佟昌慈, 柳云恩, 張玉彪, 施 琳, 叢培芳, 劉 穎, 史秀云, 毛 舜, 金紅旭, 侯明曉
沈陽(yáng)軍區(qū)總醫(yī)院 急診醫(yī)學(xué)部 全軍重癥(戰(zhàn))創(chuàng)傷救治中心實(shí)驗(yàn)室 遼寧省重癥創(chuàng)傷和器官保護(hù)重點(diǎn)實(shí)驗(yàn)室,遼寧 沈陽(yáng) 110016
·干細(xì)胞研究·
脂肪干細(xì)胞治療急性肺損傷研究進(jìn)展
佟昌慈, 柳云恩, 張玉彪, 施 琳, 叢培芳, 劉 穎, 史秀云, 毛 舜, 金紅旭, 侯明曉
沈陽(yáng)軍區(qū)總醫(yī)院 急診醫(yī)學(xué)部 全軍重癥(戰(zhàn))創(chuàng)傷救治中心實(shí)驗(yàn)室 遼寧省重癥創(chuàng)傷和器官保護(hù)重點(diǎn)實(shí)驗(yàn)室,遼寧 沈陽(yáng) 110016
急性肺損傷; 炎癥反應(yīng); 脂肪干細(xì)胞
Acute lung injury; Inflammatory reaction; Adipose stem cells
在多發(fā)傷患者中,胸外傷是較為常見(jiàn)的[1-2],而胸部創(chuàng)傷的危重患者具有極高的彌散性血管內(nèi)凝血、肺炎、急性肺損傷(acute lung injury,ALI)或急性呼吸窘迫綜合征(acute respiratory distress syndrome,ARDS)等并發(fā)癥發(fā)生率[3-4],嚴(yán)重影響患者的存活率[5-7]。胸部創(chuàng)傷主要是由鈍性機(jī)制和肋骨骨折引起的,常出現(xiàn)氣胸和肺挫傷(pulmonary contusion,PC)[8],50%患者在病程中出現(xiàn)肺炎或ARDS等并發(fā)癥[9-10]。此外,胸外傷是嚴(yán)重創(chuàng)傷患者發(fā)生ARDS的獨(dú)立危險(xiǎn)因素[11]。胸部創(chuàng)傷引起肺損傷的原因是多方面的。首先,機(jī)械損傷本身會(huì)對(duì)肺部組織造成直接損傷;其次,炎癥反應(yīng)可損傷肺泡毛細(xì)血管膜,引起肺通透性增加,進(jìn)而導(dǎo)致肺水腫和肺泡充盈,隨后,炎癥級(jí)聯(lián)反應(yīng)和凝血激活可引起ALI[12-13]。在其他呼吸道疾病中,ALI和ARDS的損傷機(jī)制與中性粒細(xì)胞浸潤(rùn)肺壁有關(guān)。因此,肺組織損傷與由蛋白水解酶和氧化劑釋放引起的微血管損傷密切相關(guān)。直接或間接的胸部外傷通過(guò)Toll樣受體(Toll-like receptor,TLR)介導(dǎo)激活NF-κB通路,激活炎癥反應(yīng)[14]。在炎癥反應(yīng)發(fā)生過(guò)程中,中性粒細(xì)胞被招募到損傷部位。雖然ALI的具體病理生理機(jī)制尚不清楚,但中性粒細(xì)胞在肺組織中的積聚似乎是嚴(yán)重創(chuàng)傷后發(fā)生急性呼吸窘迫綜合征的主要機(jī)制之一。細(xì)菌性或病毒性肺炎、毒性吸入、溺水或PC可直接誘導(dǎo)ARDS的發(fā)生,而膿毒癥、胰腺炎、大量輸血和嚴(yán)重創(chuàng)傷可間接導(dǎo)致[15]。目前,可用的治療方法僅限于支持性治療,包括肺保護(hù)性通氣、高頻振蕩通氣、保守的液體策略和易于定位的緩解癥狀的治療方法等[16-17]。
除了ALI外,肺部炎癥性疾病還包括哮喘、慢性阻塞性肺病(chronic obstructive pulmonary disease,COPD)。全球有將近3億人患有哮喘[18]。哮喘是一種慢性炎癥性疾病,患者出現(xiàn)陣發(fā)性癥狀,如哮鳴音、咳嗽、胸悶、氣短。到目前為止,吸入具有抑炎作用的糖皮質(zhì)激素和長(zhǎng)效β2激動(dòng)劑仍然是該病的主要治療方法。雖然大多數(shù)哮喘患者對(duì)激素的治療反應(yīng)良好,但仍有5%~10%患者的治療是無(wú)效的[19]。此外,長(zhǎng)期使用類(lèi)固醇激素會(huì)產(chǎn)生許多不良反應(yīng)[20-21]。COPD也是一種慢性肺部炎癥性疾病,其特征是持續(xù)及進(jìn)行性發(fā)展的氣流受限,同時(shí)伴有增強(qiáng)的炎癥反應(yīng),是一種具有氣流阻塞特征的肺氣腫和(或)慢性支氣管炎[4]。COPD是全球第4大死因,預(yù)計(jì)到2020年將達(dá)到第3位[4,22]。然而,其治療方法僅有有限數(shù)量的藥理學(xué)療法可供選擇[23-26]。令人驚訝的是,類(lèi)固醇作為哮喘的強(qiáng)效抗炎劑,被發(fā)現(xiàn)在控制COPD相關(guān)炎癥方面效果較差[27-29]。到目前為止,還沒(méi)有真正改變這種疾病進(jìn)展性的藥物。因此,尋找確定有效的ALI、哮喘和COPD等的治療方法具有重要意義。
干細(xì)胞包括胚胎干細(xì)胞(embryonic stem cells,ESCs)、誘導(dǎo)多能干細(xì)胞(induced pluripotent stem cells,iPSCs)和出生后的成體干細(xì)胞。ESCs能夠自我更新并分化成體內(nèi)任何一種細(xì)胞類(lèi)型;iPSCs是遺傳基因重新編輯的體細(xì)胞,并具有ESCs的特征,但ESCs和iPSCs之間的區(qū)別尚不清楚[30-31]。由于倫理問(wèn)題,在臨床研究和實(shí)踐中應(yīng)用ESCs是很困難的,但iPSCs和成體干細(xì)胞沒(méi)有這樣的問(wèn)題。近年來(lái),從脂肪組織中分離得到了一種具有多向分化潛能的干細(xì)胞,即脂肪干細(xì)胞(adipose-derived stem cells,ADSCs),是成體干細(xì)胞的一種。ADSCs能夠在體外穩(wěn)定增殖且衰亡率低,同時(shí),ADSCs可以容易地從脂肪抽吸物或皮下脂肪組織碎片中提取獲得,并可在體外擴(kuò)增。因此,其具有取材容易,少量組織即可獲取大量干細(xì)胞,適宜大規(guī)模培養(yǎng),對(duì)機(jī)體損傷小等優(yōu)點(diǎn),而且其來(lái)源廣泛,體內(nèi)儲(chǔ)備量大,適宜自體移植,另外,沒(méi)有倫理問(wèn)題,適用于多種臨床應(yīng)用[32-36]。ADSCs逐漸成為近年來(lái)新的研究熱點(diǎn)之一。
ADSCs被發(fā)現(xiàn)存在于任何類(lèi)型的白色脂肪組織中,包括皮下和網(wǎng)膜脂肪,為了獲得分離ADSCs的脂肪組織,吸脂是一個(gè)安全且并發(fā)癥發(fā)生率較低方法[37-38]。來(lái)自吸脂的脂肪細(xì)胞的90%~100%是完整的,分離的ADSCs可以大力擴(kuò)增,直到其進(jìn)入特定細(xì)胞譜系的分化過(guò)程。ADSCs能夠在長(zhǎng)期培養(yǎng)中體外分化成脂肪細(xì)胞、成骨細(xì)胞、軟骨細(xì)胞、肌細(xì)胞等[36]。由于ADSCs的多能性,其可廣泛應(yīng)用于臨床,主要功能為修復(fù)組織細(xì)胞,促進(jìn)細(xì)胞的再生等,適用于再生醫(yī)學(xué)。
ADSCs不但具有多功能的轉(zhuǎn)分化潛能,還表現(xiàn)出廣泛的分泌譜,可分泌促炎細(xì)胞因子、抗炎細(xì)胞因子、趨化因子和生長(zhǎng)因子[39-41]。ADSCs分泌的旁分泌調(diào)節(jié)劑可通過(guò)調(diào)節(jié)同期性組織中的血分泌或營(yíng)養(yǎng)性旁分泌作用以改善組織損傷關(guān)鍵活性[42-43]。 ADSCs的獨(dú)特分泌特征表明其特異性影響組織再生[44-45],血管生成[46-47]和淋巴管生成[48],同時(shí),抑制局部免疫/炎癥反應(yīng)[39,49]并減少纖維發(fā)生[50-51]。另外,ADSCs在缺氧條件下對(duì)非血管細(xì)胞具有保護(hù)作用,具有抗凋亡作用和抗氧化應(yīng)激作用[52]。
肺損傷的治療修復(fù)主要集中在兩個(gè)方面,即調(diào)節(jié)炎癥反應(yīng)和修復(fù)受損的肺組織細(xì)胞。因此,治療肺損傷的方法需要兼顧抗炎和損傷修復(fù)兩方面。ADSCs具有增強(qiáng)血管發(fā)生和驅(qū)動(dòng)組織再生的性質(zhì),同時(shí),還具有介導(dǎo)抗炎、抗凋亡、抗纖維化、抗氧化和免疫調(diào)節(jié)性質(zhì),這使ADSCs用以治療肺損傷具有可行性。
目前,關(guān)于ADSCs在肺損傷修復(fù)中的研究主要集中在基礎(chǔ)性實(shí)驗(yàn)?zāi)M階段。2011年,Schweitzer等[53]證明ADSCs對(duì)香煙煙霧引起的肺和全身?yè)p傷都具有積極的治療作用,通過(guò)減輕香煙煙霧對(duì)骨髓造血祖細(xì)胞功能的抑制作用,緩解香煙煙霧暴露期間小鼠持續(xù)的體質(zhì)量減輕和保護(hù)肺血管。同年,Sun等[54]通過(guò)大鼠肺缺血再灌注模型證明,ADSCs可通過(guò)抑制氧化應(yīng)激和炎癥反應(yīng)減少缺血再灌注肺損傷。接著,Yip等[55]在2013年證明褪黑素聯(lián)合ADSCs治療可有效抑制炎癥蛋白血管細(xì)胞黏附因子1、細(xì)胞間黏附分子1、腫瘤壞死因子α、NF-κB、血小板衍生因子和血管緊張素Ⅱ受體,氧化應(yīng)激因子半胱天冬酶3和聚腺苷二磷酸核糖聚合酶,凋亡蛋白Bax的表達(dá),保護(hù)肺部免于急性缺血再灌注損傷。Zhang等[56]比較人源性脂肪干細(xì)胞(human adipose-derived stem cells,hASCs)和小鼠源性脂肪干細(xì)胞(mouseadipose-derived stem cells,mASCs)在脂多糖誘導(dǎo)ALI動(dòng)物模型中的療效,結(jié)果顯示兩種療法均可降低白細(xì)胞(如嗜中性粒細(xì)胞)的水平,降低肺泡灌洗液中的總蛋白和白蛋白濃度以及ALI誘導(dǎo)的過(guò)氧化物酶活性;另外,兩種細(xì)胞類(lèi)型的細(xì)胞治療均有效地抑制了促炎細(xì)胞因子的表達(dá),促進(jìn)了抗炎細(xì)胞因子白細(xì)胞介素(interleukin,IL)-10的表達(dá),但在該模型中的同基因的mASCs治療比異種hASCs治療更有效[56]。Liang等[57]研究發(fā)現(xiàn),ADSCs治療可有效減輕肺水腫、組織學(xué)肺損傷指數(shù)、支氣管肺泡灌洗液中的嗜中性粒細(xì)胞數(shù)、腫瘤壞死因子-α、IL-1β、IL-6、IL-10和轉(zhuǎn)化生長(zhǎng)因子-β1的含量,改善大鼠呼吸機(jī)誘導(dǎo)的肺損傷(ventilator-induced lung injury,VILI)。Sung等[58]在盲腸結(jié)扎穿孔引起的大鼠膿毒癥肺和腎損傷模型中驗(yàn)證了凋亡脂肪干細(xì)胞(apoptotic adipose-derived stem cells,A-ADSCs)的治療效果優(yōu)于健康的hADSCs。2014年,Zhang等[59]研究ADSCs調(diào)節(jié)肺炎癥的機(jī)制,hASCs和mASCs治療的基因表達(dá)分析結(jié)果顯示,hASCs和mASCs在抗炎分子的表達(dá)之間存在顯著差異;hASCs和mASCs在ALI中的有益作用可能是由于不同旁分泌因子的產(chǎn)生;與hASCs處理相比,mASCs處理的肺中的IL-6表達(dá)顯著升高,通過(guò)RNA干擾敲除mASCs中的IL-6后消除了其大部分治療效果,表明ALI中mASCs的抗炎性質(zhì)至少是部分地通過(guò)激活I(lǐng)L-6的分泌來(lái)誘導(dǎo)的。同年,Zheng等[60]對(duì)同種異體ADSCs治療ARDS的不良事件及療效進(jìn)行臨床研究,結(jié)果發(fā)現(xiàn)同種異體ADSCs施用在ARDS的治療中無(wú)不良反應(yīng)發(fā)生,是安全可行的,但臨床療效較弱,需要進(jìn)一步優(yōu)化ADSCs的劑量和應(yīng)用策略來(lái)達(dá)到減少ARDS中肺泡上皮損傷的目的。在Chen等[61]的研究中發(fā)現(xiàn),褪黑素可增強(qiáng)A-ADSCs治療盲腸結(jié)扎和穿刺引起的膿毒癥ALI。Jiang等[62]于2015年的研究顯示,大鼠尾靜脈輸送脂肪來(lái)源的間充質(zhì)基質(zhì)細(xì)胞(adipose-derived mesenchymal stemcell,Ad-MSC)減弱放射性肺損傷(radiation induced lung injury,RILI),具有抗炎和抗纖維化作用,并維持肺上皮完整性,抑制促炎細(xì)胞因子IL-1、IL-6和腫瘤壞死因子α的血清水平,促進(jìn)抗炎細(xì)胞因子IL-10水平升高,并且在照射的肺組織中下調(diào)轉(zhuǎn)化生長(zhǎng)因子-β1、α-平滑肌肌動(dòng)蛋白和Ⅰ型膠原水平,Ad-MSC還調(diào)節(jié)抗凋亡介質(zhì)(Bcl-2、Bax和Caspase-3)的表達(dá),以保護(hù)肺細(xì)胞免于細(xì)胞凋亡。Tashiro等[63]研究表明,老年小鼠中博萊霉素誘導(dǎo)的肺纖維化可被年輕供體ADSCs阻斷,其機(jī)制涉及膠原周轉(zhuǎn)和炎癥標(biāo)志物的變化。同時(shí),Uji等[64]研究也顯示,氣管內(nèi)注射ADSCs在博萊霉素誘導(dǎo)的大鼠肺損傷模型中可發(fā)揮長(zhǎng)期預(yù)防肺損傷持續(xù)惡化的作用。Aboul-Fotouh等[65]證明ADSCs與阿托伐他汀改善胺碘酮所致雄性大鼠的肺損傷,對(duì)肺組織的退行性、炎癥、凋亡和纖維化變化具有明顯的改善作用。2016年,Lu等[66-67]在金黃色葡萄球菌誘導(dǎo)的小鼠ALI模型中驗(yàn)證了ADSCs主要通過(guò)Reg Ⅲγ的TLR2-MyD88-JAK2/STAT3依賴(lài)性分泌直接抗微生物活性。2017年,Ihara等[68]在羊吸入煙霧導(dǎo)致ARDS的模型中驗(yàn)證了靜脈內(nèi)ADSCs可有效調(diào)節(jié)肺微血管超敏性,改善肺氣交換,阻止ARDS的發(fā)生。
在動(dòng)物模型方面,ADSCs治療肺損傷的療效研究已經(jīng)取得的可喜的進(jìn)展,ADSCs以其良好的抗炎、抗凋亡、抗纖維化、抗氧化和免疫調(diào)節(jié)性質(zhì)及優(yōu)異的增強(qiáng)血管發(fā)生和驅(qū)動(dòng)組織再生的性質(zhì),極大地改善了不同因素誘導(dǎo)的肺損傷,同時(shí),ADSCs的自體移植十分方便,不存在移植排斥反應(yīng)和道德倫理問(wèn)題。
綜上所述,ADSCs用于治療肺損傷具有極大的可行性。但是,目前關(guān)于ADSCs的研究仍集中在動(dòng)物模型中,且其具體的保護(hù)機(jī)制也尚不明確。ADSCs能否真正應(yīng)用于臨床治療肺損傷患者,仍需進(jìn)一步的深入研究,不過(guò),隨著科研工作者研究的不斷深入,相信ADSCs移植治療肺損傷會(huì)具有十分廣闊的臨床應(yīng)用前景。
[1] Wutzler S,Wafaisade A,Maegele M,et al.Lung Organ Failure Score(LOFS):probability of severe pulmonary organ failure after multiple injuries including chest trauma[J].Injury,2012,43(9):1507-1512.
[2] Hildebrand F,Giannoudis PV,Griensven Mv,et al.Management of polytraumatized patients with associated blunt chest trauma:a comparison of two European countries[J].Injury,2005,36(2):293-302.
[3] Schuurmans J,Goslings JC,Schepers T.Operative management versus non-operative management of rib fractures in flail chest injuries:a systematic review[J].Eur J Trauma Emerg Surg,2017,43(2):163-168.
[4] Vestbo J,Hurd SS,Agusti AG,et al.Global strategy for the diagnosis,management,and prevention of chronic obstructive pulmonary disease:GOLD executive summary[J].Am J Respir Crit Care Med,2013,187(4):347-365.
[5] Battle CE,Hutchings H,James K,et al.The risk factors for the development of complications during the recovery phase following blunt chest wall trauma:a retrospective study[J].Injury,2013,44(9):1171-1176.
[6] Maier M,Wutzler S,Bauer M,et al.Altered gene expression patterns in dendritic cells after severe trauma:implications for systemic inflammation and organ injury[J].Shock,2008,30(4):344-351.
[7] Scott MF,Khodaverdian RA,Shaheen JL,et al.Predictors of retained hemothorax after trauma and impact on patient outcomes[J].Eur J Trauma Emerg Surg,2017,43(2):179-184.
[8] Narvestad JK,Meskinfamfard M,Soreide K.Emergency resuscitative thoracotomy performed in European civilian trauma patients with blunt or penetrating injuries:a systematic review[J].Eur J Trauma Emerg Surg,2016,42(6):677-685.
[9] Daurat A,Millet I,Roustan JP,et al.Thoracic Trauma Severity score on admission allows to determine the risk of delayed ARDS in trauma patients with pulmonary contusion[J].Injury,2016,47(1):147-153.
[10] Becher RD,Colonna AL,Enniss TM,et al.An innovative approach to predict the development of adult respiratory distress syndrome in patients with blunt trauma[J].J Trauma Acute Care Surg,2012,73(5):1229-1235.
[11] Haider T,Halat G,Heinz T,et al.Thoracic trauma and acute respiratory distress syndrome in polytraumatized patients:a retrospective analysis[J].Minerva Anestesiol,2017,83(10):1026-1033.
[12] Blondonnet R,Constantin JM,Sapin V,et al.A pathophysiologic approach to biomarkers in acute respiratory distress syndrome[J].Dis Markers,2016,2016:3501373.
[13] Matthay MA,Zimmerman GA.Acute lung injury and the acute respiratory distress syndrome:four decades of inquiry into pathogenesis and rational management[J].Am J Respir Cell Mol Biol,2005,33(4):319-327.
[14] Hoth JJ,Wells JD,Yoza BK,et al.Innate immune response to pulmonary contusion:identification of cell type-specific inflammatory responses[J].Shock,2012,37(4):385-391.
[15] Force ADT,Ranieri VM,Rubenfeld GD,et al.Acute respiratory distress syndrome:the Berlin Definition[J].JAMA,2012,307(23):2526-2533.
[16] Wutzler S,Sturm K,Lustenberger T,et al.Kinetic therapy in multiple trauma patients with severe thoracic trauma:a treatment option to reduce ventilator time and improve outcome[J].Eur J Trauma Emerg Sur,2017,43(2):155-161.
[17] Wyen H,Wutzler S,Maegele M,et al.Rotational bed therapy after blunt chest trauma:a nationwide online-survey on current concepts of care in Germany[J].Injury,2013,44(1):70-74.
[18] Sethi GS,Dharwal V,Naura AS.Poly(ADP-Ribose)polymerase-1 in lung inflammatory disorders:a review[J].Front Immunol,2017,8:1172.
[19] Barnes PJ.New therapies for asthma:is there any progress[J].Trends Pharmacol Sci,2010,31(7):335-343.
[20] Mak VH,Melchor R,Spiro SG.Easy bruising as a side-effect of inhaled corticosteroids[J].Eur Respir J,1992,5(9):1068-1074.
[21] Lipworth BJ.Systemic adverse effects of inhaled corticosteroid therapy:a systematic review and meta-analysis[J].Arch Intern Med,1999,159(9):941-955.
[22] Vogelmeier CF,Criner GJ,Martinez FJ,et al.Erratum to “Global Strategy for the Diagnosis,Management,and Prevention of Chronic Obstructive Lung Disease 2017 Report:GOLD Executive Summary” [Arch Bronconeumol.2017;53:128-49][J].Arch Bronconeumol,2017,53(7):411-412.
[23] Woodruff PG,Agusti A,Roche N,et al.Current concepts in targeting chronic obstructive pulmonary disease pharmacotherapy:making progress towards personalised management[J].Lancet,2015,385(9979):1789-1798.
[24] Babu KS,Morjaria JB.Emerging therapeutic strategies in COPD[J].Drug Discov Today,2015,20(3):371-379.
[25] Montuschi P,Malerba M,Santini G,et al.Pharmacological treatment of chronic obstructive pulmonary disease:from evidence-based medicine to phenotyping[J].Drug Discov Today,2014,19(12):1928-1935.
[26] Qaseem A,Wilt TJ,Weinberger SE,et al.Diagnosis and management of stable chronic obstructive pulmonary disease:a clinical practice guideline update from the American College of Physicians,American College of Chest Physicians,American Thoracic Society,and European Respiratory Society[J].Ann Intern Med,2011,155(3):179-191.
[27] Sin DD,Man SF.Steroids in COPD:still up in the air[J].Eur Respir J,2010,35(5):949-951.
[28] Suissa S,Barnes PJ.Inhaled corticosteroids in COPD:the case against[J].Eur Respir J,2009,34(1):13-16.
[29] Man SF,Van Eeden S,Sin DD.Vascular risk in chronic obstructive pulmonary disease:role of inflammation and other mediators[J].Can J Cardiol,2012,28(6):653-661.
[30] do Amaral RJFC,Almeida HV,Kelly DJ,et al.Infrapatellar fat pad stem cells:from developmental biology to cell therapy[J].Stem Cells Int,2017,2017:6843727.
[31] Sarantopoulos CN,Banyard DA,Ziegler ME,et al.Elucidating the preadipocyte and its role in adipocyte formation:a comprehensive review[J].Stem Cell Rev,2017.[Epub ahead of print]
[32] Yeh DC,Chan TM,Harn HJ,et al.Adipose tissue-derived stem cells in neural regenerative medicine[J].Cell transplant,2015,24(3):487-492.
[33] Frese L,Dijkman PE,Hoerstrup SP.Adipose tissue-derived stem cells in regenerative medicine[J].Transfus Med Hemother,2016,43(4):268-274.
[34] Shukla L,Morrison WA,Shayan R.Adipose-derived stem cells in radiotherapy injury:a new frontier[J].Front Surg,2015,2:1.
[35] Kim EH,Heo CY.Current applications of adipose-derived stem cells and their future perspectives[J].World J Stem Cells,2014,6(1):65-68.
[36] Wankhade UD,Shen M,Kolhe R,et al.Advances in adipose-derived stem cells isolation,characterization,and application in regenerative tissue engineering[J].Stem Cells Int,2016,2016:3206807.
[37] Zielins ER,Luan A,Brett EA,et al.Therapeutic applications of human adipose-derived stromal cells for soft tissue reconstruction[J].Discov Med,2015,19(105):245-253.
[38] Pallua N,Wolter T.Liposuction[J].Chirurg,2011,82(9):759-760.
[39] Cawthorn WP,Scheller EL,MacDougald OA.Adipose tissue stem cells meet preadipocyte commitment:going back to the future[J].J Lipid Res,2012,53(2):227-246.
[40] Blaber SP,Webster RA,Hill CJ,et al.Analysis of in vitro secretion profiles from adipose-derived cell populations[J].J Transl Med,2012,10:172.
[41] Hsiao ST,Asgari A,Lokmic Z,et al.Comparative analysis of paracrine factor expression in human adult mesenchymal stem cells derived from bone marrow,adipose,and dermal tissue[J].Stem Cells Dev,2012,21(12):2189-2203.
[42] Caplan AI,Dennis JE.Mesenchymal stem cells as trophic mediators[J].J Cell Biochem,2006,98(5):1076-1084.
[43] Phinney DG,Prockop DJ.Concise review:mesenchymal stem/multipotent stromal cells:the state of transdifferentiation and modes of tissue repair-current views[J].Stem cells,2007,25(11):2896-2902.
[44] Baer PC,Geiger H.Adipose-derived mesenchymal stromal/stem cells:tissue localization,characterization,and heterogeneity[J].Stem Cells Int,2012,2012:812693.
[45] Collawn SS,Banerjee NS,de la Torre J,et al.Adipose-derived stromal cells accelerate wound healing in an organotypic raft culture model[J].Ann Plast Surg,2012,68(5):501-504.
[46] Matsuda K,Falkenberg KJ,Woods AA,et al.Adipose-derived stem cells promote angiogenesis and tissue formation for in vivo tissue engineering[J].Tissue Eng Part A,2013,19(11-12):1327-1335.
[47] Yuan Y,Gao J,Liu L,et al.Role of adipose-derived stem cells in enhancing angiogenesis early after aspirated fat transplantation:induction or differentiation[J].Cell Biol Int,2013,37(6):547-550.
[48] Yan A,Avraham T,Zampell JC,et al.Adipose-derived stem cells promote lymphangiogenesis in response to VEGF-C stimulation or TGF-beta1 inhibition[J].Future Oncol,2011,7(12):1457-1473.
[49] Delay E,Garson S,Tousson G,et al.Fat injection to the breast:technique,results,and indications based on 880 procedures over 10 years[J].Aesthet Surg J,2009,29(5):360-376.
[50] Ohnishi S,Sumiyoshi H,Kitamura S,et al.Mesenchymal stem cells attenuate cardiac fibroblast proliferation and collagen synthesis through paracrine actions[J].FEBS Lett,2007,581(21):3961-3966.
[51] Mao Q,Lin CX,Liang XL,et al.Mesenchymal stem cells overexpressing integrin-linked kinase attenuate cardiac fibroblast proliferation and collagen synthesis through paracrine actions[J].Mol Med Rep,2013,7(5):1617-1623.
[52] Chen X,Yan L,Guo Z,et al.Adipose-derived mesenchymal stem cells promote the survival of fat grafts via crosstalk between the Nrf2 and TLR4 pathways[J].Cell Death Dis,2016,7(9):e2369.
[53] Schweitzer KS,Johnstone BH,Garrison J,et al.Adipose stem cell treatment in mice attenuates lung and systemic injury induced by cigarette smoking[J].Am J Respir Crit Care Med,2011,183(2):215-225.
[54] Sun CK,Yen CH,Lin YC,et al.Autologous transplantation of adipose-derived mesenchymal stem cells markedly reduced acute ischemia-reperfusion lung injury in a rodent model[J].J Transl Med,2011,9:118.
[55] Yip HK,Chang YC,Wallace CG,et al.Melatonin treatment improves adipose-derived mesenchymal stem cell therapy for acute lung ischemia-reperfusion injury[J].J Pineal Res,2013,54(2):207-221.
[56] Zhang S,Danchuk SD,Imhof KM,et al.Comparison of the therapeutic effects of human and mouse adipose-derived stem cells in a murine model of lipopolysaccharide-induced acute lung injury[J].Stem Cell Res Ther,2013,4(1):13.
[57] Liang ZD,Yin XR,Cai DS,et al.Autologous transplantation of adipose-derived stromal cells ameliorates ventilator-induced lung injury in rats[J].J Transl Med,2013,11:179.
[58] Sung PH,Chang CL,Tsai TH,et al.Apoptotic adipose-derived mesenchymal stem cell therapy protects against lung and kidney injury in sepsis syndrome caused by cecal ligation puncture in rats[J].Stem Cell Res Ther,2013,4(6):155.
[59] Zhang S,Danchuk SD,Bonvillain RW,et al.Interleukin 6 mediates the therapeutic effects of adipose-derived stromal/stem cells in lipopolysaccharide-induced acute lung injury[J].Stem cells,2014,32(6):1616-1628.
[60] Zheng G,Huang L,Tong H,et al.Treatment of acute respiratory distress syndrome with allogeneic adipose-derived mesenchymal stem cells:a randomized,placebo-controlled pilot study[J].Respir Res,2014,15:39.
[61] Chen HH,Chang CL,Lin KC,et al.Melatonin augments apoptotic adipose-derived mesenchymal stem cell treatment against sepsis-induced acute lung injury[J].Am J Transl Res,2014,6(5):439-458.
[62] Jiang X,Jiang X,Qu C,et al.Intravenous delivery of adipose-derived mesenchymal stromal cells attenuates acute radiation-induced lung injury in rats[J].Cytotherapy,2015,17(5):560-570.
[63] Tashiro J,Elliot SJ,Gerth DJ,et al.Therapeutic benefits of young,but not old,adipose-derived mesenchymal stem cells in a chronic mouse model of bleomycin-induced pulmonary fibrosis[J].Transl Res,2015,166(6):554-567.
[64] Uji M,Nakada A,Nakamura T,et al.Effect of intratracheal administration of adipose-derived stromal cells on bleomycin-induced lung injury in a rat model[J].Osaka City Med J,2015,61(2):81-91.
[65] Aboul-Fotouh GI,Zickri MB,Metwally HG,et al.Therapeutic effect of adipose derived stem cells versus atorvastatin on amiodarone induced lung injury in male rat[J].Int J Stem Cells,2015,8(2):170-180.
[66] Lu H,Cook T,Poirier C,et al.Pulmonary retention of adipose stromal cells following intravenous delivery is markedly altered in the presence of ARDS[J].Cell Transplant,2016,25(9):1635-1643.
[67] Qian J,Hu Y,Zhao L,et al.Protective role of adipose-derived stem cells in staphylococcus aureus-induced lung injury is mediated by regIIIgamma secretion[J].Stem Cells,2016,34(7):1947-1956.
[68] Ihara K,Fukuda S,Enkhtaivan B,et al.Adipose-derived stem cells attenuate pulmonary microvascular hyperpermeability after smoke inhalation[J].PloS one,2017,12(10):e0185937.
全軍十二五面上項(xiàng)目(CSY12J002);全軍重大新藥創(chuàng)制項(xiàng)目(2013ZX09J13109-02B);全軍十二五面上項(xiàng)目(CSY13J002);總后衛(wèi)生部重大新上(ASM14L008)
佟昌慈(1988-),女,遼寧撫順人,技師,碩士
侯明曉,E-mail:houmingxiao188@163.com
2095-5561(2017)05-0292-06DOI∶10.16048/j.issn.2095-5561.2017.05.09
2017-09-05