陸洪省,劉亞樵,劉文君,孔凡民,譚好臣
?
養(yǎng)殖污水中蛋白核小球藻的分離鑒定及其污水處理效果
陸洪省,劉亞樵,劉文君,孔凡民,譚好臣
(山東科技大學(xué)化學(xué)與環(huán)境工程學(xué)院,青島 266590)
利用BG-11培養(yǎng)基從養(yǎng)殖污水中分離和篩選到小球藻,采用相差顯微鏡對(duì)其外部形態(tài)進(jìn)行觀察、傅里葉紅外光譜分析球藻組成、X-ray方法分析其晶體組成、凱氏定氮以及有機(jī)溶劑萃取方法分別測(cè)定其蛋白質(zhì)以及脂質(zhì)含量、丙酮萃取法測(cè)定其葉綠素a以及國(guó)標(biāo)法測(cè)定其處理污水效果。結(jié)果表明:根據(jù)相差顯微鏡對(duì)球藻外部觀察,初步判斷該小球藻為蛋白核小球藻;紅外光譜測(cè)定結(jié)果表明,在波數(shù)1 080和1 240 cm-1處均有明顯的吸收峰,證明了該研究分離的小球藻含有大量蛋白質(zhì)以及糖類和脂類成分;X-衍射分析結(jié)果顯示在32°和20°兩處均有明顯的吸收峰,證明了本研究分離的小球藻含有蛋白質(zhì)和脂類成分;定量成分測(cè)定表明該蛋白核小球藻蛋白質(zhì)量分?jǐn)?shù)為45.6%,脂質(zhì)質(zhì)量分?jǐn)?shù)為8.1%;污水處理結(jié)果為化學(xué)需氧量去除率為70.9%;總氮、總磷去除率分別為23%和34.7%。該研究對(duì)蛋白核小球藻蛋白含量、脂肪含量的測(cè)定以及提取進(jìn)行了分析,證明了蛋白核小球藻對(duì)養(yǎng)殖場(chǎng)污水的處理具有很好的效果,為生物新資源的開(kāi)發(fā)以及水環(huán)境治理提供了一定的參考。
污水;凈化;氮;磷;蛋白核小球藻;篩選鑒定;成分分析;處理效果
藻類具有生長(zhǎng)速度快、容易獲得、代謝迅速、吸附能力強(qiáng)、對(duì)營(yíng)養(yǎng)物質(zhì)需求低,主要利用光、水和CO2進(jìn)行生長(zhǎng)等特點(diǎn)[1],越來(lái)越多的引起了人們的重視。對(duì)藻類通過(guò)吸附作用處理污水的研究,國(guó)外從20世紀(jì)80年代開(kāi)始,國(guó)內(nèi)近年來(lái)才陸續(xù)開(kāi)始這方面的研究[2-9]。
養(yǎng)殖污水中富含N、P等化合物,如果直接排放到環(huán)境中很容易造成水體富營(yíng)養(yǎng)化,如何去除養(yǎng)殖污水中N、P化合物越來(lái)越引起人們的關(guān)注。微藻有較強(qiáng)的適應(yīng)環(huán)境的能力,并且能在異養(yǎng)條件下吸收污水中大量的有機(jī)物,因而被廣泛應(yīng)用到生活污水或者有機(jī)廢水的處理中[10-13]。
影響微球藻生長(zhǎng)的因素包括營(yíng)養(yǎng)條件、光照和溫度等。有研究報(bào)道,在異養(yǎng)條件下,碳、氮、磷是影響微藻生長(zhǎng)的最重要的營(yíng)養(yǎng)元素[14],尤其是碳、氮2種元素對(duì)微藻生長(zhǎng)的影響更加明顯一些[15]。利用球藻對(duì)水體中氮磷的去除研究有很多,如周培疆等[16]報(bào)道了普通小球藻對(duì)水體中不同形態(tài)磷的利用;另外,利用螺旋藻對(duì)造紙和釀酒工業(yè)污水、養(yǎng)殖廢水、城市垃圾處理液以及城市生活廢水(domestic wastewater, DW)等進(jìn)行生物凈化和修復(fù)的報(bào)道也很多[17-21]。
到目前為止,對(duì)藻類的研究大多集中在對(duì)藻類的加工利用方面,尤其是利用藻類生產(chǎn)生物柴油方面,利用藻類處理污水的研究較少,特別是利用藻類處理養(yǎng)殖污水的報(bào)道非常少。微藻包括藍(lán)藻門、綠藻門、金藻門和紅藻門,蛋白核小球藻屬于綠藻門中的一種,為球形單細(xì)胞淡水藻,富含葉綠素和蛋白質(zhì)等成分。本研究首先對(duì)蛋白核小球藻()進(jìn)行富集、篩選、純化以及其營(yíng)養(yǎng)組成的分析,在此基礎(chǔ)上分析蛋白核小球藻()對(duì)養(yǎng)殖污水的處理效果,包括化學(xué)需氧量(chemical oxygen demand,COD)、總氮(total nitrogen,T-N)和總磷(total phosphorus,T-P)的去除,為蛋白核小球藻()在污水處理以及生物資源的開(kāi)發(fā)利用方面提供理論基礎(chǔ)。
1.1 球藻的分離與富集
球藻分離:球藻分離培養(yǎng)基組成(g/L):KNO31.25,KH2PO41.25,MgSO40.49,乙二胺四乙酸二鈉(EDTA二鈉)0.5,H3BO30.1,質(zhì)量體積比3%的FeCl3溶液0.21 ml,瓊脂15(配制平板固體培養(yǎng)基),pH值調(diào)整為7.1,121 ℃滅菌20 min。采用平板法分離藻,具體步驟:用消毒過(guò)的小型噴霧器將含有藻的水樣(來(lái)自某養(yǎng)鴨場(chǎng))噴射到固體平板培養(yǎng)基上,蓋好培養(yǎng)皿蓋,在光照(4.8±0.2)×103lx(日光燈源)條件下培養(yǎng),培養(yǎng)溫度為28 ℃,待長(zhǎng)出藻菌落后,借助鏡檢,用消毒過(guò)的接種環(huán)挑選球藻,將挑選到的球藻再分別多次劃線平板培養(yǎng),通過(guò)外形觀察,確定分離藻為純?cè)鍨橹埂?/p>
球藻的富集:將上述分離到的小球藻在BG-11培養(yǎng)基中富集培養(yǎng)。BG-11培養(yǎng)基組成(g/L):NaNO31.5,K2HPO40.04,MgSO4.7H2O 0.075,CaCl2.7H2O 0.036,Na2CO30.02,檸檬酸0.006,檸檬酸鐵0.006,氨芐青霉素0.05,微量元素溶液1 mL,固體平板培養(yǎng)基配制時(shí)加瓊脂15.0,蒸餾水1 000 mL。微量元素溶液組成(g/L):H3BO42.86,MnCl2·4H2O 1.81,ZnSO40.222,Na2MoO40.39,CuSO4·5H2O 0.079,Co(NO3)2·6H2O 49.4,用1 000 mL水溶解,培養(yǎng)條件同球藻分離過(guò)程。
1.2 球藻外部形態(tài)以及基本成分定量測(cè)定
將上述分離到的球藻在BG-11培養(yǎng)基中富集培養(yǎng),用相差顯微鏡(型號(hào):BM-PH;上海光學(xué)儀器廠)觀察藻形態(tài),放大倍數(shù)為400。小球藻細(xì)胞水分含量測(cè)定:取富集培養(yǎng)中的藻液,進(jìn)行高速離心(12 000 r/min)10 min,用萬(wàn)分之一電子天平稱量濕質(zhì)量,然后在105 ℃烘箱中烘干至恒質(zhì)量[22],用萬(wàn)分之一電子天平稱量干質(zhì)量,根據(jù)公式:水分含量=(濕質(zhì)量-干質(zhì)量)/濕質(zhì)量?;曳植捎米茻╗23],粗脂含量測(cè)定采用超聲波提取法[24-25]:稱取0.2 g(記作)藻粉置于離心管中,加4 mL 1∶1正己烷-異丙醇(體積比)溶液,搖勻,放入超聲儀中萃取25 min,萃取溫度為30 ℃,然后將萃取液于10 000 r/min 離心10 min,取上層清液加入到質(zhì)量為1的離心管中,105 ℃烘箱烘干2 h,稱質(zhì)量為2,重復(fù)上述試驗(yàn)3次,則粗脂含量通過(guò)以下公式求出:粗質(zhì)含量=(2-1)/× 100%,蛋白質(zhì)含量測(cè)定采用凱氏定氮方法。
1.3 球藻葉綠素a的變化與廢水CODcr、總氮(T-N)以及總磷(T-P)的關(guān)系
將10 mL密度為170 cells/mL的藻培養(yǎng)液接種到200 mL滅菌過(guò)的養(yǎng)鴨廠污水中,滅菌條件為121 ℃ 20 min,進(jìn)行光照培養(yǎng),光照強(qiáng)度為(4.8±0.2)×103lx (日光燈源),培養(yǎng)溫度為28 ℃,每隔12 h取20 mL藻液測(cè)定發(fā)酵液中藻葉綠素a的濃度、CODcr、總氮(T-N)和總磷(T-P)。葉綠素a測(cè)定方法采用丙酮提取法[26],CODcr測(cè)定采用國(guó)標(biāo)GB11914-1989中規(guī)定的重鉻酸鉀氧化法,總氮(T-N)用過(guò)硫酸鉀氧化-紫外分光光度法測(cè)定(HJ/T 199-2005),總磷(T-P)測(cè)定采用鉬酸銨分光光度法(國(guó)標(biāo)GB/T 11893-1989 )。藻葉綠素a、廢水CODcr、總氮(T-N)和總磷(T-P)測(cè)定時(shí)均采用3個(gè)平行試驗(yàn),求平均值。
1.4 球藻傅里葉紅外(FT-IR)分析
利用藻培養(yǎng)基BG-11對(duì)藻富集過(guò)程中,取對(duì)數(shù)增長(zhǎng)期的球藻進(jìn)行離心,轉(zhuǎn)速為6 000 r/min,用超純水洗滌藻泥3次,所得干凈藻泥,然后在50 ℃條件下烘干上述藻泥,用瑪瑙研缽磨細(xì),用KBr固定,利用傅里葉紅外光譜儀(型號(hào)為FTIR-8900;天津市拓普儀器有限公司)進(jìn)行測(cè)定,樣品掃描時(shí)間為2 min,背景掃描時(shí)間為2 min,波數(shù)掃描范圍為400~4 000 cm。
1.5 球藻X-衍射分析
將1.4中制備的球藻粉于X-衍射儀(型號(hào):Saturn 724)進(jìn)行分析,確定其晶體組成,測(cè)定方法按儀器說(shuō)明書(shū)。
1.6 球藻生長(zhǎng)與水體中溶解氧(Dissolved oxygen,DO)的相關(guān)性分析
球藻能利用水體中氮磷等物質(zhì)進(jìn)行代謝,同時(shí)能利用光能和CO2進(jìn)行光合作用,釋放出氧氣(O2),引起污水中溶解氧(DO)升高,本研究利用可見(jiàn)分光光度計(jì)測(cè)定球藻的生長(zhǎng)變化,具體過(guò)程:將富集培養(yǎng)2d的球藻液接種到滅菌后的BG-11液體培養(yǎng)基中,接種方法以及培養(yǎng)條件同1.3,每隔24 h取藻液用可見(jiàn)分光光度計(jì)(型號(hào)為722)測(cè)定其吸光度,吸收波長(zhǎng)采用680 nm[27],便攜式溶氧儀(型號(hào)為Thermo Orion 3 star)測(cè)定水體中溶解氧DO的變化。
2.1 藻外部形態(tài)
將小球藻接種到養(yǎng)殖場(chǎng)污水中,生長(zhǎng)繁殖3 d后利用相差顯微鏡進(jìn)行觀察,小球藻形狀如圖1所示。從圖1可以看出,分離到的小球藻為綠藻門,小球藻科,小球藻屬(),球狀,直徑在3~8 mm,且在藻中心處有一明顯核存在,因此,分離到球藻為小球藻屬中的蛋白核小球藻,該蛋白核小球藻在水體中呈單細(xì)胞存在,分裂速度快。
2.2 蛋白核球藻基本成分測(cè)定結(jié)果
蛋白核球藻經(jīng)28 ℃條件下培養(yǎng)、富集、離心、洗滌收集后通過(guò)烘干、灼燒、萃取和凱氏定氮方法對(duì)其灰分、蛋白質(zhì)以及粗脂肪進(jìn)行定量測(cè)定,結(jié)果為:灰分及其他(29.3%),蛋白質(zhì)(46.7%)和粗脂(24%),以上數(shù)值均為干質(zhì)量百分?jǐn)?shù)。不同的環(huán)境條件,如不同pH值、氮源、溫度等都會(huì)影響到蛋白核小球藻組成成分。
2.3 球藻生長(zhǎng)與溶解氧相關(guān)性
小球藻在污水中生長(zhǎng)過(guò)程中,每隔1 d取藻液測(cè)定其吸光度(OD680),同時(shí)測(cè)定藻液中溶解氧(DO),做出吸光度-時(shí)間、溶解氧(DO)-時(shí)間曲線(圖2)。從圖2可以看出,小球藻在培養(yǎng)到2 d時(shí)開(kāi)始出現(xiàn)快速生長(zhǎng),到第7天生長(zhǎng)量最大。溶解氧(DO)總體上隨時(shí)間也呈現(xiàn)上升趨勢(shì),但與吸光度(OD680)上升趨勢(shì)并非完全一致,在藻生長(zhǎng)到2 d前,藻液中溶解氧(DO)并沒(méi)有出現(xiàn)像吸光度(OD680)類似的快速升高的現(xiàn)象,這可能與空氣中氧氣對(duì)藻液的復(fù)氧有關(guān)。
2.4 藻葉綠素a的變化與廢水CODcr、T-N以及T-P的關(guān)系
將蛋白核小球藻(3×108)藻液按體積比1:20接種到養(yǎng)殖污水中,在光照以及通入CO2條件下下培養(yǎng),每隔1 d取培養(yǎng)液測(cè)定葉綠素a、水體總氮、水體總磷以及水體CODcr,結(jié)果如圖3所示。從圖3可以看出,總氮、總磷去除率分別為23%和34.7%,隨著葉綠素a量升高,水體中總氮、總磷均呈下降趨勢(shì),這說(shuō)明隨著藻類的大量繁殖,藻類吸收養(yǎng)殖污水中氮、磷化合物,從而導(dǎo)致水體中氮、磷含量降低,CODcr去除率高達(dá)70.9%,且隨著藻類的生長(zhǎng),水體CODcr也呈現(xiàn)出下降趨勢(shì)。
2.5 藻FT-IR測(cè)定結(jié)果
紅外光譜是一種分析有機(jī)化合物官能團(tuán)有效手段[28]。本研究對(duì)養(yǎng)鴨廢水中分離到的球藻進(jìn)行紅外光譜分析,如圖4所示,官能團(tuán)與波峰分析結(jié)果如表1中所示。
參考邢波[29]的苯系列傅里葉變換紅外(FT-IR)光譜的研究,結(jié)合圖4可以看出,3 320 cm-1的吸收歸屬為O-H鍵的振動(dòng)吸收峰,2 930 cm-1的吸收歸屬為C-H鍵的振動(dòng)吸收峰,1 650 cm-1的吸收歸屬為C=O雙鍵的振動(dòng)吸收峰,1 080 cm-1的吸收代表C-N鍵的存在,歸屬為蛋白質(zhì),1 240 cm-1處的振動(dòng)峰,代表C-O鍵存在,與脂類和糖類的存在相關(guān)。
表1 球藻官能團(tuán)的紅外分析結(jié)果
2.6 蛋白核小球藻的X-衍射測(cè)定結(jié)果
對(duì)蛋白核小球藻進(jìn)行離心、超純水洗滌后,進(jìn)行烘干,對(duì)獲得的干藻通過(guò)X-ray進(jìn)行測(cè)定,測(cè)定條件是2從10°到80°區(qū)間,結(jié)果如圖5所示。從圖5可以看出,在32°處有一明顯峰,在20°左右也有明顯的峰出現(xiàn),參考高華娜等[30]有關(guān)螺旋藻的XRD分析報(bào)道以及X-衍射圖譜的分析手冊(cè),認(rèn)為本研究中分離到的蛋白核小球藻含有大量的蛋白類和脂類物質(zhì)。
利用球藻分離培養(yǎng)基從養(yǎng)鴨場(chǎng)污水中分離到小球藻,通過(guò)外形觀察(相差顯微鏡)初步判定該球藻為蛋白核小球藻。在此基礎(chǔ)上,對(duì)蛋白核小球藻的組成包括蛋白質(zhì)和脂肪物質(zhì)進(jìn)行了定性(FT-IR和X-衍射)和定量分析(凱氏定氮)。將此蛋白核小球藻應(yīng)用到養(yǎng)殖場(chǎng)污水處理過(guò)程中,通過(guò)比較處理前與處理后水中CODcr、總氮(T-N)以及總磷(T-P)的變化,結(jié)果表明該蛋白核小球藻對(duì)CODcr的去除率為70.9%,對(duì)總氮、總磷去除率分別為23%和34.7%,從而證明了該蛋白核小球藻()具有很好的養(yǎng)殖場(chǎng)污水處理能力。
本研究中分離到的蛋白核小球藻在污水處理中的其他應(yīng)用,如對(duì)水體中鉛、鉻和汞等重金屬的吸附去除也是未來(lái)的研究方向之一,對(duì)拓展蛋白核小球藻在污水處理中的應(yīng)用具有積極的意義。此外,該研究中分離到的蛋白核小球藻()富含蛋白質(zhì)、脂肪酸以及一定量的促生長(zhǎng)因子,對(duì)其中蛋白質(zhì)的分離、純化,脂肪酸的分離和提取、促生長(zhǎng)因子的提取以及其對(duì)活細(xì)胞代謝的影響等研究也在進(jìn)行中。本研究中分離到的蛋白核小球藻不僅對(duì)污水的處理具有很好的效果,而且富含蛋白質(zhì)和脂肪酸,具有良好的深加工前景,包括制備生物柴油。在以后的研究中,在利用藻類處理污水的同時(shí),將大量生長(zhǎng)的蛋白核小球藻()進(jìn)行收集并深加工,開(kāi)發(fā)出新的生物新資源也是未來(lái)研究的方向之一。
[1] 莫健偉,姚興東,張谷蘭,等. 海藻去除水中雙偶氮染料機(jī)理及重金屬離子研究[J]. 中國(guó)環(huán)境科學(xué),1997,17(3):241-243.
Mo Jianwei, Yao Xingdong, Zhang Gulan, et al. Study on the removal mechanism of azo dyes and heavy metal ions in water with algae ()[J]. China Environmental Science, 1997, 17(3): 241-243. (in Chinese with English abstract)
[2] Leusch A, Holan Z R, Volesky B. Biosorption of heavy metals (Cd, Cu, Ni, Pb, Zn) by chemically reinforced biomassof marine algae[J]. J Chem Tech Biotechnol, 1995, 62(3): 279-288.
[3] Wilke A, Bunke G, Gotz P, et al. Removal of lead, cadmium, zinc andnickel by aadsorption on microalgae[J]. Prog Min Oilfield Chem, 1999, 4(1): 337-344.
[4] Volesky B, Holan Z R. Biosorption of heavy metals[J]. Biotechnol Prog, 1995, 11: 236-241.
[5] Bakkaloglu I, Butter T J, Evison L M, et al. The kinetics of metal uptake by microbial biomass:Implications for the design of a biosorption reactor[J]. Wat Sci Tech, 1998, 38: 269-275.
[6] Matsunaga T, Takeyama H, Nakao T, et al. Screening of marine microalgae for bioremediation of cadmium-polluted seawater[J]. Journal of Biotechnology, 1999, 70: 33-40.
[7] 林榮根,黃朋林,周俊良. 兩種褐藻對(duì)銅和鎘的吸著及洗脫研究[J]. 海洋環(huán)境科學(xué),1999,18(4):8-13.
Lin Ronggen, Huang Penglin, Zhou Junliang. Study on the adsorption and desorption of copper and cadmium in water on two species of brown algae[J]. Marine Environmental Science, 1999, 18(4): 8-13. (in Chinese with English abstract)
[8] 李英敏,楊海波,呂福榮,等. 小球藻對(duì)Pb2+的吸附及生物吸附機(jī)理初探[J]. 農(nóng)業(yè)環(huán)境科學(xué)學(xué)報(bào),2004,23(4):696-699.Li Yingmin, Yang Haibo, Lu Furong, et al. Sorption of Pb2+by Chlorella Vulgaris and biosorption mechanism[J]. Journal of Agro-Environment Science, 2004, 23(4): 696-699. (in Chinese with English abstract)
[9] 尹平河,趙玲,于平,等. 海藻生物吸附廢水中鉛、銅和鎘的研究[J]. 海洋環(huán)境科學(xué), 2000,19(3):11-15.
Yin Pinghe, Zhao Ling, Yu Ping, et al. Biosorption of lead, copper and cadmium by marine macro algae[J]. Marine Environmental Science, 2000, 19(3): 11-15. (in Chinese with English abstract)
[10] 高正權(quán),孟春曉. 微藻與水環(huán)境修復(fù)[J]. 環(huán)境科學(xué)與技術(shù),2008,25(3):21-25.
Gao Zhengquan, Meng Chunxiao. Microalgae and rehabilitation of water environment[J]. Environmental Science and Technology, 2008, 25(3): 21-25.
[11] 董芳芳,程凱,許敏. 藻類對(duì)造紙廢水中COD 的去除效率研究[J]. 環(huán)境科學(xué)技術(shù),2010,33(1):166-169.
Dong Fangfang, Cheng Kai, Xu Min. Removal of COD in paper-making wastewater by algae[J]. Environmental Science and Technology, 2010, 33(1): 166-169. (in Chinese with English abstract)
[12] 李巖,周文廣,張曉東,等. 微藻培養(yǎng)技術(shù)處理豬糞厭氧發(fā)酵廢水效果[J]. 農(nóng)業(yè)工程學(xué)報(bào),2011,27(增刊1):101-104.
Li Yan, Zhou Wenguang, Zhang Xiaodong, et al. Effect of microalgae culture on treatment of wastewater from anaerobic digested swine manure[J]. Transactions of the Chinese Society of Agricultural Engineering (Transactions of the CSAE), 2011, 27(Supp.1): 101-104. (in Chinese with English abstract)
[13] 張聰. 利用城市污水廠污泥培養(yǎng)海洋微藻技術(shù)研究[D]. 青島:中國(guó)海洋大學(xué),2007.
Zhang Cong. A Study on the Technique for Culturing Marine Microalgae with Sewage Sludge from Municipal Wastewater Treatment Plants[D]. Qingdao: Ocean University of China, 2007. (in Chinese with English abstract)
[14] Chen G Q, Chen F. Growing phototrophic cells without light[J]. Biotechnology Letters, 2006, 28(9): 607-616.
[15] Li Z S, Yuan H L, Yang J S, et al. Optimization of the biomass production of oil algaeUTEX2341[J]. Bioresource Technology, 2011, 102(19): 9128-9134.
[16] 周培疆,鄭振華,余振坤,等.普通小球藻生長(zhǎng)與武漢東湖水體磷形態(tài)的相關(guān)研究[J]. 水生生物學(xué)報(bào),2001,25(6):571-576.
Zhou Peijiang, Zheng Zhenhua, Yu Zhenkun, et al. Studies on the relationship between the growth ofand phosphorus fractions in water of lake Donghu, Wu Han[J]. Act Hydrobiologica Sinica, 2001, 25(6): 571-576. (in Chinese with English abstract)
[17] Olguin E J, Galicia S, Mercardo G, et al. Annual productivity of() and nutrient removal in a pig wastewater recycling process under tropical conditions[J]. J Appl Phyco, 2003, 15(2/3): 249-257.
[18] Phang S M, Miahm S, Yeoh B G, et al. Spirulinacultivation in digested sago starch factory wastewater[J]. J Appl Phyco, 2000, 12(3/4/5): 395-400.
[19] Kim M H, Chungw T, Leem K, et al. Kinetics ofremoving nitrogenous and phosphorus compounds from swine waste by growth of microalga,[J]. J Microbiol Biotechn, 2000, 10(4): 455-461.
[20] 黃昆,黃峙,呂頌輝. 螺旋藻()對(duì)垃圾填埋滲濾液污染物的凈化作用[J]. 生態(tài)環(huán)境,2006,15(3):509-512.
Huang Kun, Huang Zhi, Lü Songhui. Removal effects of microalga () on landfill leachate purification[J]. Ecology and Environment, 2006, 15(3): 509-512. (in Chinese with English abstract)
[21] 黃昆,張逸波,黃峙,等. 生活廢水培養(yǎng)螺旋藻()中的營(yíng)養(yǎng)物質(zhì)構(gòu)成[J]. 暨南大學(xué)學(xué)報(bào):自然科學(xué)版,2009,30(5):576-580.
Huang Kun, Zhang Yibo, Huang Zhi, et al. Nutrient composition ofgrown on digested domestic wastewater[J]. Journal of Ji Nan University: Natural Science, 2009, 30(5): 576-580. (in Chinese with English abstract)
[22] 牛向麗. 杜氏鹽藻生物學(xué)特征及表達(dá)載體pGEM-D18S-BAR的構(gòu)建[D]. 鄭州:鄭州大學(xué),2003.Niu Xiangli. Biological Characteristics ofand Construction of Expression Vector pGEM-D18S-BAR[D]. Zhengzhou: Zhengzhou University, 2003. (in Chinese with English abstract)
[23] 何珣,魏曉惠,郭浩,等. 馬弗爐程序控溫測(cè)定茶葉灰分含量[J]. 福建茶葉,2008,30(3):34-35.
He Xun, Wei Xiaohui, Guo Hao, et al. The measurement of ash in tea with muffle program controlling temperature[J]. Fujian Tea, 30(3): 34-35. (in Chinese with English abstract)
[24] 馮棋琴,胡愛(ài)軍,胡小華. 超聲波技術(shù)在提取保健油脂中應(yīng)用[J]. 糧食與油脂,2009(8):4-6.
Feng Qiqin, Hu Aijun, Hu Xiaohua. Application of ultrasonic techniques in health oil extraction[J].Foods and Oil, 2009(8): 4-6. (in Chinese with English abstract)
[25] 賈元超,徐瑯,陳重,等. 不同提取方法對(duì)續(xù)隨子種子中不飽和脂肪酸得率的影響[J]. 安徽農(nóng)業(yè)科學(xué),2008,36(18):7509-7511,7513.
Jia Yuanchao, Xu Liang, Chen Zhong, et al. Effect of different extraction methods on Yield of unsaturated fatty acids from. Seeds[J]. Journal of Anhui Agriculture Science, 2008, 36(18): 7509-7511, 7513. (in Chinese with English abstract)
[26] 張麗君,楊汝德,肖恒. 小球藻的異養(yǎng)生長(zhǎng)及培養(yǎng)條件優(yōu)化[J]. 廣西植物,2001,21(4):353-357.
Zhang Lijun, Yang Rude, Xiao Heng. The hetertrophic culture of Chlorella and optimization of growth condition[J]. Guangxi Plant, 2001, 21(4): 353-357. (in Chinese with English abstract)
[27] 呂旭陽(yáng),張?chǎng)瑮铌?yáng),等.分光光度法測(cè)定小球藻數(shù)量的方法研究[J]. 安徽農(nóng)業(yè)科學(xué),2009,37(23):11104-11105.
Lü Xuyang, Zhang Wen, Yang Yang, et al. Methodological research on measuring Chlorella quantity by spectrophotometry[J]. Journal of Anhui Agricultural Science, 2009, 37(23): 11104-11105. (in Chinese with English abstract)
[28] Zou S, Wu Y, Yang M, et al. Bio-oil production from sub-and supercritical water liquefaction of microalgaeand related properties[J]. Energy & Environmental Science, 2010, 3(8): 1073-1078.
[29] 邢波. 苯系列傅里葉變換紅外(FT-IR)光譜的研究[J]. 現(xiàn)代科學(xué)儀器,2002(4):43-45.
Xing Bo. The study of FT-IR spectra of benzene series[J]. Modern Scientific Instruments, 2002(4): 43-45. (in Chinese with English abstract)
[30] 高華娜,趙海英,王志宙,等. 螺旋藻的PXRD和XRF分析[J]. 食品科技,2008,33(12):270-272.
Gao Huana, Zhao Haiying, Wang Zhizhou, et al. Analysis on theby PXRD and XRF[J]. Food Science and Technology, 2008, 33(12): 270-272. (in Chinese with English abstract)
Isolation, identification offrom aquaculture wastewater and its purification of wastewater
Lu Hongsheng, Liu Yaqiao, Liu Wenjun, Kong Fanmin, Tan Haochen
(,,266590,)
Algaehas been studied for many years about its characteristics of rapid breed, easily obtained, high adsorption capacity and low nutrition demands and so on.The emission of aquaculture wastewater will caused severe damage on environment.Thereforehow to remove the compound of nitrogen and phosphorus from aquaculture wastewater becomes a serious problem around the world.Based above, many researchers have been focusing on this field and a lot of achievements have been found. Many environmental factors could influence on the growth of algae, including temperature, illumination and nutrition. For heterotrophism, carbon, nitrogen and phosphorus are the three most important factors influencing on the growth ofMicroalgaeconsist of several varieties, including.is belonged toUntil now, studies ofhave mainly focused on the processing, especially in the field of producing biodiesel, but few studies focused on the wastewater treatment byThis study carried out the following experiments: the enrichment, isolation, purification and nutritional ingredient analysis for. Then, the effect of treating with wastewater bywas carried out, including the removal of total nitrogen, total phosphorus and reducing COD.was isolated from aquaculture wastewater with BG-11medium. The morphology and components ofwere observed by phase contrast microscope and Fourier transform infrared spectrometer (FT-IR), respectivelyThe crystal structure ofwas determined with X-ray. Protein and fat contents were measured by Kjeldahl determination and organic solvent extract method, respectively. The effect of treating with wastewater bywas tested with national standard methods. Chlorophyll a was extracted and analyzed with acetone extract method. The morphology observation with phase contrast microscope showed thatwas belonged toFT-IR analysis showed that two peaks appeared at the wave numbers of 1 080 and 1 240 cm-1, which proved high contents of protein, carbohydrate and fat contained in. X-ray diffraction spectrogram showed two main peaks appeared at about 32° and 20°, which proved both protein and fat were contained in. Quantitative analysis indicated that contents of protein and fat were 45.6% and 8.1%, respectively. Correlational study indicated that the negative correlation of the increase of Chlorophyll a inwith the decrease of total nitrogen (T-N) and total phosphorus (T-P) remained in the wastewater. The removals of COD, total nitrogen (T-N) and total phosphorus (T-P) bywere 70.9%, 23% and 34.7%, respectively. Based on above results, the capability of treating with wastewater bywasproved in this study. Therefore, this study could provide a reference for the exploitation of a new bioresource and the water environment treatment.
wastewaters; purification; nitrogen; phosphorus;; screening and identification; component analysis; treatment effect
10.11975/j.issn.1002-6819.2017.04.037
Q938
A
1002-6819(2017)-04-0273-05
2016-05-05
2017-01-24
山東省自然科學(xué)基金面上項(xiàng)目(No. ZR2014EMM005);山東省人力資源與社會(huì)保障廳資助項(xiàng)目(No. 20101008);濰坊市峽山水庫(kù)管理局資助項(xiàng)目(No. 201303201603).
陸洪省,男,漢族,副教授,博士(后),碩士生導(dǎo)師,從事水污染控制方面的研究。青島 山東科技大學(xué)化學(xué)與環(huán)境工程學(xué)院,266590。Email:hslu628@163.com.
陸洪省,劉亞樵,劉文君,孔凡民,譚好臣. 養(yǎng)殖污水中蛋白核小球藻的分離鑒定及其污水處理效果[J]. 農(nóng)業(yè)工程學(xué)報(bào),2017,33(4):273-277. doi:10.11975/j.issn.1002-6819.2017.04.037 http://www.tcsae.org
Lu Hongsheng, Liu Yaqiao, Liu Wenjun, Kong Fanmin, Tan Haochen. Isolation, identification offrom aquaculture wastewater and its purification of wastewater[J]. Transactions of the Chinese Society of Agricultural Engineering (Transactions of the CSAE), 2017, 33(4): 273-277. (in Chinese with English abstract) doi:10.11975/j.issn.1002-6819.2017.04.037 http://www.tcsae.org