史秀云, 柳云恩, 張玉彪, 佟昌慈, 施 琳, 叢培芳, 劉 穎, 毛 舜, 金紅旭, 侯明曉
沈陽軍區(qū)總醫(yī)院 急診醫(yī)學(xué)部 全軍重癥(戰(zhàn))創(chuàng)傷救治中心實(shí)驗(yàn)室 遼寧省重癥創(chuàng)傷和器官保護(hù)重點(diǎn)實(shí)驗(yàn)室,遼寧 沈陽 110016
·干細(xì)胞研究·
干細(xì)胞治療放射性腦損傷的研究進(jìn)展
史秀云, 柳云恩, 張玉彪, 佟昌慈, 施 琳, 叢培芳, 劉 穎, 毛 舜, 金紅旭, 侯明曉
沈陽軍區(qū)總醫(yī)院 急診醫(yī)學(xué)部 全軍重癥(戰(zhàn))創(chuàng)傷救治中心實(shí)驗(yàn)室 遼寧省重癥創(chuàng)傷和器官保護(hù)重點(diǎn)實(shí)驗(yàn)室,遼寧 沈陽 110016
干細(xì)胞治療; 放射性腦損傷; 認(rèn)知功能障礙
Stem cell therapy; Radiation injuries of brain; Postoperative cognitive dysfunction
放射性腦損傷(radiation injuries of brain,RIB)是臨床腫瘤治療或腦部意外受到電離輻射所引發(fā)的腦組織病變,常造成患者認(rèn)知功能障礙和死亡,臨床上缺乏有效的治療手段[1]。隨著近年來核危險(xiǎn)的加劇,對(duì)有效新型療法的需求更加迫切。目前,干細(xì)胞治療是應(yīng)用前景較好的腦組織損傷修復(fù)方法,在腦梗塞、腦中風(fēng)、小腦萎縮等多種腦病中均起到明顯的保護(hù)作用。另外,干細(xì)胞療法在輻射引起的腦損傷中也有著一定的效果。因此,本研究對(duì)國(guó)內(nèi)外干細(xì)胞療法在RIB中的應(yīng)用研究進(jìn)展作一綜述。
RIB又稱放射性腦病,是一種腦組織在受到放射線照射后,由多因素聯(lián)合作用所導(dǎo)致的神經(jīng)元發(fā)生變性、壞死從而引發(fā)的中樞神經(jīng)系統(tǒng)疾病[2]。RIB的發(fā)生與放射源、單次劑量、總劑量的分配以及時(shí)間跨度均有關(guān)系。一般來說,放射劑量越大,放射面積越廣,RIB的發(fā)病可能性就越高。該病的引發(fā)條件以全腦TD5/5為5 500 cGy、25%腦TD5/5為6 500 cGy為限,超過此限值就有可能發(fā)生[3-5]。不同分期的RIB有其特殊的病理生理學(xué)特點(diǎn):急性期出現(xiàn)在1個(gè)月內(nèi),放射線破壞血腦屏障;早期延遲型在1~6個(gè)月之間,發(fā)生白質(zhì)損傷并伴隨髓鞘和血管炎性水腫;晚期延遲型最長(zhǎng)可至2年,會(huì)出現(xiàn)反射性壞死和彌漫性腦萎縮,病理表現(xiàn)為凝固性壞死[6-7]。
RIB會(huì)產(chǎn)生占位效應(yīng),出現(xiàn)癲癇、局照型神經(jīng)功能缺損、顱內(nèi)壓增高和腦疝等綜合癥,嚴(yán)重的會(huì)造成患者死亡[8-9]。其發(fā)病機(jī)制與放射線的直接損傷、腦血管系統(tǒng)的繼發(fā)損傷、級(jí)聯(lián)免疫損傷以及血管因素相關(guān)。對(duì)其主要的臨床診斷依賴影像學(xué)檢查,首選MRI檢查,灌注加權(quán)成像、磁共振血流量掃描、磁共振灌注成像等方法也可以對(duì)其進(jìn)行進(jìn)一步確診[10]。目前,針對(duì)神經(jīng)性腦病的臨床治療手段主要集中在改善循環(huán)、應(yīng)用營(yíng)養(yǎng)神經(jīng)的藥物、高壓氧和手術(shù)治療上[11-13]。但多數(shù)患者經(jīng)過系統(tǒng)治療仍可能出現(xiàn)后遺認(rèn)知、定向力、智能及記憶力的障礙,并喪失勞動(dòng)能力以及社會(huì)交往能力[14]。因此,針對(duì)RIB的新型有效的治療手段是生命醫(yī)學(xué)領(lǐng)域亟待解決的問題。
干細(xì)胞是一類具有自我復(fù)制能力的多潛能細(xì)胞,并且在一定的條件下,其可以分化形成多種不同功能、不同結(jié)構(gòu)的細(xì)胞[15]。由于其特殊的生物學(xué)功能,干細(xì)胞在包括白血病、遺傳性血液病、嚴(yán)重免疫缺陷病和急性放射性損傷等多個(gè)臨床醫(yī)學(xué)領(lǐng)域有著廣泛的應(yīng)用價(jià)值和前景[16-17]。干細(xì)胞可粗略地分為兩大類:胚胎干細(xì)胞(embryonic stem cells,ESCs)和成體干細(xì)胞(adult stem cells,ASCs)。ESCs是一種全能型干細(xì)胞,可以自我更新并分化成體內(nèi)任何一種細(xì)胞類型,但由于醫(yī)學(xué)倫理方面的問題,其臨床研究和實(shí)踐應(yīng)用均很困難。而ASCs來源于已分化組織中的未分化細(xì)胞,也可以發(fā)生自我更新,并能在一定的條件下分化成目標(biāo)的特異細(xì)胞?,F(xiàn)在應(yīng)用最廣泛的ASCs包括骨髓來源的骨髓間質(zhì)干細(xì)胞(bone marrow mesenchymalstem cells,BMSCs)和脂肪來源的脂肪干細(xì)胞(adipose-derived stem cells,ADSCs)[18]。其中,BMSCs來源為侵入性手術(shù),有強(qiáng)大自我更新和增殖能力,但提取干細(xì)胞數(shù)量有限,伴隨年齡增長(zhǎng),成骨分化潛能降低。而脂肪干細(xì)胞(adipose-derived stem cells,ADSCs)的儲(chǔ)存更為豐富,隨時(shí)可取,其次可以最大限度地降低侵入性手術(shù)風(fēng)險(xiǎn),可以快速增殖,適合自體移植,擁有相似的表面標(biāo)記表達(dá)和多分化潛力[19]。干細(xì)胞在臨床上有廣泛的應(yīng)用前景,腦組織的再生修復(fù)就是其中的一個(gè)重要的方面。
干細(xì)胞可以釋放修復(fù)相關(guān)的神經(jīng)營(yíng)養(yǎng)因子,同時(shí)還可以分化為成熟的神經(jīng)細(xì)胞,對(duì)受損的神經(jīng)組織進(jìn)行再生修復(fù)。研究表明,多種ASCs均可分化為神經(jīng)元和神經(jīng)膠質(zhì)細(xì)胞,從而促進(jìn)損傷神經(jīng)修復(fù)以及組織再生[20-22]。Mahmood等[23]研究發(fā)現(xiàn),在創(chuàng)傷早期將 BMSCs移植到大鼠大腦中受損區(qū)域后,BMSCs可以分泌神經(jīng)營(yíng)養(yǎng)因子、分化為神經(jīng)細(xì)胞并刺激細(xì)胞再生、建立突觸連接。另有實(shí)驗(yàn)證實(shí),不管通過局部移植還是靜脈注射的BMSCs,均會(huì)向動(dòng)物模型腦部的受損部分遷移,同時(shí)發(fā)生神經(jīng)元及神經(jīng)膠質(zhì)細(xì)胞的分化。新生細(xì)胞在腦室下區(qū)、海馬結(jié)構(gòu)和挫傷灶周圍出現(xiàn),改善受損的神經(jīng)功能[24]。Fei等[25]發(fā)現(xiàn)ADSCs可以通過促進(jìn)小鼠中腦動(dòng)脈閉塞模型的空間學(xué)習(xí)和記憶來部分挽救卒中綜合征。Zhao等[26]研究發(fā)現(xiàn),靜脈給藥脂肪來源的干細(xì)胞蛋白提取物可改善大鼠卒中模型中的神經(jīng)缺陷。在此基礎(chǔ)上,Li等[27]對(duì)其神經(jīng)保護(hù)作用的分子機(jī)制進(jìn)行了進(jìn)一步探索,發(fā)現(xiàn)了BDNF-TrkB信號(hào)傳導(dǎo)在ADCs神經(jīng)保護(hù)中的作用。以上相關(guān)研究表明,腦損傷后應(yīng)用干細(xì)胞進(jìn)行治療可顯著降低神經(jīng)功能缺失,促進(jìn)血腦屏障的恢復(fù),為嚴(yán)重腦損傷后獲得神經(jīng)保護(hù)和功能恢復(fù)提供保障。
干細(xì)胞因其再生修復(fù)的功能在創(chuàng)傷性腦病、代謝性腦病中發(fā)揮重要作用。由于RIB與創(chuàng)傷性腦損傷在病理生理方面相似,干細(xì)胞在RIB中也應(yīng)該具有同樣的腦神經(jīng)修復(fù)作用。國(guó)內(nèi)中山大學(xué)的邢詒剛研究團(tuán)隊(duì)將成纖維細(xì)胞生長(zhǎng)因子轉(zhuǎn)基因的神經(jīng)干細(xì)胞注射到RIB鼠的側(cè)腦中,其學(xué)習(xí)記憶能力、突觸結(jié)構(gòu)變化和血腦屏障通透性增高等情況均有好轉(zhuǎn)[28]。同時(shí),血管內(nèi)皮生長(zhǎng)因子基因修飾間充質(zhì)干細(xì)胞移植促進(jìn)RIB后腦微血管新生[29]。
大腦中海馬及某些神經(jīng)的結(jié)構(gòu)部位,在人的學(xué)習(xí)和記憶方面起著關(guān)鍵作用。放療中的射線會(huì)影響海馬的神經(jīng)發(fā)生,從而改變其神經(jīng)功能,進(jìn)而引發(fā)神經(jīng)炎癥導(dǎo)致患者認(rèn)知功能障礙。而神經(jīng)干細(xì)胞植入海馬區(qū),可以降低神經(jīng)發(fā)生的減少,并提高放射治療后的認(rèn)知力。Lu等[30]研究發(fā)現(xiàn),神經(jīng)干細(xì)胞植入海馬可以對(duì)受損細(xì)胞進(jìn)行置換從而用來治療RIB。Acharya等[31]向受輻射照射后的大鼠腦內(nèi)移植入神經(jīng)干細(xì)胞,結(jié)果發(fā)現(xiàn),移植后1~4個(gè)月內(nèi),恢復(fù)了海馬神經(jīng)發(fā)生,改善了認(rèn)知功能障礙;而ADSCs可以通過誘導(dǎo)的方式向神經(jīng)細(xì)胞分化。另外有研究發(fā)現(xiàn)ADSCs當(dāng)用表皮生長(zhǎng)因子(epidermal growth factor,EGF)和成纖維細(xì)胞生長(zhǎng)因子2誘導(dǎo)時(shí)可以分化為神經(jīng)細(xì)胞,ADSCs也能夠代替神經(jīng)干細(xì)胞治療[32-33]。Jeong等[34]開發(fā)了可生物降解的水凝膠支架,納入ADSCs和神經(jīng)生長(zhǎng)因子成為透明質(zhì)酸水凝膠,在海綿狀神經(jīng)再生中展現(xiàn)出應(yīng)用前景。ADSCs改善自體移植物外周神經(jīng)損傷后的治療效果,為干細(xì)胞在RIB治療提供了新的方向。
干細(xì)胞治療RIB的療效已經(jīng)通過多個(gè)基礎(chǔ)研究得到證實(shí)。體外培養(yǎng)的干細(xì)胞可通過定位移植以及動(dòng)靜脈注射的方法向模型受損腦部遷移,從而釋放神經(jīng)營(yíng)養(yǎng)因子,刺激內(nèi)源性神經(jīng)細(xì)胞再生和分化替換形成新的神經(jīng)元、神經(jīng)膠質(zhì)細(xì)胞等方式修復(fù)受損腦部結(jié)構(gòu),促進(jìn)其神經(jīng)功能的恢復(fù)。為干細(xì)胞臨床治療RIB提供了基礎(chǔ),具有極大的可行性。但是同時(shí)干細(xì)胞療法也存在一定的不確定性,其相關(guān)的修復(fù)機(jī)理仍不明確,能否真正能用于臨床治療RIB患者仍需進(jìn)一步的探索研究。相信隨著這些研究的完成,干細(xì)胞療法將會(huì)在RIB的修復(fù)中發(fā)揮重要的作用。
[1] Dicarlo AL,Tamarat R,Rios CI,et al.Cellular therapies for treatment of radiation injury:report from a NIH/NIAID and IRSN workshop[J].Radiat Res,2017,188(2):e54-e75.
[2] Xie Y,Huang H,Guo J,et al.Relative cerebral blood volume is a potential biomarker in late delayed radiation-induced brain injury[J].J Magn Reson Imaging,2017.[Epub ahead of print]
[3] Crossen JR,Garwood D,Glatstein E,et al.Neurobehavioral sequelae of cranial irradiation in adults:a review of radiation-induced encephalopathy[J].J Clin Oncol,1994,12(3):627-642.
[4] Crossen JR,Garwood D,Glatstein E,et al.Neurobehavioral sequelae of cranial irradiation in adults:a review of radiation-induced encephalopathy[J].J Clin Oncol,1994,12(3):627-642.
[5] Di SA,Berzero G,Vitali P,et al.Acute late-onset encephalopathy after radiotherapy:an unusual life-threatening complication[J].Neurology,2013,81(11):1014-1017.
[6] Zhan K,Niu L,Minge MA,et al.Mr Perfusion imaging and its correlation with pathology in radiation-induced brain injury[J].Acta Academiae Medicinae Qingdao Universitatis,2016.
[7] Miot E,Hoffschir D,Pontvert D,et al.Quantitative magnetic resonance and isotopic imaging:early evaluation of radiation injury to the brain[J].Int J Radiat Oncol Biol Phys,1995,32(1):121-128.
[8] Stubblefield MD.Neuromuscular complications of radiation therapy[J].Muscle Nerve,2017.[Epub ahead of print]
[9] 陳登奎,莊進(jìn)學(xué),朱明霞,等.伽瑪?shù)吨委煱d癇致遲發(fā)性放射性腦水腫及腦壞死的臨床研究[J].中華神經(jīng)醫(yī)學(xué)雜志,2010,9(3):304-307.
[10] Zhou J,Tryggestad E,Wen Z,et al.Differentiation between glioma and radiation necrosis using molecular magnetic resonance imaging of endogenous proteins and peptides[J].Nat Med,2011,17(1):130-134.
[11] Singhal T,Narayanan TK,Jain V,et al.C-L-methionine positron emission tomography in the clinical management of cerebral gliomas[J].Mol Imaging Biol,2008,10(1):1-18.
[12] Sundgren PC,Cao Y.Brain irradiation:effects on normal brain parenchyma and radiation injury[J].Neuroimaging Clin N Am,2009,19(4):657-668.
[13] Nemer SN,Caldeira JB,Santos RG,et al.Effects of positive end-expiratory pressure on brain tissue oxygen pressure of severe traumatic brain injury patients with acute respiratory distress syndrome:a pilot study[J].J Crit Care,2015,30(6):1263-1266.
[14] Kinnunen KM,Greenwood R,Powell JH,et al.White matter damage and cognitive impairment after traumatic brain injury[J].Brain,2011,134(Pt 2):449.
[15] Oh J,Yang DL,Wagers AJ.Stem cell aging:mechanisms,regulators and therapeutic opportunities[J].Nat Med,2014,20(8):870-880.
[16] Eppert K,Takenaka K,Lechman ER.Stem cell gene expression programs influence clinical outcome in human leukemia[J].Nat Med,2011,17(9):1086-1088.
[17] Hishizawa M,Kanda J,Utsunomiya A,et al.Transplantation of allogeneic hematopoietic stem cells for adult T-cell leukemia:a nationwide retrospective study[J].Blood,2010,116(8):1369-1370.
[18] Su X,Liao L,Shuai Y,et al.MiR-26a functions oppositely in osteogenic differentiation of BMSCs and ADSCs depending on distinct activation and roles of Wnt and BMP signaling pathway[J].Cell Death Dis,2015,6(8):e1851.
[19] Huang Q,Zou Y,Arno MC,et al.Hydrogel scaffolds for differentiation of adipose-derived stem cells[J].Chem Soc Rev,2017,46(20):6255-6275.
[20] Yuan J,Ru-Xiang XU,Jiang XD,et al.Morphological study on in vitro inducement and differentiation of nerve cells derived from rat BMSC[J].Journal of the Fourth Military Medical University,2005.
[21] Jiang LF,Chen O,Chu TG,et al.T lymphocyte subsets and cytokines in rats transplanted with adipose-derived mesenchymal stem cells and acellular nerve for repairing the nerve defects[J].J Korean Neurosurg Soc,2015,58(2):101-106.
[22] Bochinski D,Lin GT,Nunes L,et al.The effect of neural embryonic stem cell therapy in a rat model of cavernosal nerve injury[J].BJU Int,2005,174(3):904-909.
[23] Mahmood A,Lu D,Qu C,et al.Treatment of traumatic brain injury with a combination therapy of marrow stromal cells and atorvastatin in rats[J].Neurosurgery,2007,60(3):546-553.
[24] Lu J,Moochhala S,Moore XL,et al.Adult bone marrow cells differentiate into neural phenotypes and improve functional recovery in rats following traumatic brain injury[J].Neurosci Lett,2006,398(1-2):12-17.
[25] Fei Z,Gao S,Lin W,et al.Human adipose-derived stem cells partially rescue the stroke syndromes by promoting spatial learning and memory in mouse middle cerebral artery occlusion model[J].Stem Cell Res Ther,2015,6(1):1-13.
[26] Zhao K,Li R,Gu C,et al.Intravenous administration of adipose-derived stem cell protein extracts improves neurological deficits in a rat model of stroke[J].Stem Cells Int,2017,2017:2153629.
[27] Li X,Zheng W,Bai H,et al.Intravenous administration of adipose tissue-derived stem cells enhances nerve healing and promotes BDNF expression via the TrkB signaling in a rat stroke model[J].Neuropsychiatr Dis Treat,2016,12:1287-1293.
[28] 劉運(yùn)林.bFGF轉(zhuǎn)基因治療放射性腦損傷的實(shí)驗(yàn)研究[D].中山大學(xué),2007.
[29] 張付生.VEGF基因修飾MSC移植促進(jìn)放射性腦損傷后腦微血管新生的實(shí)驗(yàn)研究[D].中山大學(xué),2009.
[30] Lu F,Wong CS.A clonogenic survival assay of neural stem cells in rat spinal cord after exposure to ionizing radiation[J].Radiat Res,2005,163(1):63-71.
[31] Acharya MM,Christie LA,Lan ML,et al.Human neural stem cell transplantation ameliorates radiation-induced cognitive dysfunction[J].Cancer Res,2011,71(14):4834.
[32] Li Q,Li PH,Hou DJ,et al.EGF enhances ADSCs secretion via ERK and JNK pathways[J].Cell Biochem Biophys,2014,69(1):189-196.
[33] Lin G,Banie L,Ning H,et al.Potential of adipose-derived stem cells for treatment of erectile dysfunction[J].J Sex Med,2009,6(Suppl 3):320-327.
[34] Jeong HH,Piao S,Ha JN,et al.Combined therapeutic effect of udenafil and adipose-derived stem cell(ADSC)/brain-derived neurotrophic factor(BDNF)-membrane system in a rat model of cavernous nerve injury[J].Urology,2013,81(5):e7-e14.
全軍十二五面上項(xiàng)目(CSY12J002);全軍重大新藥創(chuàng)制項(xiàng)目(2013ZX09J13109-02B);全軍十二五面上項(xiàng)目(CSY13J002);總后衛(wèi)生部重大新上(ASM14L008)
史秀云(1991-),女,遼寧鐵嶺人,技師,碩士
侯明曉,E-mail:houmingxiao188@163.com
2095-5561(2017)05-0302-04DOI∶10.16048/j.issn.2095-5561.2017.05.11
2017-09-05