馮 浩,程明明,張 冕,高小寧,黃麗麗
(西北農(nóng)林科技大學 植物保護學院,陜西楊凌 712100)
蘋果樹腐爛病菌生長發(fā)育相關突變體篩選及側翼序列分析
馮 浩,程明明,張 冕,高小寧,黃麗麗
(西北農(nóng)林科技大學 植物保護學院,陜西楊凌 712100)
由弱寄生菌蘋果黑腐皮殼屬真菌(ValsamaliMiyabe et Yamada)引起的蘋果樹腐爛病是蘋果枝干上的重大病害。探究病菌生長發(fā)育的分子機制對于新農(nóng)藥靶標位點的開發(fā)具有重要理論意義。在前期建立的蘋果樹腐爛病菌ATMT突變體庫的基礎上,利用PDA培養(yǎng)基常規(guī)培養(yǎng)法,對野生型菌株03-8及230株供試突變體菌株的菌落形態(tài)、大小以及繁殖體產(chǎn)生情況進行觀察分析,篩選得到表型發(fā)生變化的突變體共67株(占突變體總數(shù)的29.13%)。其中11株突變體的菌落大小異常(4.78%);25株突變體的菌落顏色發(fā)生變化(10.87%);18株突變體的菌落邊緣變?yōu)椴灰?guī)則(7.83%);9株突變體的繁殖體最初形成時間推遲至50 d 左右(3.91%);17株(7.39%)突變體的繁殖體產(chǎn)生數(shù)量發(fā)生顯著變化。利用TAIL-PCR對10株表型變化的突變體進行側翼序列擴增,獲得3條T-DNA側翼序列,序列分析發(fā)現(xiàn)1個為細胞色素氧化酶1(cytochrome oxidase 1),其他2個均為含有核糖體L34 (Ribosomal L34)的假想蛋白。篩選獲得67個生長發(fā)育受到影響的突變體,并鑒定得到2個候選的調控病菌生長發(fā)育的相關基因,為揭示蘋果樹腐爛病菌生長發(fā)育的分子機理奠定基礎。
蘋果樹腐爛病;Valsamali;突變體;生長發(fā)育;側翼序列
由弱寄生菌蘋果黑腐皮殼屬真菌(ValsamaliMiyabe et Yamada)引起的蘋果樹腐爛病是蘋果枝干上的重大病害[1]。主要引起蘋果樹枝干皮層腐爛,被稱為蘋果樹的“癌癥”,給蘋果產(chǎn)業(yè)造成巨大的經(jīng)濟損失。病原菌生長發(fā)育與侵染致病環(huán)節(jié)息息相關,因此,從分子水平探究影響病原菌生長發(fā)育的關鍵因子能夠為全面揭示病菌致病分子機制奠定基礎,有利于新靶標位點的發(fā)現(xiàn)和新農(nóng)藥的開發(fā)。
在植物病原真菌功能基因組研究中,反向遺傳學方法是研究功能基因最常用的方法。通過ATMT 技術構建T-DNA真菌插入突變體庫,篩選致病表型突變體,克隆相關突變基因,進而通過正向和反向遺傳學等手段進行致病相關基因功能的研究。目前,利用該方法已經(jīng)對多種植物病原真菌的致病相關基因進行了研究并取得重要進展。稻瘟病菌(Magnaportheoryzae)、大麗輪枝菌(Verticilliumdahliae)、鏈格孢(Alternariaalternata)、灰葡萄孢(Botrytiscinerea)及菜豆間座殼(Diaporthephaseolorum)等病菌的ATMT突變體庫相繼被構建,并鑒定到一 批與生長速率、產(chǎn)孢能力及致病力相關的重要基因[2-10]??梢?,通過篩選病菌ATMT突變體庫中生長發(fā)育相關突變體,進而克隆突變基因,并通過正向和反向遺傳學等手段進行功能研究,有利于對病菌生長發(fā)育及致病機制的深入理解。
此前研究中,西北農(nóng)林科技大學植物保護學院果樹病害病原生物學及綜合防治研究室已經(jīng)建立了蘋果樹腐爛病菌ATMT突變體庫,為蘋果樹腐爛病菌功能基因研究提供豐富的材料[11]。黃定宣等[12]對突變體庫中230株突變體表型進行篩選,鑒定到阿魏酸酯酶等致病相關基因,但并未開展生長發(fā)育相關基因的鑒定工作。并且該突變體庫包括8 000多個突變體,急需深入挖掘突變體資源,以便全面解析病菌的生長發(fā)育機制。為此,本研究從突變體庫中選取230株突變體菌株,通過表型分析篩選生長發(fā)育受到影響的突變體,并通過側翼序列的擴增對相關基因進行分離和初步注釋,以期為揭示蘋果樹腐爛病菌生長發(fā)育調控機制奠定基礎,并為新農(nóng)藥靶標位點的開發(fā)及病害有效防治提供理論依據(jù)。
1.1 菌 株
蘋果樹腐爛病菌野生型菌株03-8以及230株蘋果樹腐爛病菌ATMT突變體均由西北農(nóng)林科技大學植物保護學院果樹病害綜合治理研究室提供。
1.2 培養(yǎng)基
PDA培養(yǎng)基、LB培養(yǎng)基。
1.3 試劑和引物合成
氨芐青霉素(Amp)購自Sigma(美國),用量為 100 mg/L;PMD19 T-Simple連接酶(TaKaRa,中國大連)、Taq酶(TaKaRa,中國大連)等購自寶生物工程(大連)有限公司;膠回收試劑盒購自Biomiga(美國)。
1 mol/L Tris-HCl(pH 8.0)、0.5 mol/L EDTA(pH 8.0)、50×TAE緩沖液母液(pH 8.5)及EB染色液等。
引物合成均由上海生工生物工程技術服務有限公司完成(表1)。
表1 TAIL-PCR擴增引物Table 1 Primer list for TAIL-PCR
1.4 菌株的活化
蘋果樹腐爛病菌野生型菌株03-8及230株突變體均在常規(guī)PDA培養(yǎng)基上25 ℃黑暗培養(yǎng)3 d。
1.5 菌落大小的測定
在活化菌株的菌落邊緣取直徑7 mm的菌餅,接種于PDA培養(yǎng)基上25 ℃黑暗培養(yǎng)3 d。以十字交叉法測定菌落中心到邊緣的大小,各菌株均重復3次,每個重復以野生型菌株作對照,試驗重復3次。運用SPSS 16.0軟件,對所測定的數(shù)據(jù)進行t檢驗。
1.6 菌落形態(tài)的記錄
活化菌株于25 ℃黑暗培養(yǎng)5 d后,觀察記錄菌落的顏色/質地、菌落邊緣、氣生菌絲疏密程度。每個菌株設3個重復,試驗重復3次。
1.7 繁殖體形成時間及數(shù)量統(tǒng)計
將黑暗培養(yǎng)5 d后的培養(yǎng)皿置于24 h光照條件下繼續(xù)培養(yǎng),同時監(jiān)測繁殖體形成時間,并于培養(yǎng)60 d后統(tǒng)計突變體和野生型菌株繁殖體個數(shù)。每個菌株設3個重復培養(yǎng)皿(d=9 cm),試驗重復3次。
1.8 側翼序列的擴增及比對分析
利用CTAB法對10個突變體菌株進行DNA提取。采用熱不對稱交錯PCR(TAIL-PCR)對表型變異的突變體菌株的右側翼序列進行擴增,參照Liu等[13]方法,參照Tsuji 等[14]和Mullins等[15]引物。PCR反應體系均為:10×Buffer 2 μL、Mg2+1.2 μL、dNTPs 0.4 μL、特異引物(10 μmol/L) 0.2 μL、AD混合引物(10 μmo/L;)1 μL、模板1 μL、Taq酶 0.3 μL、用滅菌雙蒸水補足20 μL。上一輪反應產(chǎn)物稀釋1 000倍之后作為下一輪的模板。第1輪PCR反應條件為:95 ℃預變性5 min,94 ℃ 1 min,62 ℃ 1 min,72 ℃ 2 min為1個循環(huán),進行5個循環(huán);94 ℃ 1 min,25 ℃ 1 min,以0.2 ℃/s的速度升溫至72 ℃,72 ℃ 2 min為1個循環(huán),進行2個循環(huán);94 ℃ 30 s,64 ℃ 30 s,72 ℃ 2 min,94 ℃ 30 s,64 ℃ 30 s,72 ℃ 2 min,94 ℃ 30 s,45 ℃ 30 s,72 ℃ 2 min為1個循環(huán),進行12個循環(huán);72 ℃延伸5 min,最后16 ℃保溫。第2輪PCR反應條件為:95 ℃預變性5 min,94 ℃ 1 min,62 ℃ 1 min,72 ℃ 2 min為1個循環(huán),進行5個循環(huán);94 ℃ 30 s,64 ℃ 30 s,72 ℃ 2 min,94 ℃ 30 s,64 ℃ 30 s,72 ℃ 2 min,94 ℃ 30 s,45 ℃ 30 s,72 ℃ 2 min為1個循環(huán),進行10個循環(huán);94 ℃ 30 s,45 ℃ 1 min,72 ℃ 2 min為1個循環(huán),進行5個循環(huán);72 ℃延伸5 min,最后16 ℃保溫。第3輪PCR反應條件為:94 ℃預變性5 min;94 ℃ 45 s,45 ℃ 45 s,72 ℃ 2 min為1個循環(huán),進行35個循環(huán);72 ℃延伸5 min,16 ℃保溫。
以10個蘋果樹腐爛病菌突變體基因組 DNA 為模板,對其 T-DNA 插入位點基因右側的序列進行擴增、回收、測序。測序結果經(jīng)過DNAMAN(Version 7)進行序列比對,獲側翼序列,并對序列進行tblastx(http://blast.ncbi.nlm.nih.gov/Blast.cgi)注釋分析。
2.1 突變體菌落大小的測定
通過十字交叉法測量野生型菌株03-8及230株突變體菌株3 d的菌落大小,篩選得到11株菌落大小與野生型菌株03-8有顯著差異的菌株,其中3個菌株3 d的菌落大小相對于03-8顯著減小(表2,圖1)
2.2 突變體菌落形態(tài)的觀察
通過對野生型菌株及230株供試突變體菌株進行菌落形態(tài)(包括菌落顏色、形狀及氣生菌絲的疏密程度)的觀察,篩選得到菌落顏色有變異的菌株25株,其中18株變異為菌落正面灰白色,背面黑褐色,7株變異為菌落正背面均為黃褐色,并且18株菌落邊緣變異為不規(guī)則類型(表3,圖2)。
表2 3 d菌落大小顯著變化的菌株Table 2 Strains with significant changes in colony size on the 3rd day
注:同列數(shù)據(jù)后不同小寫字母表示在0.05水平差異顯著(t檢驗)。
Note:Different lowercase letters following data in the column indicate significantly difference at 0.05.
A.野生型菌株03-8 WT strain 03-8; B.3 d菌落大小顯著減小的菌株 Strain which colony size reduced significantly on the 3rd day; C.3 d菌落大小顯著增大的菌株 Strain with significant increase of colony size on the 3rd day
圖1 野生型菌株與菌落大小顯著變化的突變體菌株(PDA,25 ℃,3 d)Fig.1 WT and mutant strains with significant changes in colony size(PDA,25 ℃,3 d)
(續(xù)表2 Continued table 2)
菌株Strain菌落形狀 Colonyshape顏色/質地Colour/character邊緣Margin變異指標 Variationindicators菌落生長速度Colonygrowthrate繁殖體產(chǎn)生時間Initialformationtimeoffruitbody繁殖體數(shù)量NumbersoffruitbodyX7382N規(guī)則 RegularNNFX7383N規(guī)則 RegularNNMX7384N規(guī)則 RegularNNMX7387N規(guī)則 RegularNNFX7389A1規(guī)則 RegularNNNX7391A2規(guī)則 RegularNNNX7392N規(guī)則 RegularNNFX7393A2規(guī)則 RegularNNNX7399N規(guī)則 RegularNNFX7402A2規(guī)則 RegularNNFX7403A2規(guī)則 RegularNNNX7406A2規(guī)則 RegularNNNX7410N規(guī)則 RegularNNFX7411A1規(guī)則 RegularNNNX7413N規(guī)則 RegularNNFX7414A2規(guī)則 RegularNNNX7422A2規(guī)則 RegularNNNX7424A2規(guī)則 RegularNNNX7427A2不規(guī)則 IrregularNNFX7428A1規(guī)則 RegularNNNX7429A2規(guī)則 RegularNNNX7433N規(guī)則 Regular+NNX7436N規(guī)則 Regular+NNX7437N規(guī)則 Regular+NNX7438N規(guī)則 Regular+NNX7440A2規(guī)則 RegularNNNX7442N規(guī)則 RegularNNMX7447N規(guī)則 RegularN①NX7457A1不規(guī)則 IrregularNNNX7458N規(guī)則 RegularN①NX7466N規(guī)則 RegularN①NX7470N不規(guī)則 IrregularNNMX7477N不規(guī)則 IrregularNNNX7478N不規(guī)則 Irregular-NNX7479A1規(guī)則 RegularNNNX7484N不規(guī)則 IrregularNNNX7485N規(guī)則 Regular-NNX7491A2不規(guī)則 IrregularNNNX7493N不規(guī)則 IrregularNNNX7494N不規(guī)則 Irregular-NNX7499N規(guī)則 RegularN①NX7505N不規(guī)則 IrregularNNNX7508A2規(guī)則 RegularNNFX7513N規(guī)則 RegularN①FX7514N規(guī)則 RegularN①NX7515N規(guī)則 RegularN①NX7517A2規(guī)則 RegularNNNX7518N不規(guī)則 IrregularNNNX7520A2不規(guī)則 IrregularNNNX7521N不規(guī)則 IrregularNNNX7575N規(guī)則 RegularN①NX7599N規(guī)則 RegularN①N
注:N 代表突變體所有生物學特性與野生型無顯著差別;A1代表菌落顏色質地異常,正面灰白色背面黑褐色;A2代表菌落顏色質地異常,正背面均為褐色;+代表培養(yǎng)3 d的菌落大小比野生型菌株顯著增大;-代表培養(yǎng)3 d的菌落大小比野生型菌株顯著減??;①表示繁殖體初始形成時間推遲至50 d左右;M代表繁殖體增多,是野生型菌株03-8的2倍以上,超過每皿400個;F代表繁殖體減少,不足野生型菌株03-8的一半,即少于每皿100個。
Note:N means that no significant difference was found between mutants and wild type strains; A1 means there is obvious difference of colonial colour,grey to white on front and brown to dark on back; A2 means there is obvious difference of colonial colour,both front and back is brown; + means the colony of strains becomes much bigger than the wild type after 3 d cultivation; - means the colony of strains become smaller obviously than the wild type after 3 d cultivation;① means the time for generation of propagules is postponed almost 50 d. M means generations of propagules increase to more than double times of the wild type 03-8,with more than 400 per petri dish; F means generation of propagules reduce to less than half of the wild type 03-8,with less than 100 per petri dish.
A.野生型菌株03-8,正面乳白色,背面黃褐色 WT 03-8,the front is milky white,and the back is yellow to brown;B.正面背面均為黃褐色 Both front and back are yellow to brown;C.正面灰白色,背面黑褐色 Front is gray to white and the back is brown to dark;D.邊緣不規(guī)則 Margin is irregular
圖2 4種菌落形態(tài)代表型菌株(PDA,25 ℃)
Fig.2 Four kinds of colony morphology on representative strain(PDA,25 ℃)
2.3 突變體繁殖體的產(chǎn)生情況
野生型菌株03-8在24 h光照條件下接種于PDA培養(yǎng)基上培養(yǎng)15 d左右即可見黑色的繁殖體。統(tǒng)計230株供試菌株繁殖體形成時間發(fā)現(xiàn),大部分突變體在接種于PDA培養(yǎng)基上15~20 d產(chǎn)生繁殖體。 10株突變體的繁殖體最初形成時間延遲,其中9株推遲50 d左右出現(xiàn)繁殖體。通過野生型菌株03-8及230株突變體接種于PDA培養(yǎng)基上光照培養(yǎng)60 d時產(chǎn)生的繁殖體數(shù)量統(tǒng)計發(fā)現(xiàn):野生型菌株03-8在接種60 d時繁殖體為每皿200個(d=9 cm),5株突變體的繁殖體產(chǎn)生量超過每皿400個,比野生型菌株03-8多1倍以上,12株突變體的繁殖體產(chǎn)生量少于野生型菌株03-8的一半,繁殖體少于每皿100個(表3,圖3)。
2.4 側翼序列擴增及序列分析
本試驗使用AD簡并引物和3個特異性引物HS-1、HS-2、HS-3對23株突變體插入位點的右側序列分別進行擴增,經(jīng)過20 g/L瓊脂糖凝膠電泳、膠回收、連接轉化、菌落PCR驗證后送公司測序(圖4~5)。與野生型菌株03-8基因組序列比對后,最終得到3個突變體插入位點的右側序列(表4)。序列經(jīng)過tblastx注釋分析表明,突變體X7174的側翼序列被注釋為細胞色素氧化酶1(cytochrome oxidase 1),X7177、和X7156的側翼序列注釋為含有核糖體L34 (Ribosomal L34)的假想蛋白。
A.野生型菌株03-8 WT strain 03-8;B.繁殖體明顯增多的突變體菌株 Mutants with significant increase of fruit bodies;C.繁殖體顯著減少的突變體菌株 Mutants with significant decrease of fruit bodies
圖3 野生型菌株以及突變體繁殖體產(chǎn)生情況(PDA,25 ℃,60 d)
Fig.3 Fruit body formation of wild strain and mutants(PDA,25 ℃,60 d)
蘋果樹腐爛病是蘋果生產(chǎn)上的第一大病害,嚴重威脅著蘋果產(chǎn)業(yè)的健康發(fā)展。目前,已經(jīng)對病菌的種類、生物學特性、致病力分化、侵染過程、致病機制及發(fā)生流行規(guī)律等方面開展了系統(tǒng)研究[16-23]。然而關于病菌的生長發(fā)育機制尚未全面了解,通過探究病菌生長發(fā)育機制對于農(nóng)藥新的靶標位點的發(fā)現(xiàn)及病害有效防控策略的制定具有重要意義。
隨著農(nóng)桿菌介導的遺傳轉化體系(Agrobacteriumtumefaciens-mediated transformation,ATMT)在植物病原真菌中的成功應用,建立病菌ATMT突變體庫并結合TAIL-PCR技術分離鑒定相關基因成為研究病菌重要基因功能的突破口[24-26]。并利用該技術成功克隆到與病原真菌致病性與抗藥性等重要生物學性狀的相關基因并證實其生物學功能[27-28]。本試驗共篩選實驗室ATMT突變體庫內菌株230株,大部分菌株在菌落形態(tài)、菌株生長速率以及繁殖體產(chǎn)生情況上與野生型菌株03-8并沒有顯著變化,只有少數(shù)突變體菌株表現(xiàn)明顯的差異,這種現(xiàn)象出現(xiàn)的可能原因是:首先,外源T-DNA插入病原基因組位點是隨機的,其插入位點可能是病原菌某些與表型相關基因的關鍵位點,也可能是基因組中不會引起表型明顯變化的位點,由于是隨機插入,插入到關鍵位點的幾率將很小,所以大部分突變體菌株與野生型菌株表型相似;其次,表型的改變不僅會受到外源基因的影響,還同時會受到病原菌本身的株系、遺傳轉化體系以及插入拷貝數(shù)等諸多因素的影響。
1. X7174第2輪 Second application of X7174; 2~3. X7174第3輪 The third application of X7174; 4.X7177第2輪 The second application of X7177; 5~6.X7177第3輪 The third application of X7177;M.marker DL2000
圖4 TAIL-PCR第2輪與第3輪對比電泳
Fig.4 Electrophoresis of second and third application of TAIL-PCR
1~2. X7174; 3~4. X7177;M.marker DL2000
菌株Strain突變體Mutant基因注釋Geneannotation表型變化PhenotypicchangeX7174C01/VM00381細胞色素氧化酶1Cytochromeoxidase1生長速度增快IncreasedgrowthrateX7177NTP9J3XB014含有核糖體L34的假想蛋白Hypotheticalprotein(RibosomalL34)生長速度增快IncreasedgrowthrateX7156NTP9J3XB014含有核糖體L34的假想蛋白Hypotheticalprotein(RibosomalL34)生長速度增快Increasedgrowthrate
對本次篩選到的10株菌株進行側翼序列擴增,得到3條側翼序列條帶,其中有1條側翼序列基因注釋為細胞色素氧化酶 1(cyt 1),另一條注釋為含有核糖體L34 (Ribosomal L34)的假想蛋白。細胞色素氧化酶(cytochrome oxidase)是具有電子傳遞鏈末端的酶,是呼吸電子傳遞鏈的第4個中心酶復合物,又被稱為復合物IV(Complex IV),氰化物、硫化氫、疊氮化合物和CO都能夠與細胞色素氧化酶結合,并抑制其活性,從而造成細胞的“化學窒息”。后續(xù)工作中還應通過Southern 雜交等方法確定突變體T-DNA拷貝數(shù),基于全基因組信息獲得相應基因的全長序列,并利用基因敲除技術對目標基因進行功能驗證,明確目的基因在蘋果樹腐爛病菌生長發(fā)育中的作用。
Reference:
[1] WANG X L,WEI J L,HUANG L L,etal.Re-evaluation of pathogens causing Valsa canker on apple in China[J].Mycologia,2011,103(2):317-324.
[2] 賀春萍,林春花,廖奇亨,等.稻瘟病菌 T-DNA插入突變體庫構建及致病相關突變體篩選[J].熱帶作物學報,2007,28(1):80-84.
HE CH P,LIN CH H,LIAO Q H,etal.Construction of a T-DNA insertion mutant library ofMagnaporthegriseaand identification of pathogenicity-related mutants[J].ChineseJournalofTropicalCrops,2007,28(1):80-84(in Chinese with English abstract).
[3] 徐后娟,徐榮燕,李多川.鏈格孢ATMT農(nóng)桿菌介導轉化體系的構建及弱毒突變株驗證[J].基因組學與應用生物學,2009,28(6):1056-1062.
XU H J,XU R Y,LI D CH.Agrobacterium tumefaciens-mediated transformation ofAlternariaalternataand identification of hypovirulent mutant[J].GenomicsandAppliedBiology,2009,28(6):1056-1062(in Chinese with English abstract).
[4] 吳小燕,王教瑜,張 震,等.稻瘟病菌致病性增強突變體B11的基因分析[J].中國水稻科學,2009,23(6):611-615.
WU X Y,WANG J Y,ZHANG ZH,etal.Analysis on gene locus ofMagnaportheoryzaeB11,a pathogenicity-enhanced mutant[J].ChineseJournalofRiceScience,2009,23(6):611-615(in Chinese with English abstract).
[5] 馮 娟,朱廷恒,崔志峰,等.農(nóng)桿菌介導的灰葡萄孢T-DNA 插入突變體庫構建及插入位點分析[J].微生物學報,2010,50(2):169-173.
FENG J,ZHU T H,CUI ZH F,etal.Construction of T-DNA insertion mutants ofBotrytiscinereaviaAgrobacteriumtumefaciensmediated transformation and sequence analysis of insertion site[J].ActaMicrobiologicaSinica,2010,50(2):169-173(in Chinese with English abstract).
[6] 徐榮旗,汪佳泥,陳捷胤,等.棉花黃萎病菌 T-DNA插入突變體表型特征和側翼序列分析[J].中國農(nóng)業(yè)科學,2010,43(3):489-496.
XU R Q,WANG J N,CHEN J Y,etal.Analysis of T-DNA insertional flanking sequence and mutant phenotypic characteristics inVerticilliumdahliae[J].ScientiaAgriculturaSinica,2010,43(3):489-496(in Chinese with English abstract).
[7] JEON J,PARK S Y,CHI M H,etal.Genome-wide functional analysis of pathogenicity genes in the rice blast fungus[J].NatureGenetics,2007,39(4):561-565.
[8] GAO F,ZHOU B J,LI G Y,etal.A glutamic acid-Rich protein identified inVerticilliumdahliaefrom an insertional mutagenesis affects microsclerotial formation and pathogenicity[J].PLoSONE,2010,5(12):1-10.
[9] MARUTHACHALAM K,KLOSTERMA S J,KANG S,etal.Identification of pathogenicity-related genes in the vascular wilt fungusVerticilliumdahliabyAgrobacteriumtumefaciens-mediated T-DNA insertional mutagenesis[J].MolecularBiotechnology,2011,49(3):209-221.
[10] SEBASTIANES F L S,LACAVA P T,FAVAROL C L,etal.Genetic transformation ofDiaporthephaseolorum,an endophytic fungus found in mangrove forests,mediated byAgrobacteriumtumefaciens[J].CurrentGenetics,2012,58(1):21-33.
[11] HU Y,DAI Q Q,LIU Y Y,etal.Agrobacteriumtumefaciens-mediated transformation of the causative agent of Valsa canker of apple treeValsamalivar.mali[J].CurrentMicrobiology,2014,68(6):769-776.
[12] 黃定宣,胡 楊,孫光超,等.蘋果樹腐爛病菌T-DNA插入突變體表型及致病突變體研究[J].西北農(nóng)林科技大學學報(自然科學版),2014,42(7):113-121.
HUANG D X,HU Y,SUN G CH,etal.Phenotype and pathogenicity ofValsamaliT-DNA insertion mutants[J].JournalofNorthwestA&FUniversity(NatureScienceEdition),2014,42(7):113-121(in Chinese with English abstract).
[13] LIU Y G,WHITTIER R F.Thermal asymmetric interlaced PCR:automatable amplification and sequencing of insert end fragments from P1 and YAC clones for chromosome walking[J].Genomics,1995,25(3):674-681.
[14] TSUJI G,FUJII S,FUJIHARAN,etal.Agrobacteriumtumefaciens-mediated transformation for random insertional mutagenesis inColletotrichumlagenarium[J].JournalofGeneralPlantPathology,2003,69(4):230-239.
[15] MULLINS E D,CHEN X,ROMAIN E P,etal.Agrobacterium-mediated transformation ofFusariumoxysporum:An efficient tool forinsertional mutagenesis and gene transfer[J].Phytopathology,2001,91(2):173-180.
[16] 臧 睿,黃麗麗,康振生,等.陜西蘋果樹腐爛病菌(Cytosporaspp.)不同分離株的生物學特性和致病性研究[J].植物病理學報,2007,37(4):343-351.
ZANG R,HUANG L L,KANG ZH SH,etal.Biological characteristics and pathogenicity of different isolates ofCytosporaspp.isolated from apple trees in Shaanxi province[J].ActaPhytopathologicaSinica,2007,37(4):343-351(in Chinese with English abstract).
[17] 臧 睿,黃麗麗.蘋果樹腐爛病菌分生孢子萌發(fā)及其影響條件研究[J].西北農(nóng)業(yè)學報,2007,16(1):64-67.
ZANG R,HUANG L L.Study on the pycindiospore germination of apple tree Valsa canker pathogen[J].ActaAgriculturaeBoreali-occidentalisSinica,2007,16(1):64-67(in Chinese with English abstract).
[18] 杜戰(zhàn)濤,李正鵬,高小寧,等.陜西省蘋果樹腐爛病周年消長及分生孢子傳播規(guī)律研究[J].果樹學報,2013,30(5):681-687.
DU ZH T,LI ZH P,GAO X N,etal.Study on the conidia dispersal and the disease dynamics of apple treecanker caused byValsamalivar.maliin Shaanxi[J].JournalofFruitScience,2013,30(5):681-687(in Chinese with English abstract).
[19] KE X W,HUANG L L,GAO X N,etal.Histological and cytological investigations of the infection and colonization of apple bark byValsamalivar.mali[J].AustralasianPlantPathology,2013,42(1):85-93.
[20] KE X W,YIN ZH Y,SONG N,etal.Transcriptome profiling to identify genes involved in pathogenicity ofValsamalion apple tree[J].FungalGeneticsandBiology,2014,68:31-38.
[21] YIN ZH Y,LIU H Q,LI ZH P,etal.Genome sequence of Valsa canker pathogens uncovers a potential adaptation of colonization of woody bark[J].NewPhytologist,2015,208(4):1202-1216.
[22] LI ZH P,YIN ZH Y,FAN Y Y,etal.Candidate effector proteins of the necrotrophic apple canker pathogenValsamalican suppress BAX-induced PCD[J].FrontierinPlantScience,2015,6:579.
[23] 宋 娜,戴青青,宋 娜,等.蘋果樹腐爛病菌 GTP-環(huán)化水解酶Ⅱ基因敲除載體構建及其突變體的表型分析[J].中國農(nóng)業(yè)科學,2014,47(15):2980-2989.
SONG N,DAI Q Q,SONG N,etal.Construction of knockout vector of GTPcyclohydrolaseⅡ gene and mutant’s biological characteristics ofValsamali[J].ScientiaAgriculturaSinica,2014,47(15):2980-2989(in Chinese with English abstract).
[24] RHO H S,KANG S,LEE Y H.Agrobacteriumtumefaciens-mediated transformation of the plant pathogenic fungusMagnaporthegrisea[J].MolecularCells,2001,12(3):407-411.
[25] FRANDSEN R J N.A guide to binary vectors and strategies for targeted genome modication in fungi usingAgrobacteriumtumefaciens-mediated transformation[J].JournalofMicrobiologyMethod,2011,87(3):247-262.
[26] MICHIELSE C B,HOOYKAAS P J,VAN DEN HONDELC A M J J,etal.Agrobacterium-mediated transformation as a tool for functional genomics in fungi[J].CurrentGenetics,2005,48(1):1-17.
[27] BLAISE F,REMY E,MEYER M,etal.A critical assessment ofAgrobacteriumtumefaciens-mediated transformation as a tool for pathogenicity gene discovery in the phytopathogenic fungusLeptosphaeriamaculans[J].FungalGeneticsandBiology,2007,44(2):123-138.
[28] ZHANG Y J,ZHAO J J,XIE M,etal.Agrobacteriumtumefaciens-mediated transformation in the entomopathogenic fungusLecanicilliumlecaniiand development of benzimidazole fungicide resistant strains[J].JournalofMicrobiologicalMethods,2014,105:168-173.
(責任編輯:潘學燕 Responsible editor:PAN Xueyan)
Screening of Growth-Related Mutants ofValsamaliand Analysis of Flanking Sequence
FENG Hao,CHENG Mingming,ZHANG Mian,GAO Xiaoning and HUANG Lili
(College of Plant Protection,Northwest A&F University,Yangling Shaanxi 712100,China)
Apple valsa canker,caused by weakly parasitic fungus ofValsamali,is one of destructive diseases in apple. Research on molecular mechanisms of growth and development ofV.maliis of great importance in excogitating fungicide with new target-site. In this study,phenotypes including colonial morphology,size of colony and generation of propagules of 230 mutants with wild strain 03-8 were analyzed by using conventional PDA medium culture method. 67 mutants which accounted for 29.13% of obvious phenotypes changes were screened out. Among which,11(4.78%)strains were abnormal in size of colony; 25(10.87%)strains had obvious changes in colour of colony; 18(7.83%)strains had irregular colony margin; Propagules generation of 9(3.91%)strains was postponed about 50 days,futherly,the propagules quantity of 17 strains(7.39%)changed significantly. The flanking sequences of 10 mutant strains were amplified using TALI-PCR. Three flanking sequences of T-DNA were acquired,one of three is the cytochrome oxidase 1 and the other two ones were ribosome L34 (Ribosomal L34) hypothetical proteins. In brief,67 mutants were screened out,and two candidate genes related with the growth and development ofV.maliwere identified. The results will lay a foundation for revealing the molecular mechanism of pathogen growth and development.
Apple valsa canker;Valsamali; Mutant; Growth and development; Flanking sequence
FENG Hao,male,lecture. Research area: pathogenesis mechanism of fungi.E-mail:xiaosong04005@163.com
HUANG Lili,female,professor. Research area: pathogen biology and integrated control of fruit trees diseases.E-mail: huanglili@nwsuaf.edu.cn
2016-03-29
2016-04-30
陜西省自然科學基礎研究計劃青年人才項目(2016JQ3015)。
馮 浩,男,講師,從事病菌致病機理研究。E-mail:xiaosong04005@163.com
黃麗麗,女,教授,主要從事果樹病害病原生物學及病害綜合防控研究。E-mail: huanglili@nwsuaf.edu.cn
日期:2016-12-20
S432.4+4
A
1004-1389(2017)01-0144-08
網(wǎng)絡出版地址:http://www.cnki.net/kcms/detail/61.1220.S.20161220.1645.037.html
Received 2016-03-29 Returned 2016-04-30
Foundation item Basic Research Plan in Natural Science of Shaanxi Province of China(No. 2016JQ3015 ).