賈梅生,陳國華,胡昆
(華南理工大學(xué)安全科學(xué)與工程研究所,廣東 廣州 510640)
化工園區(qū)多米諾事故風(fēng)險(xiǎn)評價(jià)與防控技術(shù)綜述
賈梅生,陳國華,胡昆
(華南理工大學(xué)安全科學(xué)與工程研究所,廣東 廣州 510640)
定量風(fēng)險(xiǎn)評價(jià)是化工廠區(qū)或園區(qū)預(yù)防多米諾效應(yīng)的主要方法,各類事故預(yù)防與控制措施的制定及其有效性檢驗(yàn)也依賴于多米諾效應(yīng)定量風(fēng)險(xiǎn)評價(jià)的結(jié)果。然而,由于概率風(fēng)險(xiǎn)表征、多米諾場景概率結(jié)構(gòu)、火災(zāi)與爆炸致?lián)p概率等存在多種不一致或解釋不明確的方法模型,使風(fēng)險(xiǎn)評價(jià)結(jié)果差異性很大,無法更進(jìn)一步對各類多米諾事故預(yù)防與控制技術(shù)進(jìn)行評估。本文首先界定了多米諾效應(yīng)的基本概念和原理,然后對當(dāng)前文獻(xiàn)中相關(guān)多米諾效應(yīng)定量風(fēng)險(xiǎn)評價(jià)方法進(jìn)行深入剖析,明確了多米諾場景概率以及火災(zāi)熱輻射、爆炸沖擊波、爆炸碎片致?lián)p概率的計(jì)算方法。另外,還從閾值與安全距離、安全容量及布局優(yōu)化、安全屏障與防火隔熱層、安全與應(yīng)急管理決策支持、安防與脆弱性分析及災(zāi)害衍生事故等方面對多米諾事故防控技術(shù)進(jìn)行了評述。最后,指出以目標(biāo)設(shè)備為核心的各類致?lián)p概率計(jì)算方法,即設(shè)備易損性,是后續(xù)研究的關(guān)注焦點(diǎn)。
多米諾效應(yīng);風(fēng)險(xiǎn)評價(jià);致?lián)p概率;設(shè)備易損性;安全;化工園區(qū)
化工園區(qū)是石油和化學(xué)工業(yè)發(fā)展的必然趨勢,然而集中的園區(qū)管理模式在帶來產(chǎn)業(yè)規(guī)模效應(yīng)的同時(shí),也帶來了較高的風(fēng)險(xiǎn)水平。多米諾效應(yīng)問題的涌現(xiàn)即是由危險(xiǎn)化學(xué)品儲存與工藝裝置規(guī)模的擴(kuò)大,以及土地使用成本的提高而導(dǎo)致的,很多歷史事故案例已經(jīng)證明了多米諾效應(yīng)發(fā)生的可能性及其非常嚴(yán)重的事故后果[1-9]。
英國健康安全委員會(HSC)下屬重大危險(xiǎn)源咨詢委員會在1976年、1979年、1984年公布的重大危險(xiǎn)源控制系列報(bào)告中首次明確了多米諾效應(yīng)概念[10],并在1978年、1981年開展的坎維島風(fēng)險(xiǎn)評價(jià)報(bào)告中進(jìn)行了詳細(xì)考慮[11]。歷史上,1984年發(fā)生的墨西哥城國家石油公司LPG儲運(yùn)站連鎖爆炸事故[11],極大地促進(jìn)了多米諾效應(yīng)在工業(yè)界與學(xué)術(shù)界的受關(guān)注程度,科技文獻(xiàn)的涌現(xiàn)即始于此。1989年美國化工過程安全中心(CCPS)第一版化工過程定量風(fēng)險(xiǎn)評價(jià)指南[12],以及1999年荷蘭應(yīng)用科學(xué)研究院(TNO)定量風(fēng)險(xiǎn)評價(jià)紫皮書[13]已經(jīng)對多米諾效應(yīng)進(jìn)行了相關(guān)考慮。
多米諾效應(yīng)的官方條款主要見于歐盟委員會1996年《塞韋索II指令》第8條及其2012年更新版第9條,主要規(guī)定:企業(yè)需向管理部門告知信息,管理部門有辨識多米諾效應(yīng)的責(zé)任,相關(guān)企業(yè)需相互合作、互通信息,在編制重大事故預(yù)防策略、安全管理系統(tǒng)、安全報(bào)告、內(nèi)部應(yīng)急預(yù)案時(shí),需考慮多米諾效應(yīng)的影響,并告知公眾[14]。2012年,國務(wù)院安委辦(2012)37號文件“關(guān)于進(jìn)一步加強(qiáng)化工園區(qū)安全管理的指導(dǎo)意見”中也強(qiáng)調(diào):化工園區(qū)需合理布局,預(yù)防連鎖事故發(fā)生[15]。
眾多多米諾效應(yīng)的概念研究中,RENIERS和COZZANI的定義更具廣泛適用性,其核心是事故擴(kuò)展傳播與后果影響擴(kuò)大,包含3個(gè)基本要素:①初始事故場景及其物理影響,如火災(zāi)熱輻射、爆炸沖擊波、爆炸碎片等;②潛在的二次或一階擴(kuò)展事故場景,源于初始事故的擴(kuò)展傳播,危險(xiǎn)化學(xué)品發(fā)生泄漏,使后果影響擴(kuò)大;③后果影響擴(kuò)大的目標(biāo)設(shè)備或單元[16-19]。
另外,火災(zāi)熱輻射、爆炸沖擊波、爆炸碎片是三類主要的物理影響因素,即致?lián)p因子?;馂?zāi)熱輻射可導(dǎo)致目標(biāo)設(shè)備的殼壁或結(jié)構(gòu)材料發(fā)生高溫強(qiáng)度下降,使壓力儲存的液化烴或工業(yè)氣體的容器內(nèi)壓升高,同時(shí)火焰還有點(diǎn)火引燃的危險(xiǎn)。爆炸沖擊波可使目標(biāo)設(shè)備發(fā)生屈服、倒塌、破裂、分解、整體位移、連接管線斷裂、安全裝置功能失效等,其傳播路徑還可產(chǎn)生二次碎片危險(xiǎn)。爆炸碎片可穿透容器、切斷支撐或管線,高溫碎片也有點(diǎn)火或加熱的危險(xiǎn),碎片來源包括容器爆炸破裂產(chǎn)生的小碎片、爆炸分解的零部件等。一般而言,有毒物質(zhì)泄漏不會直接導(dǎo)致進(jìn)一步危化品泄漏擴(kuò)散、火災(zāi)、爆炸等場景,但可使現(xiàn)場操作人員中毒,喪失正常工作能力,間接導(dǎo)致多米諾效應(yīng)。關(guān)于連續(xù)或批處理工藝裝置的基本控制系統(tǒng)與安全功能系統(tǒng)的連鎖效應(yīng)導(dǎo)致的事故,一般不屬于多米諾效應(yīng)的研究范疇。
事故統(tǒng)計(jì)分析可以明確多米諾場景的某些特征。2000年,KOURNIOTIS等[1]對207起化工事故統(tǒng)計(jì)發(fā)現(xiàn),多米諾場景頻率與危險(xiǎn)化學(xué)品類型相關(guān),蒸汽烴類較液體燃料更危險(xiǎn),并擬合了多米諾效應(yīng)的社會風(fēng)險(xiǎn)曲線。2003年,RONZA等[2]統(tǒng)計(jì)了港口區(qū)的675起化工事故,發(fā)現(xiàn)直接從火災(zāi)到爆炸的擴(kuò)展序列有30個(gè),頻率可達(dá)4.44×10–2。2008年,GóMEZ-MARES等[3]統(tǒng)計(jì)了84起與噴射火相關(guān)的化工事故,指出噴射火有50%的可能性可以觸發(fā)多米諾場景。2010年,DARBRA等[4]對與多米諾效應(yīng)相關(guān)的225起化工事故,按階段、區(qū)域、涉及危險(xiǎn)化學(xué)品、原因、后果、場所、擴(kuò)展序列等多個(gè)方面進(jìn)行了詳細(xì)統(tǒng)計(jì)分析,并繪制了社會風(fēng)險(xiǎn)曲線與擴(kuò)展序列概率事件樹圖。類似研究還包括ABDOLHAMIDZADEH等[5]、CHEN等[6],HEMMATIAN等[8]的統(tǒng)計(jì)分析。另外,ZHANG 和ZHENG[7]對2006—2010年期間國內(nèi)發(fā)生的1632起危險(xiǎn)化學(xué)品事故統(tǒng)計(jì)發(fā)現(xiàn),固定場所多米諾事故占13.2%,移動運(yùn)輸場所多米諾事故占9%。2015年,HEMMATIAN等[9]又專門對127起與沸騰液體擴(kuò)展蒸汽云爆炸(BLEVE)相關(guān)的多米諾事故進(jìn)行統(tǒng)計(jì)分析,繪制了擴(kuò)展序列概率事件樹圖,并指出事故延時(shí)從一分鐘到幾小時(shí)不等,需重點(diǎn)關(guān)注應(yīng)急疏散與消防安全距離。
CCPS化工過程定量風(fēng)險(xiǎn)評價(jià)指出,處理多米諾效應(yīng)有兩種邏輯[12]:①針對源設(shè)備或單元,失效頻率與事故場景概率不變,多米諾效應(yīng)使事故后果影響擴(kuò)大,技術(shù)方法是擴(kuò)展事件樹的輸出;②針對目標(biāo)設(shè)備或單元,多米諾效應(yīng)使失效頻率增加,事故后果影響不變,技術(shù)方法是將多米諾效應(yīng)處理為事故樹的一類外部事件輸入。但無論哪種邏輯,均需首先計(jì)算火災(zāi)熱輻射、爆炸沖擊波、爆炸碎片的致?lián)p概率,或根據(jù)安全距離確定哪些目標(biāo)設(shè)備或單元需納入多米諾效應(yīng)的考慮范圍。另外,由于多米諾效應(yīng)的擴(kuò)展場景與擴(kuò)展模式比較復(fù)雜,多米諾場景概率結(jié)構(gòu)有各種不同的計(jì)算方法,即多米諾風(fēng)險(xiǎn)依多米諾場景概率結(jié)構(gòu)不同而有所差異。表1對文獻(xiàn)中構(gòu)建的各種多米諾效應(yīng)定量風(fēng)險(xiǎn)評價(jià)方法進(jìn)行了對比分析。
3.1 多米諾場景概率結(jié)構(gòu)
場景概率結(jié)構(gòu)表達(dá)多米諾效應(yīng)定義及其風(fēng)險(xiǎn)計(jì)算方法,多場景、高階擴(kuò)展、擴(kuò)展協(xié)同效應(yīng)、應(yīng)急措施干預(yù)、動態(tài)過程是其技術(shù)難點(diǎn)。如表1所示,
即使在概率風(fēng)險(xiǎn)評價(jià)的框架內(nèi),且明確增加失效頻率與擴(kuò)大事故后果影響的邏輯,多數(shù)多米諾場景概率結(jié)構(gòu)依然自成體系,如COZZANI等[16,24-25]的分析方法、ABDOLHAMIDZADEH等[26-27]的蒙特卡洛模擬方法、BERNECHEA等[31]的事件樹方法以及KHAKZAD等[32-34]的貝葉斯網(wǎng)絡(luò)方法。導(dǎo)致混亂的原因除相關(guān)技術(shù)難點(diǎn)外,另一個(gè)重要原因是多米諾風(fēng)險(xiǎn)評價(jià)對象不明確或多米諾場景不統(tǒng)一。一般化工過程定量風(fēng)險(xiǎn)評價(jià)選擇最壞事故場景,但是多米諾效應(yīng)由于擴(kuò)展場景與擴(kuò)展模式比較復(fù)雜,各種組合情況非常多。因此,首先需要確定一種原則或方法以統(tǒng)一多米諾場景的選擇問題。
3.2 火災(zāi)熱輻射致?lián)p概率
火災(zāi)熱輻射致?lián)p概率主要包括兩種計(jì)算方法:①比例方法[11,20-23,29-30];②Probit模型,即應(yīng)急及時(shí)概率[16,24-28,32-34,41]。比例方法缺乏嚴(yán)格的理論基礎(chǔ),隨機(jī)性表達(dá)不明確。Probit模型表達(dá)應(yīng)急耗時(shí)小于事故延時(shí)的可能性,其中,事故自然延時(shí)計(jì)算是一種確定的保守?cái)M合關(guān)系式,所以主要反映的是應(yīng)急措施的隨機(jī)性。但是對于指定的化工園區(qū)或企業(yè)及其應(yīng)急預(yù)案,應(yīng)急耗時(shí)的概率分布是不一樣的,即需要調(diào)整Probit模型系數(shù)。此外,保守?cái)M合關(guān)系式的應(yīng)用也有限制范圍,而且事故延時(shí)本質(zhì)上也是隨機(jī)的,因此,如何分析與表達(dá)事故延時(shí)的隨機(jī)性也需要另作研究。
3.3 爆炸沖擊波致?lián)p概率
Probit模型是爆炸沖擊波致?lián)p概率的主要計(jì)算方法,其核心是根據(jù)目標(biāo)設(shè)備破壞失效的嚴(yán)重程度定義致?lián)p概率,概率單位與沖擊波峰值超壓相關(guān),主要反映的是目標(biāo)設(shè)備抵抗沖擊波攻擊的能力,方法的精確性與統(tǒng)計(jì)樣本數(shù)量以及統(tǒng)計(jì)樣本之間的一致性有關(guān)。方法建立在遠(yuǎn)場假設(shè)基礎(chǔ)上,忽略了沖擊波與目標(biāo)設(shè)備之間復(fù)雜的交互過程,不適用于近場范圍的破壞失效。KHAN和ABBASI[21-23]的Probit模型是建立在EISENBERG等[42]模型基礎(chǔ)上的,以有效壓力代替峰值壓力,其他參數(shù)不變,使不同類型的目標(biāo)設(shè)備可以通過曳引系數(shù)不同取值進(jìn)行區(qū)別。COZZANI和SALZANO[43-47]首先將目標(biāo)設(shè)備分為常壓儲罐、壓力容器、塔設(shè)備、輔助設(shè)備四類,然后定義各類設(shè)備破壞失效的嚴(yán)重程度,在75個(gè)文獻(xiàn)樣本的基礎(chǔ)上進(jìn)行統(tǒng)計(jì)分析得到對應(yīng)Probit函數(shù)。ZHANG和JIANG[48]在COZZANI和SALZANO樣本數(shù)據(jù)的基礎(chǔ)上,重新定義目標(biāo)設(shè)備破壞失效的嚴(yán)重程度,得到新的Probit模型。
3.4 爆炸碎片致?lián)p概率
爆炸碎片致?lián)p概率的計(jì)算方法相對比較復(fù)雜,按研究方法可以分為兩類:①基于碎片拋射軌跡方程的蒙特卡洛模擬;②比例方法。按研究對象可以分為三類:①碎片產(chǎn)生概率或碎片初始參數(shù)的概率分布,主要包括碎片數(shù)量、大小、形狀、初始速度、拋射角等;②碎片擊中概率;③碎片穿透概率。2001年,HAUPTMANNS[49-50]首次通過碎片拋射軌跡方程的蒙特卡洛模擬得到了碎片的擊中概率,之后涌現(xiàn)出很多以此方法為基礎(chǔ)的研究,主要集中于擊中概率定義、隨機(jī)參數(shù)概率分布確定、參數(shù)影響分析等[51-62]。比例方法主要是GUBINELLI等[63]提出的以概率幾何原理為基礎(chǔ)的擊中概率模型,TUGNOLI等[64]通過一個(gè)事故案例對該方法的有效性進(jìn)行了分析與驗(yàn)證。關(guān)于碎片初始參數(shù)及其概率分布的確定包括GUBINELLI等[65-66]、MéBARKI等[67]、孫東亮等[68]、TUGNOLI等[69]的研究。關(guān)于碎片穿透概率的研究主要是NGUYEN 等[70]提出的基于臨界殘余壁厚的方法,以及陳剛等[71]提出的基于臨界剩余強(qiáng)度系數(shù)的方法,由于兩種方法同樣是以碎片拋射軌跡方程的蒙特卡洛模擬為基礎(chǔ)的,因此,可以直接獲得碎片擊中概率與穿透概率的乘積。
表1 多米諾效應(yīng)定量風(fēng)險(xiǎn)評價(jià)方法對比分析
3.5 概率風(fēng)險(xiǎn)表征
多米諾場景概率結(jié)構(gòu)與火災(zāi)熱輻射、爆炸沖擊波、爆炸碎片的致?lián)p概率最終都要集成于概率風(fēng)險(xiǎn)的框架內(nèi),以概率風(fēng)險(xiǎn)的原理進(jìn)行結(jié)果表征。對于化工過程定量風(fēng)險(xiǎn)評價(jià)而言,個(gè)人風(fēng)險(xiǎn)與社會風(fēng)險(xiǎn)是常用的風(fēng)險(xiǎn)指標(biāo)與風(fēng)險(xiǎn)結(jié)果描述方法,個(gè)人風(fēng)險(xiǎn)是事故場景發(fā)生概率與事故場景物理影響下個(gè)體傷亡概率的數(shù)學(xué)乘積,社會風(fēng)險(xiǎn)計(jì)算依賴于個(gè)人風(fēng)險(xiǎn)結(jié)果與人員密度分布情況[12-13]。個(gè)體傷亡概率一般基于Probit模型進(jìn)行確定[12-13]。COZZANI等[16]提出的多米諾效應(yīng)定量風(fēng)險(xiǎn)評價(jià)方法即應(yīng)用個(gè)人風(fēng)險(xiǎn)與社會風(fēng)險(xiǎn)描述風(fēng)險(xiǎn)評價(jià)結(jié)果。KOURNIOTIS等[1]、DARBRA等[4]、HEMMATIAN等[8]從事故統(tǒng)計(jì)角度繪制了多米諾效應(yīng)的社會風(fēng)險(xiǎn)曲線,可以作為風(fēng)險(xiǎn)評價(jià)結(jié)果的準(zhǔn)則曲線。然而,對于更多的多米諾效應(yīng)定量風(fēng)險(xiǎn)評價(jià)方法而言,多米諾場景概率即直接表示多米諾效應(yīng)風(fēng)險(xiǎn)。
目標(biāo)設(shè)備或單元在致?lián)p因子影響下的破壞失效主要與設(shè)備之間的安全距離、初始事故場景致?lián)p因子強(qiáng)度以及目標(biāo)設(shè)備的防護(hù)措施有關(guān),而關(guān)于降低源設(shè)備失效頻率或初始事故場景物理影響的安全措施,如結(jié)構(gòu)完整性管理、火源控制、保護(hù)層分析(LOPA)等,由于其在一般的過程安全管理中均有考慮,所以不列入詳細(xì)討論范圍,但是初始事故的預(yù)防與安全措施也會顯著降低多米諾風(fēng)險(xiǎn),而且更為重要。
4.1 閾值與安全距離、安全容量及布局優(yōu)化
安全距離與安全容量是互補(bǔ)的、可以實(shí)現(xiàn)本質(zhì)安全的多米諾事故防控技術(shù),兩者均與致?lián)p因子的閾值有關(guān)。閾值主要根據(jù)目標(biāo)設(shè)備或單元類型及其破壞失效模式與嚴(yán)重程度進(jìn)行確定,安全距離根據(jù)閾值與源設(shè)備事故場景特征確定,安全容量設(shè)置主要是限制事故場景物理響應(yīng)范圍。安全距離主要在工廠的布局設(shè)計(jì)階段實(shí)現(xiàn),而安全容量可以實(shí)現(xiàn)動態(tài)管理,并且兩者均是布局優(yōu)化與風(fēng)險(xiǎn)動態(tài)管理的基本參數(shù)。ALILECHE等[19]對標(biāo)準(zhǔn)與文獻(xiàn)中關(guān)于多米諾效應(yīng)的閾值與安全距離研究進(jìn)行了詳細(xì)評述。一般情況,通過實(shí)驗(yàn)或事故統(tǒng)計(jì)可以確定閾值,再根據(jù)事故后果物理影響的經(jīng)驗(yàn)?zāi)P陀?jì)算安全距離,但數(shù)據(jù)不一致仍然是常見的。對于爆炸沖擊波而言:①缺乏對目標(biāo)設(shè)備詳細(xì)特征的描述;②破壞失效模式及其嚴(yán)重程度定義比較混亂。對于火災(zāi)熱輻射而言,還容易忽略:①火災(zāi)場景不同致?lián)p機(jī)理,如接觸點(diǎn)火或遠(yuǎn)距離熱輻射;②火災(zāi)持續(xù)時(shí)間。相對比較全面細(xì)致的研究是COZZANI等[19,72]的推薦值,還從本質(zhì)安全的角度,在事故后果物理影響經(jīng)驗(yàn)?zāi)P偷幕A(chǔ)上,對指定事故場景的安全距離與安全容量關(guān)系進(jìn)行了詳細(xì)分析[38,73]。SPOELSTRA等[74]對荷蘭國家標(biāo)準(zhǔn)PGS18、PGS19中LPG儲罐區(qū)安全距離的確定方法進(jìn)行了詳細(xì)描述。
理論上,安全距離實(shí)現(xiàn)后,擴(kuò)展場景或多米諾效應(yīng)就不會發(fā)生了,但安全距離的確定仍有許多不確定或限制因素,只是達(dá)到了目前最好或最優(yōu)水平,因此,布局優(yōu)化有必要將多米諾風(fēng)險(xiǎn)作為一個(gè)目標(biāo)函數(shù),核心問題則是目標(biāo)函數(shù)的構(gòu)建及其求解方法。LEE等[75]、SO等[76]通過柯西最速下降法確定n個(gè)爆炸危險(xiǎn)源的合理位置,以使構(gòu)建的多米諾場景概率最低,前者針對新建廠區(qū),后者針對擴(kuò)建廠區(qū)。KHAN和AMYOTTE[77-78]構(gòu)建的I2SI指數(shù)、TUGNOLI等構(gòu)建的DHI指數(shù)[36-37]、COZZANI等[38]構(gòu)建的DCP、DCA、UDI、TDI指數(shù),均可作為布局優(yōu)化的目標(biāo)函數(shù)。JUNG等[79]、LóPEZ-MOLINA等[80]、DE LIRA-FLORES等[81]將布局優(yōu)化定義為混合整數(shù)非線性規(guī)劃問題求解,不同之處是多米諾風(fēng)險(xiǎn)目標(biāo)函數(shù)的構(gòu)建與使用。BERNECHEA和ARNALDOS[82]、KHAKZAD和RENIERS[83]則通過對不同備選布局方案進(jìn)行多米諾風(fēng)險(xiǎn)分析與評價(jià),轉(zhuǎn)化為多目標(biāo)決策問題。
4.2 安全屏障與防火隔熱層
安全屏障或安全裝置、安全附件與LOPA中的保護(hù)層概念近似,是對相關(guān)硬件、軟件、管理措施功能抽象的集合描述,從事故預(yù)防與風(fēng)險(xiǎn)管理的角度理解,既包括降低事故場景發(fā)生概率的措施,也包括減小事故后果影響的措施。LOPA指南將保護(hù)層分為8個(gè)層次[84],即工藝設(shè)計(jì)、基本過程控制系統(tǒng)、關(guān)鍵報(bào)警和人員干預(yù)、安全儀表功能、物理保護(hù)(釋放設(shè)施,如安全閥、爆破片等)、釋放后物理保護(hù)(如防火堤、防爆墻等)、廠區(qū)應(yīng)急響應(yīng)、周圍社區(qū)應(yīng)急響應(yīng)。按作用方式與功能,它們又可分為主動的與被動的措施,以及阻止性的(釋放前)與減緩性的(釋放后)措施。LOPA指南并沒有提供方法以評估保護(hù)層在降低多米諾風(fēng)險(xiǎn)方面的作用,或指出如何合理布置保護(hù)層以降低多米諾風(fēng)險(xiǎn)。LANDUCCI等[85]基于LOPA方法,得到了預(yù)防火災(zāi)觸發(fā)多米諾場景時(shí),各類安全屏障措施的有效性與要求時(shí)失效概率數(shù)據(jù)。JANSSENS等[86]通過元啟發(fā)式算法,構(gòu)建了一個(gè)合理布置安全屏障以減小火災(zāi)事故場景后果影響,增加擴(kuò)展事故場景延時(shí),降低多米諾風(fēng)險(xiǎn)的決策模型。
防火隔熱層的概念與方法早于多米諾效應(yīng),主要指阻隔火焰直接接觸影響或降低殼壁吸收熱量速率以增加擴(kuò)展事故場景延時(shí)的涂層或夾套,是一種被動的防火措施。BLEVE是一種后果極其嚴(yán)重的火災(zāi)導(dǎo)致的液化烴壓力容器擴(kuò)展事故場景,尤其在運(yùn)輸行業(yè),由于經(jīng)常不可避免地經(jīng)過一些人員密集場所,風(fēng)險(xiǎn)非常高,因此,早期有許多關(guān)于防火隔熱層的設(shè)計(jì)與實(shí)驗(yàn)研究,但是其應(yīng)用也伴隨著腐蝕檢測與消防射流沖擊的問題[11]。LANDUCCI等[87-88]通過對LPG儲罐的實(shí)驗(yàn)與有限元模擬,分析驗(yàn)證了防火隔熱層在增加BLEVE事故場景延時(shí)方面的有效性,實(shí)驗(yàn)材料包括環(huán)氧樹脂發(fā)泡材料、蛭石、礦物纖維棉、水泥基無機(jī)材料,并提出3個(gè)指標(biāo)以評估和指導(dǎo)設(shè)計(jì)。PALTRINIERI等[89]進(jìn)一步指出,防火隔熱層的應(yīng)用可以使LPG供應(yīng)鏈的個(gè)人風(fēng)險(xiǎn)降低一個(gè)數(shù)量級,使社會風(fēng)險(xiǎn)的期望值提高50%。DI PADOVA等[90]、TUGNOLI等[91]基于風(fēng)險(xiǎn)矩陣原理提出一個(gè)防火分區(qū)辨識方法,以合理應(yīng)用防火隔熱層,降低火災(zāi)觸發(fā)多米諾效應(yīng)風(fēng)險(xiǎn)。此外,由于防火隔熱層也具有一定的結(jié)構(gòu)強(qiáng)度,因此,可以探索研究新的過程設(shè)備設(shè)計(jì)方法,或者開發(fā)設(shè)計(jì)新的保護(hù)層材料或結(jié)構(gòu),以綜合考慮火災(zāi)熱輻射、爆炸沖擊波、爆炸碎片的致?lián)p作用。
4.3 安全與應(yīng)急管理決策支持
風(fēng)險(xiǎn)分析與評價(jià)本質(zhì)上即是一種分級的安全管理思想與方法,多米諾效應(yīng)的風(fēng)險(xiǎn)分析與評價(jià)也不例外。應(yīng)急概念則是一種事故控制思想,即假設(shè)事故場景發(fā)生后如何采取措施以減小事故后果影響,多米諾效應(yīng)概念也包含初始事故場景的假設(shè),所以應(yīng)急研究對于預(yù)防與控制多米諾事故非常重要。KHAN和ABBASI[92]在多米諾效應(yīng)定量風(fēng)險(xiǎn)評價(jià)方法研究的基礎(chǔ)上,開發(fā)了DOMIFECT軟件,以輔助決策。COZZANI等[93]將多米諾效應(yīng)定量風(fēng)險(xiǎn)評價(jià)方法集成于Aripar-GIS軟件。RENIERS等[94-95]提出了集成危險(xiǎn)與可操作性分析(HAZOP)、What-If分析、風(fēng)險(xiǎn)矩陣的Hazwim框架,使化工園區(qū)的企業(yè)之間可以相互合作,共同預(yù)防外部多米諾效應(yīng)。之后,RENIERS和DULLAERT[96-97]從化工園區(qū)范圍內(nèi)擴(kuò)展序列優(yōu)先級的角度開發(fā)了DomPrevPlanning決策支持軟件。另外,RENIERS等[98-99]還應(yīng)用博弈論方法建模分析了化工園區(qū)企業(yè)在預(yù)防多米諾效應(yīng)時(shí)的投資決策過程。ZHANG和CHEN[100]提出了限制化工園區(qū)或企業(yè)危險(xiǎn)源擴(kuò)展網(wǎng)絡(luò)的離散孤島模型。KHAKZAD等[33]應(yīng)用貝葉斯網(wǎng)絡(luò)與沖突分析方法建模了?;钒踩萘康呐渲脝栴}。關(guān)于應(yīng)急管理,ZHOU等[35,101]分別應(yīng)用事件序列圖法與Petri網(wǎng)絡(luò)建模分析了應(yīng)急措施干預(yù)對火災(zāi)觸發(fā)多米諾場景的影響,以及大規(guī)模并發(fā)火災(zāi)的應(yīng)急響應(yīng)問題。
4.4 安防與脆弱性分析及災(zāi)害衍生事故
觸發(fā)化工園區(qū)或企業(yè)多米諾效應(yīng)的原因,除常見的火災(zāi)、爆炸初始事故場景外,蓄意或恐怖襲擊以及自然災(zāi)害也受到廣泛關(guān)注。RENIERS等[102]通過抽象化工園區(qū)范圍內(nèi)所有危險(xiǎn)源及其相互影響關(guān)系,首次提出了分離節(jié)點(diǎn)網(wǎng)絡(luò)的概念,以輔助安防管理。之后,RENIERS和AUDENAERT[103]在分離節(jié)點(diǎn)網(wǎng)理絡(luò)研究的基礎(chǔ)上,提出單元裝置脆弱性分析方法,以確定預(yù)防恐怖襲擊時(shí)單元裝置的防護(hù)優(yōu)先級。RENIERS等[104]還應(yīng)用物理效應(yīng)衰減與恢復(fù)能力的概念對化工園區(qū)與企業(yè)的安防管理進(jìn)行了研究,指出分離節(jié)點(diǎn)網(wǎng)絡(luò)的方法可以提高化工園區(qū)遭受攻擊后的快速恢復(fù)能力。LANDUCCI等[105]基于TNT當(dāng)量法研究分析了自制爆炸裝置觸發(fā)多米諾場景時(shí)單元設(shè)施的脆弱性問題。關(guān)于災(zāi)害衍生事故(NaTech),COZZANI等[24]在多米諾效應(yīng)定量風(fēng)險(xiǎn)評價(jià)方法的基礎(chǔ)上,構(gòu)建了NaTech定量風(fēng)險(xiǎn)評價(jià)方法。
(1)由于多米諾效應(yīng)概念還有許多爭議,包括范圍界定、場景定義等,使相關(guān)政策、法規(guī)、標(biāo)準(zhǔn)的制定以及定量風(fēng)險(xiǎn)評價(jià)方法的構(gòu)建存在很多不一致或不相容的解釋與結(jié)果,所以迫切需要在多米諾效應(yīng)概念范圍以及場景選擇方面達(dá)成一種共識,以更好地促進(jìn)工業(yè)實(shí)踐。
(2)火災(zāi)熱輻射、爆炸沖擊波、爆炸碎片致?lián)p概率的計(jì)算方法與結(jié)果構(gòu)成多米諾效應(yīng)定量風(fēng)險(xiǎn)評價(jià)框架的基石,當(dāng)前選擇的比例方法或Probit函數(shù),是由于缺乏過程設(shè)備易損性基礎(chǔ)數(shù)據(jù),為簡化定量風(fēng)險(xiǎn)評價(jià)過程復(fù)雜性與運(yùn)算量而進(jìn)行的折中,因此,需要探索研究新的、高可靠度、高精確度的致?lián)p概率計(jì)算方法,即設(shè)備易損性分析方法,并且在過程設(shè)備設(shè)計(jì)的交付文檔中提供易損性數(shù)據(jù)及其詳細(xì)說明。
(3)在過程設(shè)備設(shè)計(jì)階段進(jìn)行的致?lián)p概率計(jì)算或易損性分析,可以提高多米諾效應(yīng)定量風(fēng)險(xiǎn)評價(jià)的有效性,使布局優(yōu)化、安全屏障布置、安全與應(yīng)急管理決策支持更可靠,也可為過程設(shè)備的本質(zhì)安全設(shè)計(jì)及評估提供理論與方法支持,以更好地從本質(zhì)安全的角度預(yù)防與控制多米諾效應(yīng)。
(4)可以探索研究新的過程設(shè)備設(shè)計(jì)方法,或開發(fā)新的保護(hù)層材料或結(jié)構(gòu),以綜合考慮火災(zāi)熱輻射、爆炸沖擊波、爆炸碎片的致?lián)p作用。
[1]KOURNIOTIS S P,KIRANOUDIS C T,MARKATOS N C.Statistical analysis of Domino chemical accidents[J].Journal of Hazardous Materials,2000,71(1/2/3):239-252.
[2]RONZA A,F(xiàn)éLEZ S,DARBRA R M,et al.Predicting the frequency of accidents in port areas by developing event trees from historical analysis[J].Journal of Loss Prevention in the Process Industries,2003,16(6):551-560.
[3]GóMEZ-MARES M,ZáRATE L,CASAL J.Jet fires and the Domino effect[J].Fire Safety Journal,2008,43(8):583-588.
[4]DARBRA R M,PALACIOS A,CASAL J.Domino effect in chemical accidents:main features and accident sequences[J].Journal of Hazardous Materials,2010,183(1/2/3):565-573.
[5]ABDOLHAMIDZADEH B,ABBASI T,RASHTCHIAN D,et al.Domino effect in process-industry accidents ——an inventory of past events and identification of some patterns[J].Journal of Loss Prevention in the Process Industries,2011,24(5):575-593.
[6]CHEN Y T,ZHANG M G,GUO P J,et al.2012 International symposium on safety science and technology:investigation and analysis of historical Domino effects statistic[J].Procedia Engineering,2012:45,152-158.
[7]ZHANG H D,ZHENG X P.Characteristics of hazardous chemical accidents in China:a statistical investigation[J].Journal of Loss Prevention in the Process Industries,2012,25(4):686-693.
[8]HEMMATIAN B,ABDOLHAMIDZADEH B,DARBRA R M,et al.The significance of Domino effect in chemical accidents[J].Journal of Loss Prevention in the Process Industries,2014,29:30-38.
[9]HEMMATIAN B,PLANAS E,CASAL J.Fire as a primary event of accident Domino sequences:the case of BLEVE[J].Reliability Engineering & System Safety,2015,139:141-148.
[10]Advisory Committee on Major Hazards.The control of major hazards - first/ second/ third report[R].London:Healthy and Safety Commission,1976/1979/1984.
[11]MANNAN S.Lees’loss prevention in the process industries:hazard identification,assessment and control[M].3rd ed.Amsterdam:Elsevier,2005.
[12]Center for Chemical Process Safety.Guidelines for chemical process quantitative risk analysis[M].2nd ed.New York:American Institute of Chemical Engineers,2000.
[13]UIJT DE HAAG P A M,ALE B J M.Guideline for quantitative risk assessment ——‘purple book’[M].The Hague:Advisory Council on Dangerous Substances,2005.
[14]Seveso - III(Directive 2012/18/EU)[EB/OL].European Parliament and Council,2012.[2016-09-05]. http://eur-lex.europa.eu/ legalcontent/EN/TXT/?uri=CELEX:32012L0018.
[15]國務(wù)院安委會辦公室.關(guān)于進(jìn)一步加強(qiáng)化工園區(qū)安全管理的指導(dǎo)意見[EB/OL]. 2012. [2016-09-05]. http://www.chinasafety. gov.cn/newpage/Contents/Channel_4976/2012/0809/174959/conten t_174959.htm.The Work Safety Committee Office of The State Council.Guidance on strengthening the safety management of chemical parks[EB/OL].2012.[2016-09-05].http://www.chinasafety.gov.c n/newpage/Contents/Channel_4976/2012/0809/174959/content_1749 59.htm.
[16]COZZANI V,GUBINELLI G,ANTONIONI G,et al.The assessment of risk caused by Domino effect in quantitative area risk analysis[J].Journal of Hazardous Materials,2005,127(1/2/3):14-30.
[17]RENIERS G.An external Domino effects investment approach to improve cross-plant safety within chemical clusters[J].Journal of Hazardous Materials,2010,177(1/2/3):167-174.
[18]RENIERS G,COZZANI V.Domino effects in the process industries——modelling,prevention and managing[M].Amsterdam:Elsevier,2013.
[19]ALILECHE N,COZZANI V,RENIERS G,et al.Thresholds for Domino effects and safety distances in the process industry:a review of approaches and regulations[J].Reliability Engineering & System Safety,2015,143(s1):74-84.
[20]BAGSTER D F,PITBLADO R M.The estimation of Domino incident frequencies-an approach[J]. Process Safety and Environmental Protection,1991,69(4):195-199.
[21]KHAN F I,ABBASI S A.Models for Domino effect analysis in chemical process industries[J].Process Safety Progress,1998,17(2):107-123.
[22]KHAN F I,ABBASI S A.Studies on the probabilities and likely impacts of chains of accident(Domino effect)in a fertilizer industry[J].Process Safety Progress,2000,19(1):40-56.
[23]KHAN F I,ABBASI S A.An assessment of the likelihood of occurrence,and the damage potential of Domino effect(chain of accidents)in a typical cluster of industries[J].Journal of Loss Prevention in the Process Industries,2001,14(4):283-306.
[24]COZZANI V,ANTONIONI G,LANDUCCI G,et al.Quantitative assessment of Domino and NaTech scenarios in complex industrial areas[J].Journal of Loss Prevention in the Process Industries,2014,28(s1):10-22.
[25]ANTONIONI G,SPADONI G,COZZANI V.Application of Domino effect quantitative risk assessment to an extended industrial area[J].Journal of Loss Prevention in the Process Industries,2009,22(5):614-624.
[26]ABDOLHAMIDZADEH B,ABBASI T,RASHTCHIAN D,et al.A new method for assessing Domino effect in chemical process industry[J].Journal of Hazardous Materials,2010,182(1/2/3):416-426.
[27]RAD A,ABDOLHAMIDZADEH B,ABBASI T,et al.FREEDOM II:an improved methodology to assess Domino effect frequency using simulation techniques[J].Process Safety and Environmental Protection,2014,92(6):714-722.
[28]KADRI F,CHATELET E,CHEN G P.Method for quantitative assessment of the Domino effect in industrial sites[J].Process Safety and Environmental Protection,2013,91(6):452-462.
[29]張新梅.化工園區(qū)事故多米諾效應(yīng)風(fēng)險(xiǎn)仿真原理及應(yīng)用研究[D].廣州:華南理工大學(xué),2009.ZHANG X M.Study on simulation principle of accident risk caused by Domino effect and its application in chemical industrial parks[D].Guangzhou:South China University of Technology,2009.
[30]ZHANG X M,CHEN C.Mechanism analysis and risk assessment ofescalation scenario in chemical industry zones[J].Process Safety and Environmental Protection,2013,91(1/2):79-85.
[31]BERNECHEA E J,ANTONIO VILCHEZ J,ARNALDOS J.A model for estimating the impact of the Domino effect on accident frequencies in quantitative risk assessments of storage facilities[J].Process Safety and Environmental Protection,2013,91(6):423-437.
[32]KHAKZAD N,KHAN F,AMYOTTE P,et al.Domino effect analysis using Bayesian networks[J].Risk Analysis,2013,33(2):292-306.
[33]KHAKZAD N,KHAN F,AMYOTTE P,et al.Risk management of Domino effects considering dynamic consequence analysis[J].Risk Analysis,2014,34(6):1128-1138.
[34]KHAKZAD N.Application of dynamic Bayesian network to risk analysis of Domino effects in chemical infrastructures[J].Reliability Engineering & System Safety,2015,138:263-272.
[35]ZHOU J F,RENIERS G,KHAKZAD N.Application of event sequence diagram to evaluate emergency response actions during fire-induced Domino effects[J].Reliability Engineering & System Safety,2016,150:202-209.
[36]TUGNOLI A,KHAN F,AMYOTTE P,et al.Safety assessment in plant layout design using indexing approach:implementing inherent safety perspective:Part 1 guideword applicability and method description[J].Journal of Hazardous Materials,2008,160(1):100-109.
[37]TUGNOLI A,KHAN F,AMYOTTE P,et al.Safety assessment in plant layout design using indexing approach:implementing inherent safety perspective:Part 2 - Domino hazard index and case study[J].Journal of Hazardous Materials,2008,160(1):110-121.
[38]COZZANI V,TUGNOLI A,SALZANO E.The development of an inherent safety approach to the prevention of Domino accidents[J].Accident Analysis & Prevention,2009,41(6):1216-1227.
[39]KHAKZAD N,RENIERS G.Using graph theory to analyze the vulnerability of process plants in the context of cascading effects[J].Reliability Engineering & System Safety,2015,143(s1):63-73.
[40]NI Z J,WANG Y Z,YIN Z G.Relative risk model for assessing Domino effect in chemical process industry[J].Safety Science,2016,87:156-166.
[41]LANDUCCI G,GUBINELLI G,ANTONIONI G,et al.The assessment of the damage probability of storage tanks in Domino events triggered by fire[J].Accident Analysis & Prevention,2009,41(6):1206-1215.
[42]EISENBERG N A,LYNCH C J,BREEDING R J.Vulnerability model:a simulation system for assessing damage resulting from marine spills[R].Springfield:National Technical Information Service,1975.
[43]COZZANI V,SALZANO E.The quantitative assessment of Domino effects caused by overpressure:Part I.probit models[J].Journal of Hazardous Materials,2004,107(3):67-80.
[44]COZZANI V,SALZANO E.The quantitative assessment of Domino effect caused by overpressure:Part II.case studies[J].Journal of Hazardous Materials,2004,107(3):81-94.
[45]COZZANI V,SALZANO E.Threshold values for Domino effects caused by blast wave interaction with process equipment[J].Journal of Loss Prevention in the Process Industries,2004,17(6):437-447.
[46]SALZANO E,COZZANI V.The analysis of Domino accidents triggered by vapor cloud explosions[J].Reliability Engineering & System Safety,2005,90(2/3):271-284.
[47]SALZANO E,COZZANI V.A fuzzy set analysis to estimate loss intensity following blast wave interaction with process equipment[J].Journal of Loss Prevention in the Process Industries,2006,19(4):343-352.
[48]ZHANG M G,JIANG J C.An improved Probit method for assessment of Domino effect to chemical process equipment caused by overpressure[J].Journal of Hazardous Materials,2008,158(2/3):280-286.
[49]HAUPTMANNS U.A procedure for analyzing the flight of missiles from explosions of cylindrical vessels[J].Journal of Loss Prevention in the Process Industries,2001,14(5):395-402.
[50]HAUPTMANNS U.A Monte-Carlo based procedure for treating the flight of missiles from tank explosions[J].Probabilistic Engineering Mechanics,2001,16(4):307-312.
[51]PULA R,KHAN F I,VEITCH B,et al.A model for estimating the probability of missile impact:missiles originating from bursting horizontal cylindrical vessels[J].Process Safety Progress,2007,26(2):129-139.
[52]張新梅,陳國華.化工罐區(qū)爆炸碎片多米諾效應(yīng)影響概率計(jì)算模型[J].化工學(xué)報(bào),2008,59(11):2946-2953.ZHANG X M,CHEN G H.Impact probability of Domino effect caused by explosion fragments in chemical tank area[J].CIESC Journal,2008,59(11):2946-2953.
[53]ZHANG X M,CHEN G H.The analysis of Domino effect impact probability triggered by fragments[J].Safety Science,2009,47(7):1026-1032.
[54]MéBARKI A,NGUYEN Q B,MERCIER F.Structural fragments and explosions in industrial facilities:Part II projectile trajectory and probability of impact[J].Journal of Loss Prevention in the Process Industries,2009,22(4):417-425.
[55]錢新明,徐亞博,劉振翼.球罐BLEVE碎片拋射的Monte-Carlo分析[J].化工學(xué)報(bào),2009,60(4):1057-1061.QIAN X M,XU Y B,LIU Z Y.Monte-Carlo analysis of fragments projectile from spherical tank BLEVE[J].CIESC Journal,2009,60(4):1057-1061.
[56]錢新明,徐亞博,劉振翼.球罐BLEVE碎片拋射的危害性研究[J].高壓物理學(xué)報(bào),2009,23(5):389-394.QIAN X M,XU Y B,LIU Z Y.Research on hazard of fragments from spherical tank BLEVE[J].Chinese Journal of High Pressure Physics,2009,23(5):389-394.
[57]陳剛,朱霽平,武軍,等.爆炸球罐尺寸對拋射碎片擊中相鄰罐體概率的影響[J].化工學(xué)報(bào),2010,61(6):1599-1604.CHEN G,ZHU W P,WU J,et al.Influence of size of bursting spherical tank on impact probability between fragments and adjacent vessels[J].CIESC Journal,2010,61(6):1599-1604.
[58]陳剛,朱霽平,武軍,等.化工儲罐間距和體積對爆炸碎片多米諾效應(yīng)概率的影響[J].火災(zāi)科學(xué),2011,20(1):37-42.CHEN G,ZHU W P,WU J,et al.Impact of gap and volume of storage tanks on Domino effect of explosion fragments[J].Fire Safety Science,2011,20(1): 37-42.
[59]SUN D L,JIANG J C,ZHANG M G,et al.Parametric approach of the Domino effect for structural fragments[J].Journal of LossPrevention in the Process Industries,2012,25(1):114-126.
[60]SUN D L,JIANG J C,ZHANG M G,et al.Influence of the source size on Domino effect risk caused by fragments[J].Journal of Loss Prevention in the Process Industries,2015,35:211-223.
[61]SUN D L,JIANG J C,ZHANG M G,et al.Investigation of multiple Domino scenarios caused by fragments[J].Journal of Loss Prevention in the Process Industries,2016,40:591-602.
[62]LISI R,CONSOLO G,MASCHIO G,et al.Estimation of the impact probability in Domino effects due to the projection of fragments[J].Process Safety and Environmental Protection,2015,93:99-110.
[63]GUBINELLI G,ZANELLI S,COZZANI V.A simplified model for the assessment of the impact probability of fragments[J].Journal of Hazardous Materials,2004,116(3):175-187.
[64]TUGNOLI A,MILAZZO M F,LANDUCCI G,et al.Assessment of the hazard due to fragment projection:a case study[J].Journal of Loss Prevention in the Process Industries,2014,28(SI):36-46.
[65]GUBINELLI G,COZZANI V.Assessment of missile hazards:evaluation of the fragment number and drag factors[J].Journal of Hazardous Materials,2009,161(1):439-449.
[66]GUBINELLI G,COZZANI V.Assessment of missile hazards:identification of reference fragmentation patterns[J].Journal of Hazardous Materials,2009,163(2/3):1008-1018.
[67]MéBARKI A,MERCIER F,NGUYEN Q B,et al.Structural fragments and explosions in industrial facilities:Part I probabilistic description of the source terms[J].Journal of Loss Prevention in the Process Industries,2009,22(4):408-416.
[68]孫東亮,蔣軍成,張明廣,等.基于最大熵原理的臥罐爆炸碎片數(shù)量概率分布[J].化工學(xué)報(bào),2011,62(s1):219-224.SUN D L,JIANG J C,ZHANG M G,et al.Probabilistic distribution of fragments number from explosion of horizontal tank based on maximum entropy principle[J].CIESC Journal,2011,62(S1):219-224.
[69]TUGNOLI A,GUBINELLI G,LANDUCCI G,et al.Assessment of fragment projection hazard:probability distributions for the initial direction of fragments[J].Journal of Hazardous Materials,2014,279:418-427.
[70]NGUYEN Q B,MéBARKI A,SAADA R A,et al.Integrated probabilistic framework for Domino effect and risk analysis[J].Advances in Engineering Software,2009,40(9):892-901.
[71]陳剛,朱霽平,武軍,等.儲罐爆炸拋射碎片對目標(biāo)儲罐的破壞概率研究[J].防災(zāi)減災(zāi)工程學(xué)報(bào),2012,32(2):216-222.CHEN G,ZHU W P,WU J,et al.Damage probability model of target storage tank impacted by explosion fragments[J].Journal of Disaster Prevention and Mitigation Engineering,2012,32(2):216-222.
[72]COZZANI V,GUBINELLI G,SALZANO E.Escalation thresholds in the assessment of Domino accidental events[J].Journal of Hazardous Materials,2006,129(1/2/3):1-21.
[73]COZZANI V,TUGNOLI A,SALZANO E.Prevention of Domino effect:from active and passive strategies to inherently safer design[J]. Journal of Hazardous Materials,2007,139(2):209-219.
[74]SPOELSTRA M,MAHESH S,KOOI E,et al.Domino effects at LPG and propane storage sites in the Netherlands[J].Reliability Engineering & System Safety,2015,143(s1):85-90.
[75]LEE J Y,LEE J W,KO J W,et al.Optimization for allocating the explosive facilities in order to minimize the Domino effect using nonlinear programming[J].Korean Journal of Chemical Engineering,2005,22(5):649-656.
[76]SO W,KIM Y H,LEE C J,et al.Optimal layout of additional facilities for minimization of Domino effects based on worst-case scenarios[J].Korean Journal of Chemical Engineering,2011,28(3):656-666.
[77]KHAN F I,AMYOTTE P R.Integrated inherent safety index(I2SI):a tool for inherent safety evaluation[J].Process Safety Progress,2004,23(2):136-148.
[78]KHAN F I,AMYOTTE P R.I2SI:a comprehensive quantitative tool for inherent safety and cost evaluation[J].Journal of Loss Prevention in the Process Industries,2005,18(4/5/6):310-326.
[79]JUNG S H,NG D,DIAZ-OVALLE C,et al.New approach to optimizing the facility sitting and layout for fire and explosion scenarios[J].Industrial & Engineering Chemistry Research,2011,50:3928-3937.
[80]LOPEZ-MOLINA A,VAZQUEZ-ROMAN R,MANNAN M S,et al.An approach for Domino effect reduction based on optimal layouts[J].Journal of Loss Prevention in the Process Industries,2013,26(s1):887-894.
[81]DE LIRA-FLORES J,VAZQUEZ-ROMAN R,LOPEZ-MOLINA A,et al.A MINLP approach for layout designs based on the Domino hazard index[J].Journal of Loss Prevention in the Process Industries,2014,30:219-227.
[82]BERNECHEA E J,ARNALDOS J.Optimizing the design of storage facilities through the application of ISD and QRA[J].Process Safety and Environmental Protection,2014,92(6):598-615.
[83]KHAKZAD N,RENIERS G.Risk-based design of process plants with regard to Domino effects and land use planning[J].Journal of Hazardous Materials,2015,299:289-297.
[84]Center for Chemical Process Safety.Layer of protection analysis -simplified process risk assessment[M].New York:American Institute of Chemical Engineers,2001.
[85]LANDUCCI G,ARGENTI F,TUGNOLI A,et al.Quantitative assessment of safety barrier performance in the prevention of Domino scenarios triggered by fire[J].Reliability Engineering & System Safety,2015,143(SI):30-43.
[86]JANSSENS J,TALARICO L,RENIERS G,et al.A decision model to allocate protective safety barriers and mitigate Domino effects[J].Reliability Engineering & System Safety,2015,143(s1):44-52.
[87]LANDUCCI G,MOLAG M,REINDERS J,et al.Experimental and analytical investigation of thermal coating effectiveness for 3m3LPG tanks engulfed by fire[J].Journal of Hazardous Materials,2009,161(2/3):1182-1192.
[88]LANDUCCI G,MOLAG M,COZZANI V.Modeling the performance of coated LPG tanks engulfed in fires[J].Journal of Hazardous Materials,2009,172(1):447-456.
[89]PALTRINIERI N,LANDUCCI G,MOLAG M,et al.Risk reduction in road and rail LPG transportation by passive fire protection[J].Journal of Hazardous Materials,2009,167(1/2/3):332-344.
[90]DI PADOVA A,TUGNOLI A,COZZANI V,et al.Identification of fireproofing zones in Oil&Gas facilities by a risk-based procedure[J].Journal of Hazardous Materials,2011,191(1/2/3):83-93.
[91]TUGNOLI A,COZZANI V,DI PADOVA A,et al.Mitigation of fire damage and escalation by fireproofing:a risk-based strategy[J].Reliability Engineering & System Safety,2012,105(s1):25-35.
[92]KHAN F I,ABBASI S A.DOMIFFECT(DOMIno eFFECT):user-friendly software for Domino effect analysis[J].Environmental Modelling & Software,1998,13(2):163-177.
[93]COZZANI V,ANTONIONI G,SPADONI G.Quantitative assessment of Domino scenarios by a GIS-based software tool[J].Journal of Loss Prevention in the Process Industries,2006,19(5):463-477.
[94]RENIERS G L L,DULLAERT W,ALE B J M,et al.The use of current risk analysis tools evaluated towards preventing external Domino accidents[J].Journal of Loss Prevention in the Process Industries,2005,18(3):119-126.
[95]RENIERS G L L,DULLAERT W,ALE B J M,et al.Developing an external Domino accident prevention framework:Hazwim[J].Journal of Loss Prevention in the Process Industries,2005,18(3):127-138.
[96]RENIERS G L L,DULLAERT W.DomPrevPlanning?:user-friendly software for planning Domino effects prevention[J]. Safety Science,2007,45(10):1060-1081.
[97]RENIERS G L L,DULLAERT W.Knock-on accident prevention in a chemical cluster[J].Expert Systems with Applications,2008,34(1):42-49.
[98]RENIERS G,DULLAERT W,SOUDAN K.Domino effects within a chemical cluster:a game-theoretical modeling approach by using Nash-equilibrium[J].Journal of Hazardous Materials,2009,167(1/2/3):289-293.
[99]RENIERS G,CUYPERS S,PAVLOVA Y.A game-theory based Multi-plant Collaboration Model(MCM)for cross-plant prevention in a chemical cluster[J].Journal of Hazardous Materials,2012,209/210:164-176.
[100]ZHANG X M,CHEN G H.Modeling and algorithm of Domino effect in chemical industrial parks using discrete isolated island method[J].Safety Science,2011,49(3):463-467.
[101]ZHOU J F,RENIERS G.Petri-net based simulation analysis for emergency response to multiple simultaneous large-scale fires[J].Journal of Loss Prevention in the Process Industries,2016,40:554-562.
[102]RENIERS G L L,DULLAERT W,AUDENAERT A,et al.Managing Domino effect-related security of industrial areas[J].Journal of Loss Prevention in the Process Industries,2008,21(3):336-343.
[103]RENIERS G L L,AUDENAERT A.Preparing for major terrorist attacks against chemical clusters:intelligently planning protection measures w.r.t. Domino effects[J],Process Safety and Environmental Protection,2014,92(6):583-589.
[104]RENIERS G L L,SOERENSEN K,KHAN F,et al.Resilience of chemical industrial areas through attenuation-based security[J]. Reliability Engineering & System Safety,2014,131:94-101.
[105]LANDUCCI G,RENIERS G,COZZANI V,et al.Vulnerability of industrial facilities to attacks with improvised explosive devices aimed at triggering Domino scenarios[J].Reliability Engineering & System Safety,2015,143(s1):53-62.
Review of risk assessment and pre-control of Domino effect in Chemical Industry Park
JIA Meisheng,CHEN Guohua,HU Kun
(Institute of Safety Science and Engineering,South China University of Technology,Guangzhou 510640,Guangdong,China)
Quantitative risk assessment of Domino effects(DMQRA)is the key method to be used to prevent Domino accidents in chemical plants or parks. Also,the various pre-control measures and their availability evaluations are based on the result of DMQRA. However,there are many inconsistent or unclear interpreted modes and methods for presentation of probability risk,probability structure of Domino scenarios and damage probabilities of target equipment exposed to fire or blast such that the obtained DMQRA results are in a great variability. Moreover,it is hard to evaluate the specific pre-control measures. In this paper,firstly,the concept and basic principles of Domino effect are clearly defined. Then through carefully analyzing of the various DMQRA methods in literature,the probability structure of Domino scenario and damage probabilities of target equipment attacked by fire thermal radiation,blast wave overpressure and blast fragments are outlined clearly. In addition,damage thresholds,safety distances,safety inventories,layout optimization,safety barriers,thermal insulations,decision supporting for safety and emergency management,security,resilience and natural hazards triggering for domino effect are reviewed in detail. Finally,it is figured out that the advanced methods for calculating of damage probabilities of target equipment exposed to fire,blast and othertriggering vectors,i.e. equipment vulnerability,will be focused upon in the future.
Domino effect;risk assessment;damage probability;equipment vulnerability;safety;Chemical Industry Park
TQ086;X937
A
1000–6613(2017)04–1534–10
10.16085/j.issn.1000-6613.2017.04.050
2016-09-07;修改稿日期:2016-11-04。
國家自然科學(xué)基金(21576102)及國家重點(diǎn)研發(fā)計(jì)劃(2016YFC0801500)項(xiàng)目。
賈梅生(1988—),男,博士研究生。聯(lián)系人:陳國華,教授,博士生導(dǎo)師,從事工業(yè)安全與風(fēng)險(xiǎn)評價(jià)研究。E-mail:mmghchen @scut.edu.cn。