sesam/Wadam 軟件[27]計(jì)算.計(jì)算中風(fēng)機(jī)處于停機(jī)狀態(tài),不考慮風(fēng)載荷和系泊,僅考慮風(fēng)機(jī)的質(zhì)量和形狀的影響.根據(jù)結(jié)構(gòu)尺寸將浮式基礎(chǔ)模型劃分為面元模型和莫里森模型.面元模型基于勢(shì)流理論計(jì)算大尺寸構(gòu)件的水動(dòng)力[28],莫里森模型基于莫里森方程計(jì)算小尺寸構(gòu)件的水動(dòng)力[28].
用Wadam計(jì)算波浪力(矩)和附加質(zhì)量(附加轉(zhuǎn)動(dòng)慣量)傳遞函數(shù),將計(jì)算所得結(jié)果代入方程(1)~方程(3)進(jìn)行時(shí)域響應(yīng)計(jì)算.
1.4 風(fēng)壓載荷計(jì)算
根據(jù)API規(guī)范[29]計(jì)算作用于塔柱和葉片(停機(jī)狀態(tài))上的定常風(fēng)壓和風(fēng)傾力矩,公式如下
式中,Cs為受風(fēng)構(gòu)件的形狀系數(shù),Ch為受風(fēng)構(gòu)件的高度系數(shù),為沿風(fēng)向受風(fēng)構(gòu)件的投影面積,為風(fēng)載荷作用位置到風(fēng)機(jī)系統(tǒng)重心的距離,V∞的定義見式(4).
1.5 浮式基礎(chǔ)阻尼和系泊系統(tǒng)
垂蕩板降低浮式風(fēng)機(jī)垂蕩運(yùn)動(dòng),增加垂蕩附加質(zhì)量,同時(shí)可能改變浮式風(fēng)機(jī)系統(tǒng)的垂蕩固有周期.在運(yùn)動(dòng)響應(yīng)計(jì)算中,系統(tǒng)的黏性阻尼十分重要,可通過(guò)CFD方法或模型實(shí)驗(yàn)得到.
考慮懸鏈線系泊,導(dǎo)纜孔的位置在浮式風(fēng)機(jī)的重心附近,采用準(zhǔn)靜態(tài)懸鏈線方法[30]計(jì)算作用在浮式風(fēng)機(jī)系統(tǒng)縱蕩和垂蕩運(yùn)動(dòng)的系泊力.
采用四階龍格庫(kù)塔方法求解方程 (1)~方程(3),得到時(shí)域運(yùn)動(dòng)的數(shù)值解.
1.6 計(jì)算程序
計(jì)算程序包含兩個(gè)模塊,一個(gè)模塊計(jì)算風(fēng)機(jī)的氣動(dòng)載荷,另一個(gè)模塊計(jì)算浮式風(fēng)機(jī)系統(tǒng)的運(yùn)動(dòng).在每個(gè)時(shí)間步,考慮風(fēng)機(jī)運(yùn)動(dòng)計(jì)算氣動(dòng)力(矩);考慮氣動(dòng)力(矩)、波浪力(矩)、系泊力(矩)、定常風(fēng)壓載荷等計(jì)算浮式風(fēng)機(jī)系統(tǒng)的運(yùn)動(dòng);然后根據(jù)新的位移和速度,計(jì)算氣動(dòng)力(矩).重復(fù)以上過(guò)程,最終求得氣動(dòng)力和水動(dòng)力耦合的運(yùn)動(dòng)響應(yīng).具體的計(jì)算流程如圖2所示,采用MATLAB軟件編寫計(jì)算程序.
圖2 計(jì)算流程圖Fig.2 Computing process
本節(jié)僅對(duì)氣動(dòng)載荷程序進(jìn)行驗(yàn)證,不考慮氣動(dòng)載荷和浮式風(fēng)機(jī)運(yùn)動(dòng)的耦合.以Sandia 17m風(fēng)機(jī)為例[31],計(jì)算風(fēng)機(jī)功率和葉片的無(wú)因次切向力系數(shù),并與Paraschivoiu的計(jì)算結(jié)果[31]進(jìn)行對(duì)比,結(jié)果如圖3所示.
圖3 氣動(dòng)載荷計(jì)算程序驗(yàn)證Fig.3 Validation of the aerodynamics computing code
從圖3可看出,本文計(jì)算結(jié)果與Paraschivoiu的計(jì)算結(jié)果吻合非常好,從而可以驗(yàn)證本文氣動(dòng)載荷計(jì)算程序的正確性.
本節(jié)將數(shù)值仿真結(jié)果與模型實(shí)驗(yàn)結(jié)果進(jìn)行對(duì)比,驗(yàn)證耦合計(jì)算程序的正確性.模型實(shí)驗(yàn)在天津大學(xué)船舶與海洋工程實(shí)驗(yàn)水池進(jìn)行,水池水深3m,寬7m,長(zhǎng)137m.使用搖板造波機(jī)可得到波長(zhǎng)為2m~12m之間的規(guī)則波.
3.1 浮式風(fēng)機(jī)參數(shù)
以5MW浮式垂直軸風(fēng)機(jī)為例開展實(shí)驗(yàn).浮式風(fēng)機(jī)形式如圖4所示,其中,風(fēng)機(jī)為達(dá)里厄型[7];支撐基礎(chǔ)為桁架式Spar型,它由浮力艙、上部機(jī)械艙、桁架結(jié)構(gòu)、垂蕩板和底部壓載艙組成,文獻(xiàn)[32]研究了該浮式基礎(chǔ)的水動(dòng)力特性.在風(fēng)載荷作用下,葉片帶動(dòng)塔柱旋轉(zhuǎn),通過(guò)置于上部機(jī)械艙的傳輸設(shè)備和發(fā)電裝置將機(jī)械能轉(zhuǎn)化為電能.
圖4 浮式風(fēng)機(jī)Fig.4 The floatin VAWT
考慮到實(shí)驗(yàn)水池的尺寸,選取縮尺比為1:70.該模型實(shí)驗(yàn)滿足幾何相似、重力相似及動(dòng)力相似(即斯特赫哈爾數(shù)相似)原則,模型參數(shù)見表1.
表1 模型參數(shù)Table 1Parameter of model
為滿足重量要求,葉片由特殊輕質(zhì)木材制成,并滿足結(jié)構(gòu)強(qiáng)度要求.為有效模擬風(fēng)機(jī)旋轉(zhuǎn),在風(fēng)機(jī)底部安裝一個(gè)60W的電機(jī)來(lái)驅(qū)動(dòng)風(fēng)機(jī).考慮模型結(jié)構(gòu)的重量和形狀,根據(jù)縮尺比,調(diào)整風(fēng)機(jī)系統(tǒng)模型的重量、重心位置和轉(zhuǎn)動(dòng)慣量.
3.2 風(fēng)場(chǎng)
由9個(gè)250W的風(fēng)扇組成3×3的風(fēng)扇矩陣模擬風(fēng)場(chǎng),并將其固定在拖車上.該風(fēng)場(chǎng)可生成均勻分布的定常風(fēng).為得到穩(wěn)定的氣流,在風(fēng)扇矩陣前安裝了兩層整流罩.通過(guò)風(fēng)速儀測(cè)量風(fēng)速.文獻(xiàn)[33]對(duì)該風(fēng)場(chǎng)進(jìn)行了詳細(xì)的描述.
3.3 實(shí)驗(yàn)方案
由于為便于安裝,在模型重心處布置4根帶有彈簧的系泊線以限制風(fēng)機(jī)系統(tǒng)的水平位移,因而系泊系統(tǒng)的動(dòng)態(tài)效應(yīng)無(wú)法準(zhǔn)確模擬.以下重點(diǎn)分析浮式風(fēng)機(jī)的垂蕩和縱搖運(yùn)動(dòng),系泊系統(tǒng)的影響較小.
采用浪高儀測(cè)量水池內(nèi)的波浪高度,采用非接觸光學(xué)測(cè)量?jī)x(包括LED燈,照相機(jī),信號(hào)接收系統(tǒng))測(cè)量模型的6自由度運(yùn)動(dòng).將3個(gè)LED燈安裝在浮式基礎(chǔ)上端以測(cè)量模型的運(yùn)動(dòng),將照相機(jī)固定于拖車軌道上,實(shí)際的實(shí)驗(yàn)布置如圖5所示.
圖5 實(shí)驗(yàn)布置圖Fig.5 The test layout
3.4 自由衰減運(yùn)動(dòng)實(shí)驗(yàn)
在靜水中進(jìn)行浮式風(fēng)機(jī)垂蕩和縱搖的自由衰減實(shí)驗(yàn),不考慮波浪力和風(fēng)力的作用.風(fēng)機(jī)處于停轉(zhuǎn)狀態(tài),轉(zhuǎn)子平面垂直于水池長(zhǎng)度方向.
動(dòng)力系統(tǒng)的一般自由衰減運(yùn)動(dòng)方程可表示為
式中,d1是線性阻尼系數(shù),d2為非線性阻尼系數(shù).可用消滅曲線法[28],通過(guò)自由衰減曲線計(jì)算得到d1和d2.最終的阻尼系數(shù)結(jié)果如表2所示,該阻尼系數(shù)將用于風(fēng)機(jī)系統(tǒng)的數(shù)值模擬研究.
表2 浮式風(fēng)機(jī)阻尼系數(shù)Table 2 Damping coefficient of the floatin VAWT
3.5 浮式風(fēng)機(jī)系統(tǒng)動(dòng)力學(xué)實(shí)驗(yàn)
考慮風(fēng)、浪聯(lián)合作用,進(jìn)行風(fēng)機(jī)模型動(dòng)力學(xué)實(shí)驗(yàn).實(shí)驗(yàn)中,波高為2m,波浪周期范圍為10~25s,風(fēng)機(jī)轉(zhuǎn)速為5.26r/min(額定轉(zhuǎn)速),風(fēng)速為14m/s(額定風(fēng)速).由非接觸光學(xué)運(yùn)動(dòng)測(cè)量?jī)x可測(cè)得風(fēng)機(jī)模型6個(gè)自由度的運(yùn)動(dòng)響應(yīng).
采用數(shù)值方法求解式 (1)~式 (3),環(huán)境參數(shù)與實(shí)驗(yàn)環(huán)境參數(shù)保持一致 (即波高 2m,波浪周期10s~25s,風(fēng)速為14m/s,轉(zhuǎn)速為5.26r/min).計(jì)算得到浮式風(fēng)機(jī)系統(tǒng)垂蕩和縱搖運(yùn)動(dòng)的RAO(幅值響應(yīng)算子)曲線,并與實(shí)驗(yàn)結(jié)果(根據(jù)縮尺比,將實(shí)驗(yàn)數(shù)據(jù)轉(zhuǎn)換為對(duì)應(yīng)的實(shí)型數(shù)據(jù))進(jìn)行對(duì)比,如圖6所示.
圖6 浮式風(fēng)機(jī)垂蕩、縱搖RAO曲線Fig.6 RAO curves of heave and pitch of the floatin VAWT
3.6 結(jié)果分析
圖6表明,隨波浪周期的變化,數(shù)值計(jì)算和模型實(shí)驗(yàn)得到的浮式風(fēng)機(jī)系統(tǒng)的垂蕩、縱搖運(yùn)動(dòng)RAOs曲線的變化趨勢(shì)一致,驗(yàn)證了耦合計(jì)算程序的正確性.
然而,在RAOs曲線的極值位置,例如垂蕩RAO曲線(數(shù)值模擬結(jié)果)的極大值和極小值處,數(shù)值模擬與模型實(shí)驗(yàn)結(jié)果的差異明顯.造成差異的主要原因如下:
(1)運(yùn)動(dòng)自由度不同.模型實(shí)驗(yàn)中,浮式風(fēng)機(jī)的運(yùn)動(dòng)是6個(gè)自由度,而數(shù)值模擬中只考慮了垂蕩和縱搖兩個(gè)自由度.
(2)阻尼不同.數(shù)值方法中采用了風(fēng)機(jī)停機(jī)狀態(tài)的阻尼系數(shù),沒有考慮風(fēng)機(jī)旋轉(zhuǎn)對(duì)系統(tǒng)阻尼的影響.而實(shí)際中,風(fēng)機(jī)的旋轉(zhuǎn)對(duì)風(fēng)機(jī)系統(tǒng)阻尼的影響非常復(fù)雜,在一定條件下具有顯著的增阻效應(yīng),該問(wèn)題有待進(jìn)一步深入研究.
(3)風(fēng)壓載荷不同.在數(shù)值模擬中,風(fēng)速是高度的函數(shù);而在模型實(shí)驗(yàn)中,由于風(fēng)場(chǎng)的限制,整個(gè)風(fēng)場(chǎng)內(nèi)的風(fēng)速是恒定的.
本文將固定式垂直軸風(fēng)機(jī)的氣動(dòng)載荷計(jì)算方法進(jìn)一步推廣到海上浮式垂直軸風(fēng)機(jī)的氣動(dòng)載荷計(jì)算.考慮氣動(dòng)力和水動(dòng)力的耦合作用,研究浮式垂直軸風(fēng)機(jī)系統(tǒng)動(dòng)力學(xué),主要結(jié)論概括如下:
(1)考慮動(dòng)態(tài)失速和浮式基礎(chǔ)運(yùn)動(dòng),推導(dǎo)了垂直軸風(fēng)機(jī)葉片氣動(dòng)載荷的計(jì)算公式.建立了浮式垂直軸風(fēng)機(jī)系統(tǒng)的縱蕩、垂蕩、縱搖耦合運(yùn)動(dòng)微分方程,編制了數(shù)值計(jì)算程序.
(2)以Sandia 17m風(fēng)機(jī)為例,計(jì)算了風(fēng)機(jī)的功率和葉片的無(wú)因次切向力系數(shù),通過(guò)與Paraschivoiu的計(jì)算結(jié)果[31]對(duì)比,驗(yàn)證了氣動(dòng)載荷計(jì)算程序的正確性.
(3)以5MW浮式垂直軸風(fēng)機(jī)為例,開展了模型實(shí)驗(yàn),對(duì)比分析了數(shù)值仿真結(jié)果和模型實(shí)驗(yàn)結(jié)果.研究表明,隨波浪周期的變化,數(shù)值計(jì)算和模型實(shí)驗(yàn)得到的風(fēng)機(jī)系統(tǒng)的垂蕩、縱搖運(yùn)動(dòng)的RAO曲線的變化趨勢(shì)一致,驗(yàn)證了耦合計(jì)算程序的正確性.
本文研究還存在一些不足,如計(jì)算氣動(dòng)載荷時(shí)尚未考慮湍流風(fēng)和二次效應(yīng),沒有考慮塔柱和葉片的彈性變形;由于風(fēng)場(chǎng)的限制,模型實(shí)驗(yàn)只進(jìn)行了額定風(fēng)速的測(cè)試;在耦合計(jì)算程序驗(yàn)證中,只考慮了垂蕩和縱搖運(yùn)動(dòng),對(duì)縱蕩運(yùn)動(dòng)需要進(jìn)一步驗(yàn)證;由于數(shù)值計(jì)算和模型實(shí)驗(yàn)在運(yùn)動(dòng)自由度、阻尼、風(fēng)載荷等方面的差別,使得數(shù)值計(jì)算結(jié)果和模型實(shí)驗(yàn)結(jié)果有一定的差異,以后將對(duì)該問(wèn)題做進(jìn)一步改進(jìn).
1 Willy T,Tjukup M,Sohif M,et al.Darrieus vertical axis wind turbine for power generation II:challenges in HAWT and the opportunity of multi-megawatt Darrieus VAWT development.Renewable Energy,2015,75:560-571
2 Madjid K,Torgeir M.Wave and wind induced dynamic response of a spar-type o ff shore wind turbine.Journal of Waterway Port Coastal and Ocean Engineering,2012,138:9-20
3 張亮,葉小嶸,吳海濤等.海上浮式風(fēng)力機(jī)環(huán)境載荷及運(yùn)動(dòng)性能分析.太陽(yáng)能學(xué)報(bào),2013,34(5):876-881(Zhang Liang,Ye Xiaorong, Wu Haitao,et al.Analysis on environmental load and motion performance of floatin o ff shore wind turbine.ActaEnergiae Solaris Sinica,2013,34(5):876-881(in Chinese))
4 Ramachandran GKV,Bredmose H,Sorensen JN,et al.Fully coupled three-dimensional dynamic response of a tension-leg platform floatin wind turbine in waves and wind.Journal of Offshore Mechanics and Arctic Engineering,2014,136(2):1-12
5 Ma Y,Hu ZQ.Dynamic analysis for a spar-type wind turbine under di ff erent sea states//Proceedings of the ASME 2013 32th International Conference on Ocean,O ff shore and Arctic Engineering, Nantes,France,2013
6 Cahay M,Luquiau E,Smadja C.Use of a vertical wind turbine in an o ff shore floatin wind farm//Proceedings of the O ff shore Technology Conference,OTC-21705-MS,Houston,Texas,USA,2011
7 Vita L.O ff shore floatin vertical axis wind turbines with rotating platform.[PhD Thesis].Copenhagen,Denmark:Danish Technical University,2011
8 Blusseau P,Patel MH.Gyroscopic e ff ects on a large vertical axis wind turbine mounted on a floatin structure.Renewable Energy, 2012,46:31-42
9 Cheng ZS,Wang K,Gao Z,et al.Dynamic response analysis of three floatin wind turbine concepts with a two-bladed Darrieus rotor.Journal of Ocean and Wind Energy,2015,2(4):213-222
10 ColluM,BorgM,ManuelL.Ontherelativeimportanceofloadsacting on a floatin vertical axis wind turbine system when evaluating the global system response//Proceedings of the ASME 2016 34th International Conference on Ocean,O ff shore and Arctic Engineering, OMAE2016-54628,Busan,South Korea,2016
11 Jonkman J,Buhl M.Loads analysis of a floatin o ff shore wind turbine using fully coupled simulation//Wind Power 2007 Conference &Exhibition,Los Angeles,USA,2007
12 Garrad Hassan GL.Bladed user manual version 4.2.Bristol,England:Garrad Hassan&Partners Ltd,St Vincent’s Works,2012
13 Myhr A,Maus KJ,Nygaard TA.Experimental and computational comparisons of the OC3-HYWIND and Tension-Leg-Buoy(TLB) floatin wind turbine conceptual designs//Proceedings of the 21st International O ff shore and Polar Engineering Conference,Maui,HI, USA,2011
14 Withee JE.Fully coupled dynamic analysis of a floatin wind turbine system.[Master Thesis].Massachusetts,USA:Massachusetts Institute of Technology,2004
15 Nielsen FG,Hanson TD,Kaare B.Integrated dynamic analysis of floatin o ff shore wind turbines//Proceedings of the International Conference O ff shore Mechanics and Arctic Engineering,OMAE 2006-92291,Hamburg,Germany,2006
16 Berg DE.An improved double-multiple stream tube model for the Darrieus type vertical-axis wind turbine//Proceedings of the sixth Biennial Wind Energy Conference and Workshop,Minneapolis, NM,USA,1983
17 Strickland JH,Webster BT,Nguyen TA.Vortex model of the Darrieus turbine:an analytical and experimental study.Sandia National Laboratories,Albuquerque,N.M.,USA,1980
18 Paraschivoiu I.Aerodynamic loads and performance of the Darrieus rotor.Journal of Energy,1982,6:406-412
19 Collu M,Borg M,Shires A,et al.Progress on the development of a coupled model of dynamics for floatin o ff shore vertical axis wind turbines//Proceedings of the ASME 2013 32nd International Conference on Ocean,O ff shore and Arctic Engineering,OMAE2013-54337,Nantes,France,2013
20 Wang K,Hansen MOL,Moan T.Dynamic analysis of a floatin vertical axis wind turbine under emergency shutdown using hydrodynamic brake.Energy Procedia,2014,53:53-69
21 Owens BC,Hurtado JE,Paquette JA.Aero-elastic modeling of large o ff shore vertical-axis wind turbines:development of the o ff shore wind energy simulation toolkit//Proceeding of the 54th AIAA/ASME/ASCE/A-HS/ASC Structures,Structural Dynamics, and Materials Conference,AIAA 2013-1552,Boston,MA.,USA, 2013
22 Liu LQ,Zhou B,Tang YG.Study on the nonlinear dynamical behaviour of deep sea Spar platform by numerical simulation and model experiment.Journal of Vibration&Control,2014,20(10): 1528-1553
23 Huang L,Liu LQ,Liu CY,et al.The nonlinear bifurcation and chaos of coupled heave and pitch motions of a truss spar platform.Journal of Ocean University of China,2015,14:795-802
24 Paraschivoiu I.Wind Turbine Design with Emphasis on Darrieus Concept.Canada:Polytechnic International Press,2002
25 IEC61400-3.Wind turbines,part 3:design requirements for o ffshore wind turbines.Geneva,Switzerland:International Electrochemical Commission,2009
26 Berg DE.An improved double-multiple stream tube model for the Darrieus type vertical-axis wind turbine//Proceedings of the sixth Biennial Wind Energy Conference and Workshop,Minneapolis, NM,USA,1983
27 Pan ZY,Vada T,Finne S,et al.Benchmark study of numerical approaches for wave-current interaction problem of o ff shore floater//Proceedings of the ASME 2016 34th International Conference on Ocean,O ff shore and Arctic Engineering,OMAE2016-54411,Busan,South Korea,2016
28 Faltinsen OM.Sea Loads on Ships and O ff shore Structures.Cambridge,UK:Cambridge University Press,1990
29 API 2A-WSD(RP 2A-WSD).Recommended practice for planning, designing and constructing fi ed o ff shore platforms-working stress design.WashingtonD.C.,USA:AmericanPetroleumInstitute,2000
30 Ractli ff e AT.Validity of quasi-static and approximate formulae in the context of cable and fl xible riser dynamics//Proceedings of the 4th International Conference on Behavior of O ff shore Structures, Delft,The Netherlands,1985
31 Paraschivoiu I.Double-multiple stream tube model for studying vertical-axis wind turbines.Journal of Propulsion,1988,4(4):370-377
32 Liu LQ,Zhang XR,Guo Y,et al.Study on the hydrodynamic characteristic of a spar type floatin foundation which used to support a vertical axis wind turbine//Proceedings of the ASME 2016 34th International Conference on Ocean,O ff shore and Arctic Engineering, OMAE2016-54337,Busan,South Korea,2016
33 Tang YG,Song K,Wang B.Experiment study of dynamics response for wind turbine system of floatin foundation.China Ocean Eng, 2015,29(6):835-846
DYNAMIC MODELING,SIMULATION AND MODEL TESTS RESEARCH ON THE FLOATING VAWT1)
Liu Liqin2)Guo Ying Zhao Haixiang Tang Yougang
(State Key Laboratory of Hydraulic Engineering Simulation and Safety of Tianjin University,Tianjin300072,China)
This paper presented motion responses of the floatin VAWT(vertical axis wind turbine)considering the coupling between aerodynamics and hydrodynamics,the method of aerodynamics of fi ed VAWT was improved to calculate the aerodynamics of the floatin VAWT.The equations of surge,heave and pitch motions of the floatin VAWT were established considering the damping forces,wave forces,wind loads,mooring forces,and so on.The formula of wind loads acting on the blades were deduced by the double-multiple-stream tube theory considering the dynamic stall and motions of the floatin foundation,and a computing code was developed.Taking the Sandia 17m wind turbine as an example,the validity of the aerodynamics computing code was verified The model tests were carried out,where the wind turbine is Φ-Darrieus type and the foundation is truss Spar type.The results obtained by the model tests were compared with those obtained by the numerical simulation,and the coupling computing code was verified.I is found that,the RAO(response amplitude operator)curves of heave and pitch motions of the floatin VAWT obtained by numerical calculation agree well with those obtained by model tests,and the validation of the coupling computing code was verified However,there is di ff erence between the results of numerical calculation and the model tests.This is because the di ff erences betweenthe numerical model and the model tests,mainly regarding the degrees of freedom of the floatin VAWT motions,the damping,and the wind forces.
floatin VAWT,coupling between aerodynamics and hydrodynamics,numerical simulation,model tests
P75,TK81
A
10.6052/0459-1879-16-264
2016–09–20收稿,2016–12–15錄用,2016–12–15網(wǎng)絡(luò)版發(fā)表.
1)國(guó)家自然科學(xué)基金(51579176)、上海交通大學(xué)海洋工程重點(diǎn)試驗(yàn)室開放基金(1501)和天津市自然科學(xué)基金(16JCYBJC21200)資助項(xiàng)目.
2)劉利琴,副教授,主要研究方向:船舶與海洋工程動(dòng)力學(xué),海洋可再生能源.E-mail:liuliqin@tju.edu.cn
劉利琴,郭穎,趙海祥,唐友剛.浮式垂直軸風(fēng)機(jī)的動(dòng)力學(xué)建模、仿真與實(shí)驗(yàn)研究.力學(xué)學(xué)報(bào),2017,49(2):299-307
Liu Liqin,Guo Ying,Zhao Haixiang,Tang Yougang.Dynamic modeling,simulation and model tests research on the floatin VAWT.Chinese Journal of Theoretical and Applied Mechanics,2017,49(2):299-307