張壯志, 潘金華, 李曉捷, 于深輝, 韓厚偉, 江 鑫, 王偉偉, 梁廣津, 趙 楠, 楊官品
(1.山東東方海洋科技股份有限公司,國家海藻與海參工程技術(shù)研究中心,山東 煙臺 264003; 2.山東東方海洋科技股份有限公司,山東省海藻遺傳育種與栽培技術(shù)重點(diǎn)實(shí)驗(yàn)室, 山東 煙臺 264003; 3.中國海洋大學(xué)海洋生命學(xué)院, 山東 青島 266003)
大葉藻種子育苗及移栽技術(shù)研究?
張壯志1,2, 潘金華1,2, 李曉捷1,2, 于深輝1,2, 韓厚偉1,2, 江 鑫1,2, 王偉偉1,2, 梁廣津1,2, 趙 楠1,2, 楊官品3??
(1.山東東方海洋科技股份有限公司,國家海藻與海參工程技術(shù)研究中心,山東 煙臺 264003; 2.山東東方海洋科技股份有限公司,山東省海藻遺傳育種與栽培技術(shù)重點(diǎn)實(shí)驗(yàn)室, 山東 煙臺 264003; 3.中國海洋大學(xué)海洋生命學(xué)院, 山東 青島 266003)
大葉藻(ZosteramarinaL.)是全球分布最廣泛的海草之一,曾在山東半島沿海有廣泛分布。然而,自1980年代開始,受自然因素和人類活動的影響,大葉藻場嚴(yán)重衰退,導(dǎo)致黃海近岸海洋生態(tài)系統(tǒng)惡化,漁業(yè)資源銳減。本研究以中國黃海海域(山東半島)大葉藻為研究對象,研究不同溫度、春化作用時(shí)間對大葉藻種子萌發(fā)和不同播種深度對種子成苗率的影響,進(jìn)行了幼苗培育,研制開發(fā)幼苗移栽裝置和技術(shù)。結(jié)果表明:春化處理溫度對大葉藻種子萌發(fā)率具有顯著影響(p<0.01),4 ℃春化處理50 d的大葉藻種子萌發(fā)率最高,平均達(dá)55.3%;埋植深度對大葉藻種子萌發(fā)率和幼苗成苗率有影響,埋植深度0.5~2.5 cm時(shí)大葉藻幼苗的出苗率相似,但顯著高于埋植深度3~4.5 cm的成苗率(p<0.01)。依據(jù)這些研究結(jié)果,成功培育大葉藻苗7.6萬株,生長110 d,平均幼苗長度達(dá)16.3 cm,最大長度達(dá)22 cm;研制了育苗杯大葉藻苗移栽裝置,實(shí)現(xiàn)了從水面高效栽植大葉藻幼苗。
大葉藻種子;春化作用;播種深度;幼苗培育;移栽裝置
海草場生態(tài)系統(tǒng)、珊瑚礁生態(tài)系統(tǒng)和紅樹林生態(tài)系統(tǒng)是三大典型海洋生態(tài)系統(tǒng)[1]。近幾十年來,人類活動、自然因素等導(dǎo)致全球海草場衰退[2-3],大葉藻場監(jiān)測與修復(fù)引起廣泛關(guān)注[4]。大葉藻場修復(fù)策略之一是成體移栽,但勞動強(qiáng)度大、成本高、效率低,很大程度上阻礙了大葉藻場修復(fù)進(jìn)程[5-6]。自上世紀(jì)末,人們開始嘗試?yán)梅N子播撒的方法進(jìn)行大葉藻場修復(fù)、構(gòu)建和重建[7-8]。大葉藻種子體積小,易運(yùn)輸,種子采集對原海草場影響小,生態(tài)環(huán)保、成本低[9]。但種子播撒存在不足。例如,因休眠不能迅速萌發(fā)的種子有被攝食的風(fēng)險(xiǎn)[10]。如果用大葉藻種子人工育苗后移栽至目標(biāo)海區(qū),或播撒剛萌發(fā)種子,將能減少種子流失,將提高海草場修復(fù)、構(gòu)建和重建效率。
大葉藻是山東半島沿海最常見海草。近年來,海洋環(huán)境變化和人類活動(如拖網(wǎng)作業(yè)等)極大地破壞了大葉藻資源,導(dǎo)致大葉藻場逐年減少。不同海區(qū)存在環(huán)境差異,大葉藻生物學(xué)特性不同[11-12],影響種子萌發(fā)的因素不確定。大葉藻種子有休眠特性,特定環(huán)境因素會打破休眠,但不同海區(qū)大葉藻種子對不同環(huán)境因素有不同反應(yīng)[13]。有研究發(fā)現(xiàn)較高水溫抑制大葉藻種子萌發(fā),促進(jìn)休眠;而較低水溫促進(jìn)種子萌發(fā)[14-15]。但Harrison[16]發(fā)現(xiàn)溫度對大葉藻種子萌發(fā)沒有顯著影響。因此,探索大葉藻種子萌發(fā)條件,可為研發(fā)大葉藻人工育苗技術(shù)提供參考。大葉藻場人工修復(fù)和構(gòu)建有兩種主要方法,即成體移栽和種子播種[17]。大葉藻成體移栽成活率高于70%[18],但成體采集需潛水作業(yè),成本高,勞動強(qiáng)度大,機(jī)械采集可克服這些限制,但對原大葉藻場造成毀滅性破壞[6],且成體移栽往往導(dǎo)致新修復(fù)海草場遺傳多樣性低[19]。繁殖枝(種子)采集范圍很大,因此,用種子修復(fù)的海草場,其遺傳多樣性遠(yuǎn)高于成體移栽[20]。采集大葉藻種子進(jìn)行人工育苗,在適宜季節(jié)移栽到海區(qū),用人工培育的大葉藻植株代替采集自然海草場的大葉藻植株,可極大程度降低成體植株采集對原海草場的破壞,且能維持新構(gòu)建藻場遺傳多樣性。
本研究設(shè)置不同溫度和時(shí)間確定了春化溫度、春化時(shí)間以及種子埋植深度對黃海海區(qū)大葉藻種子萌發(fā)的影響;進(jìn)行了大葉藻種子室內(nèi)人工育苗和海區(qū)移栽,并研發(fā)了水面幼苗移栽工具和技術(shù)。
1.1 大葉藻種子的采集和活力檢驗(yàn)
山東半島沿海大葉藻種子采集時(shí)間范圍在6月中旬至7月初進(jìn)行。種子采集方法參考Pan等[21]。種子活力用修正后的TTC法檢驗(yàn)[22]。選取300粒種子,平均分成3份,在過濾海水中24 ℃預(yù)處理12 h,然后將種子去皮浸入到24 ℃的1%氯化四唑溶液中處理24 h,子葉被染成紅色或紅褐色是活種子。種子活力為活種子占種子總量的百分比。
1.2 春化作用與大葉藻種子萌發(fā)
試驗(yàn)用大葉藻種子2010年采自四十里灣。用1%次氯酸鈉溶液表面消毒5 min,再用消毒海水連續(xù)沖洗6次[23],在4、8和12 ℃春化處理2個(gè)月,轉(zhuǎn)入20 ℃過濾消毒自然海水(鹽度約31)萌發(fā)。每個(gè)春化溫度設(shè)置3個(gè)平行,每平行100粒種子。60 d后統(tǒng)計(jì)萌發(fā)率。
在4℃春化溫度處理10、30、50和70 d,轉(zhuǎn)入20 ℃海水萌發(fā),每處理3個(gè)平行,每平行用100粒種子。每10 d統(tǒng)計(jì)一次萌發(fā)量。
1.3 播種深度與大葉藻幼苗發(fā)生
本試驗(yàn)大葉藻種子為2011年采自四十里灣。利用采集自四十里灣海區(qū)的底質(zhì)進(jìn)行大葉藻種子播種深度試驗(yàn),以檢驗(yàn)不同埋植深度對大葉藻幼苗發(fā)生的影響。四十里灣海區(qū)有大葉藻場分布,退潮期間,在四十里灣潮間帶低潮帶挖掘底質(zhì)(泥沙底質(zhì))并運(yùn)回實(shí)驗(yàn)室低溫(低于10 ℃)黑暗保存?zhèn)溆?。大葉藻種子分別被在0.5~1、1~1.5、2~2.5、3~3.5和4~4.5 cm深度播種。播種前,種子4 ℃、鹽度30 psu春化處理2個(gè)月。每播種深度設(shè)5個(gè)平行,每平行用100粒種子。因低鹽度可提高種子萌發(fā)率[16],播種后,前20 d所采用的海水經(jīng)過與蒸餾水按照一定比例混合鹽度調(diào)整至6~8 psu,第21天開始,鹽度每天增加5左右,逐步提高至30左右。從第2天開始,每天統(tǒng)計(jì)各播種深度大葉藻幼苗數(shù)。水溫控制在15~18 ℃,自然光周期,調(diào)節(jié)光照強(qiáng)度為80~180 μmol·m-2·s-1。第101天時(shí),每播種深度每平行隨機(jī)測量6株大葉藻幼苗長度,分析各播種深度對大葉藻幼苗長度生長的影響。
1.4 大規(guī)模大葉藻人工育苗
大規(guī)模人工育苗用的種子2012年采集,底質(zhì)采自四十里灣海區(qū)。底質(zhì)分裝到育苗杯內(nèi)(一次性可降解水杯),每杯播10~20粒種子,深度1~2 cm左右,最大不超過3 cm。播種前,種子已在4 ℃、鹽度30春化處理2個(gè)月。育苗杯置于育苗池內(nèi)(約4.2 m×4.2 m×0.8 m)。
前3周,育苗池海水鹽度調(diào)整至約8 psu。之后逐步升到正常海水的30 psu,每天增幅5 psu?;謴?fù)到正常鹽度后,流水育苗,每天進(jìn)新水約為2倍育苗水體體積,水溫控制在15~18 ℃左右,自然光周期,光照強(qiáng)度控制在80~180 μmol·m-2·s-1。出苗后,每天加硝酸鈉至有效N濃度約1.5 mg/L,加磷酸二氫鉀至有效P濃度約0.25 mg/L[24]。
1.5 人工大葉藻苗移栽技術(shù)開發(fā)
育苗后,在合適時(shí)機(jī)移栽至目標(biāo)海區(qū)。作者用一次性可降解水杯作為育苗杯育苗,用課題組研發(fā)的水面(深水區(qū)在船上,淺水區(qū)站立水中,不需潛水)可操作的育苗杯培育大葉藻幼苗移栽裝置移栽。
1.6 數(shù)據(jù)分析
用單因素方差分析(One-way ANOVA)檢驗(yàn)不同春化溫度對大葉藻種子萌發(fā)率的影響,不同春化處理周期對萌發(fā)率的影響,不同播種深度對大葉藻幼苗發(fā)生的影響以及不同播種深度下大葉藻幼苗長度的影響。用最小差異顯著法檢驗(yàn)各處理間差異顯著性。數(shù)據(jù)滿足Leven’s方差齊性檢驗(yàn),顯著水平設(shè)為p<0.05。數(shù)據(jù)分析在SPSS 17.0下進(jìn)行。
2.1 春化作用與大葉藻種子萌發(fā)
大葉藻種子活力約為98.1%。春化溫度對大葉藻種子萌發(fā)率具有顯著影響(p<0.01)。春化60 d后轉(zhuǎn)入20 ℃萌發(fā)60 d,4 ℃春化獲得最高萌發(fā)率,平均約為55.3%,顯著高于8和12 ℃春化處理組(p<0.01)。12 ℃春化萌發(fā)率最低,平均值約為36.3%(見圖1)。
(不同小寫字母代表差異顯著(p<0.01, n=3)。 Different lowercase letters indicate significant differences (p<0.01, n=3).)
4 ℃春化不同時(shí)間,萌發(fā)60 d后發(fā)現(xiàn),春化50 d萌發(fā)率最高,平均約53.3%,與春化70 d差異不顯著。2個(gè)春化時(shí)間的萌發(fā)率均顯著高于春化10和30 d的萌發(fā)率(p<0.01)。春化10 d萌發(fā)率最低,平值約為27%(圖2)。
(不同小寫字母代表差異顯著(p<0.05, n=3)。 Different lowercase letters indicate significant differences (p<0.05, n=3).)
2.2 播種深度與大葉藻幼苗發(fā)生
大葉藻種子活力檢測約97.3%。大葉藻出苗最早的播種深度為0.5~1 cm,第6天平均出苗率達(dá)4.8%左右(見圖3)。播種深度1~1.5和2~2.5 cm時(shí),第10天出苗,平均出苗率分別約為2.6%和3.6%。播種深度3~3.5 cm時(shí),第19天出苗,第20天出苗率平均約為17.7%。播種深度4~4.5 cm時(shí),第25天出苗,平均出苗率約為3%。播種深度顯著影響出苗時(shí)間(p<0.01)。50 d后統(tǒng)計(jì),播種深度0.5~1、1~1.5和2~2.5 cm間差異不顯著,播種深度1~1.5 cm出苗率最高,平均達(dá)62.7%,顯著高于播種深度3~3.5和4~4.5 cm的出苗率(p<0.01)。101 d后,播種深度1~1.5 cm幼苗長度最長,達(dá)13.5 cm,與播種深度0.5~1和2~2.5 cm差異不顯著,但顯著高于播種深度3~3.5和4~4.5 cm的出苗率(見圖4)(p<0.01)。
2.3 大葉藻大規(guī)模人工育苗
2012年,利用16萬粒大葉藻種子(采自愛蓮灣圍堰池,活力約97.5%)大規(guī)模人工育苗,110 d后獲得幼苗約7.6萬株,長度平均達(dá)16.3 cm,最大長度達(dá)22 cm(見圖5)。
2.4 人工大葉藻苗移栽技術(shù)開發(fā)
成功研制了杯育大葉藻苗水面移栽裝置。裝置由PVC管(含延長管,內(nèi)徑8 cm,圖6 a、b)和不銹鋼(304)底質(zhì)插頭(見圖6 d)、插頭蓋控制索(見圖6 c)等組成。垂直時(shí),拉緊控制索,底質(zhì)插頭末端蓋關(guān)閉(見圖6d1),放松控制索時(shí),蓋打開(見圖6d2)。
圖3 播種深度對大葉藻種子出苗率的影響(n=5)
(不同小寫字母代表差異顯著(p<0.05, n=30)。Different lowercase letters indicate significant differences (p<0.05, n=30).)
圖5 杯育大葉藻幼苗
移栽裝置核心部件是不銹鋼底質(zhì)插頭(見圖7a)。插頭上有孔(見圖7b),便于海水進(jìn)入管體以保持內(nèi)外水壓平衡;插頭末端有擋沙蓋(見圖7c),通過旋轉(zhuǎn)軸(見圖7d)與插頭主體鏈接,可繞軸轉(zhuǎn)動;控制索(見圖7f)與蓋子上的固定扣(見圖7e)連接,穿過深度標(biāo)記阻擋板(見圖7g)向上延伸,當(dāng)插頭插入底質(zhì)一定深度后,遇到阻擋板,會產(chǎn)生較大的阻力,操作者可明顯感覺到插頭已經(jīng)插入到合適深度,即可停止下插;阻擋板的位置經(jīng)過計(jì)算,當(dāng)插入底質(zhì)到該位置的時(shí)候,插入深度恰好滿足大葉藻育苗杯埋入深度。
(a.主管;b.延長管;c.控制索;d.底質(zhì)插頭;d1.插頭蓋封閉;d2.插頭蓋打開。a. Main pipe; b. Prolonged pipe; c. Control rope; d. Sediment drill; d1. Lid sealed; d2.Lid opened.)
(a.底質(zhì)插頭主體件;b.進(jìn)水孔;c.檔沙蓋;d.擋沙蓋旋轉(zhuǎn)主軸;e.控制索固定扣;f.擋沙蓋控制索;g.深度標(biāo)記阻擋板。a. Main body of drill; b.Plughole; c.Sand blocking lid; d.Shaft; e.Rope retainer; f. Control rope; g.Depth-marker block.)
(A. Keeping the control rope tight, letting lid be closed; B. Putting cup into the apparatus when the drill reaches the preset depth; C. Allowing cup sank to the bottom; D. Relaxing the control rope while lifting the drill; E. Allowing the lid open under gravity, letting cup drop into sediment; F. Repeating the process, planting more seedlings.)
杯育大葉藻幼苗移栽操作過程見圖8。實(shí)地測試效果理想(見圖9)。用力差異可能讓育苗杯位置高出底質(zhì)平面(見圖9A),但多數(shù)能與底質(zhì)平面齊平(見圖9B),甚至低于底質(zhì)平面(見圖9C)。在實(shí)際使用時(shí),應(yīng)用力使探頭下插,使杯口齊平或低于底質(zhì)平面,以達(dá)到最好移栽效果。
(A.杯口略高于底質(zhì)平面;B.杯口與底質(zhì)平面齊平;C.杯口低于底質(zhì)平面。A. Cup rim a little higher than sediment surface; B. Cup rim parallel with the sediment surface; C. Cup completely buried in the sediment.)
3.1 春化作用對大葉藻種子萌發(fā)的影響
大葉藻屬種子有休眠特性,種子休眠對海草種群延續(xù)和維持有重要意義[13]。植物種子需要環(huán)境信號刺激萌發(fā),或打破休眠[25-26],大葉藻種子萌發(fā)主要環(huán)境誘導(dǎo)因子有溫度[27]、溶解氧[14,28]和底質(zhì)有機(jī)質(zhì)含量[29]等。有些植物(或種子)需要低溫刺激才能形成花芽和花器。低溫誘導(dǎo)植物開花或種子萌發(fā)的效應(yīng)稱為春化作用。Morita等[30]研究發(fā)現(xiàn)一年生大葉藻種子在7 ℃春化1個(gè)月的萌發(fā)率顯著高于未春化種子,且春化大葉藻繁殖枝分枝數(shù)顯著高于未春化株。低溫促進(jìn)大葉藻種子的萌發(fā)[31],表明大葉藻種子需春化才能萌發(fā)。溫度的季節(jié)波動可調(diào)節(jié)海草種子萌發(fā)時(shí)機(jī),這可能與低溫春化作用有關(guān)。Pirc等[32]研究發(fā)現(xiàn)海草Cymodoceanodosa種子需休眠8個(gè)月,次年春天才萌發(fā);鄂霍次克海[11]和切薩皮克灣[14]大葉藻種子萌發(fā)有明顯季節(jié)性,通常經(jīng)歷冬天后才能萌發(fā)。種子打破休眠狀態(tài)成功萌發(fā)是許多因素綜合作用的結(jié)果,包含內(nèi)在生理和遺傳因素以及外界底質(zhì)、光線、含氧水平、滲透壓和溫度等因素[25]。因此,本研究認(rèn)為低溫春化處理是促進(jìn)山東半島黃海海域大葉藻種子萌發(fā)的一個(gè)重要因素。
3.2 埋植深度對大葉藻種子萌發(fā)的影響
大葉藻種子播種深度影響大葉藻種子萌發(fā)率和幼苗成苗率。本研究發(fā)現(xiàn)播種深度0.5~2.5 cm范圍內(nèi)(0.5~1、1~1.5和2~2.5 cm)經(jīng)過近2個(gè)月后,大葉藻幼苗成苗率無顯著差異。Tanner和Parham[24]發(fā)現(xiàn)切薩皮克灣約克河河口大葉藻種子最佳播種深度為1~1.5 cm。Granger等[33]發(fā)現(xiàn)大葉藻種子播種深度2 cm的萌發(fā)率和幼苗成活率顯著高于表面播撒種子和播種深度更深的種子。Marion和Orth[34]發(fā)現(xiàn)不論是在在底質(zhì)表面沒有埋植的種子,還是種子被埋植在2~3 cm的深度,對種子的萌發(fā)率均沒有顯著的影響,但是埋植的種子產(chǎn)生的大葉藻幼苗成活率,顯著高于未經(jīng)埋植的種子或者埋植較淺的種子,埋植深度合適的種子產(chǎn)生的幼苗更加容易度過如夏季高溫脅迫不利環(huán)境,且更容易逃避被攝食的命運(yùn)。在底質(zhì)表面或者埋植過淺,會因?yàn)樗骰蛘吆@说臄_動而導(dǎo)致幼苗不能牢固的固著于底質(zhì)而導(dǎo)致幼苗流失[35]。
播種超過一定深度會對大葉藻種子萌發(fā)和幼苗發(fā)生、生長不利。本研究結(jié)果顯示,所設(shè)置的5個(gè)大葉藻種子播種深度,越深越大,大葉藻幼苗首次出現(xiàn)時(shí)間越久,0.5~1 cm首次出現(xiàn)幼苗是在實(shí)驗(yàn)進(jìn)行第6天,而埋植深度4~4.5 cm則到第25天才首次出現(xiàn)幼苗,在實(shí)驗(yàn)結(jié)束時(shí),埋植深度為4~4.5 cm的幼苗的長度也顯著小于其它實(shí)驗(yàn)組。Jarvis和Moore[36]發(fā)現(xiàn)大葉藻種子播種深度1 cm條件下萌發(fā)需要時(shí)間比更深的埋植深度要短,播種深度大于5 cm會對大葉藻種子萌發(fā)造成很大困境,這與本文研究相符。Churchill[23]發(fā)現(xiàn)播種深度1 cm的大葉藻種子萌發(fā)率遠(yuǎn)高于播種深度3.7 cm,且隨著深度的增加,在實(shí)驗(yàn)結(jié)束時(shí)因腐爛分解損失的種子越多。綜合本研究結(jié)果和以上研究報(bào)道,大葉藻種子埋植深度控制在2 cm左右為宜。
3.3 大葉藻人工育苗和移栽
全球范圍內(nèi)海草場衰退對海洋近岸環(huán)境造成了許多負(fù)面影響引起了多方重視,世界上許多機(jī)構(gòu)都加入到海草場修復(fù)當(dāng)中來,其中大葉藻場修復(fù)是最成功的一項(xiàng)[37]。成體移栽和種子播種是目前進(jìn)行大葉藻場構(gòu)建和修復(fù)工程中所采用的最主要的2種方式[38-40],但是大葉藻成體植株采集和栽植成本極高,一般要潛水員水下作業(yè),勞動強(qiáng)度極大,且對原大葉藻場會造成更加嚴(yán)重的破壞[41]。種子采集和播種的方法雖然對原海草場破壞較小,但是種子采集之后也面臨著需要等待到最佳播種時(shí)間才能播種的問題[20,42],且自然海區(qū)底質(zhì)表面播撒之后大葉藻種子的成苗率非常低也嚴(yán)重影響了大葉藻場構(gòu)建和修復(fù)效率[8,33,43]。利用植物的種子在可控環(huán)境下進(jìn)行幼苗培育,然后在合適的時(shí)機(jī)進(jìn)行移栽到目標(biāo)修復(fù)地,這在高等農(nóng)業(yè)或者陸上草皮植被修復(fù)和構(gòu)建當(dāng)中早已成熟運(yùn)用。Fonseca等[38]曾報(bào)道了采集回成體大葉藻植株,在室內(nèi)人工條件下進(jìn)行保育,使其通過營養(yǎng)繁殖進(jìn)行擴(kuò)增,以獲得更大量的移栽植株,這一方法雖然在一定程度上,在對原海草場破壞一定的情況下獲得更大量的可供移栽的成體植株提供了有效途徑,卻依然不能脫離對自然海區(qū)大葉藻場的依賴和破壞。在人工控制條件,大葉藻種子萌發(fā)率會大大提高[16],利用采集到的大葉藻種子進(jìn)行幼苗培育,然后將培育成的幼苗移栽至目標(biāo)海區(qū),大大提高了修復(fù)效率。Tanner和Parham[24]在美國切薩皮克灣大葉藻場修復(fù)中進(jìn)行了利用種子育苗并移栽的研究,經(jīng)過3個(gè)月幼苗培共育苗2.6萬株,并通過枚釘固定法[18]進(jìn)行海區(qū)移栽取得了較好的效果。但枚釘法移栽大葉藻幼苗像大葉藻成體移栽方法一樣,依然需要潛水作業(yè)進(jìn)行操作,仍拜托不了勞動強(qiáng)度大和工作效率低的弊端。本研究所杯育苗法進(jìn)行大葉藻幼苗培育,然后利用所開發(fā)的育苗杯水面移栽裝置,將大葉藻幼苗在不需潛水作業(yè)的情況下移栽至目標(biāo)海區(qū)的海底并取得良好效果。兩人配合連續(xù)操作,該水面移栽裝置每分鐘至少可移栽2個(gè)育苗杯,大大降低勞動強(qiáng)度,提高了效率。
大葉藻室內(nèi)育苗再進(jìn)行移栽,為大葉藻場的修復(fù)和構(gòu)建提供了新的方向,特別是在成體植株不易獲得的情況下,為利用植株移栽進(jìn)行海草場修復(fù)和構(gòu)建提供重要的支撐。在人工可控條件下育苗再進(jìn)行移栽,以及本研究所開發(fā)的育苗杯移栽技術(shù)和裝置,在其它海草特別是大葉藻屬的海草場修復(fù)和構(gòu)建中具有很大的推廣潛力。
[1] Short F T,Wyllie-Echeverria S. Natural and human-induced disturbance of seagrasses[J]. Environmental Conservation,1996,23(1): 17-27.
[2] Cambridge M L, McComb A J. The loss of seagrass in Cockburn Sound, Western Australia. I. The time course and magnitude of seagrass decline in relation to industrial development[J]. Aquatic Botany, 1984, 20: 229-243.
[3] Short F T, Burdick D M. Quantifying eelgrass habitat loss in relation to housing development and nitrogen loading in Waquoit Bay, Massachussetts[J]. Estuaries, 1996, 19 (3): 730-739.
[4] Orth R J, Luckenbach M L, Marion SR, et al. Seagrass recovery in the Delmarva Coastal Bays, USA[J]. Aquatic Botany, 2006, 84: 26-36.
[5] Fonseca M S, Kenworthy W J, Courtney F X, et al. Seagrass planting in the southeastern United States: Methods for accelerating habitat development[J]. Restoration Ecology, 1994, 2(3): 198-212.
[6] Fishman J R, Orth R J, Marion S, et al. A comparative test of mechanized and manual transplanting of eelgrass,Zosteramarina, in Chesapeake Bay[J]. Restoration Ecology, 2004, 12(2): 214-220.
[7] Harwell M C, Orth R J. Eelgrass (ZosteramarinaL.) seed protection for field experiments and implications for large-scale restoration[J]. Aquatic Botany, 1999, 64: 51-61.
[8] Orth R J, Fishman J R, Harwell M C, et al. Seed-density effects on germination and initial seedling establishment in eelgrassZosteramarinain the Chesapeake Bay region[J]. Marine Ecology Progress Series, 2003, 250: 71-79.
[9] Granger S, Traber M, Nixon S W, et al. A Practical Guide for the Use of Seeds in Eelgrass (ZosteramarinaL.)Restoration. Schwartz M. Part 1 [M]. Malia Schwartz. Narragansett: Rhode Island Sea Grant, 2002.
[10] Chambers J C, MacMahon J A. A day in the life of a seed: Movements and fates of seeds and their implications for natural and managed systems[J]. Annual Review of Ecology and Systematics, 1994, 25: 263-292.
[11] McMillan C. Seed germination for an annual form ofZosteramarinafrom the sea of Cortez, Mexico[J]. Aquatic Botany, 1983, 16: 105-110.
[12] Loques F, Caye G, Meinesz A. Germination in the marine phanerogamZosteranoltiiHornemann at Golfe Juan, French Mediterranean[J]. Aquatic Botany, 1990, 38: 249-260.
[13] Orth R J, Harwell M C, Bailey E M, et al. A review of issues in seagrass seed dormancy and germination: Implications for conservation and restoration[J]. Marine Ecology Progress Series, 2000, 200: 277-288.
[14] Moore K A, Orth R J, Nowak J F. Environmental regulation of seed germination inZosteramarinaL. (eelgrass) in Chesapeake Bay: Effects of light, oxygen and sediment burial[J]. Aquatic Botany, 1993, 45: 79-91.
[15] Abe M, Kurashima A, Maegawa M. Temperature requirements for seed germination and seedling growth ofZosteramarinafrom central Japan[J]. Fisheries Science, 2008, 74: 589-593.
[16] Pan J H, Jiang X, Li X J, et al. Influence of temperature and salinity on germination of eelgrass (ZosteramarinaL.) seeds[J]. Journal of Ocean University of China, 2011, 10(2): 147-152.
[17] Pan J H, Jiang X, Sai S, et al. Seagrass meadow ecosystem and its restoration: A review[J]. Acta Ecologica Sinica, 2012,32(19): 6223-6232.
[18] Davis R C, Short F T. Restoring eelgrass,ZosteramarinaL., habitat using a new transplanting technique: The horizontal rhizome method[J]. Aquatic Botany, 1997: 59: 1-15.
[19] Williams S L, Orth R J. Genetic diversity and structure of natural and transplanted eelgrass populations in the Chesapeake and Chincoteague Bays[J]. Estuaries, 1998, 21: 118-128.
[20] Busch K E, Golden R, Parham T A, et al. Large-scaleZosteramarina(eelgrass) restoration in Chesapeake Bay, Maryland, USA. Part I: A comparison of techniques and associated costs[J]. Restoration Ecology, 2010, 18(4): 490-500.
[21] Pan J H, Jiang X, Li X J, et al. An effective method for collecting and storing seeds fromZosteramarina(Eelgrass) in the Yellow Sea, China[J]. Restoration Ecology, 2014, 22(6): 716-722.
[22] Sawma J T, Mohler C L. Evaluating seed viability by an umimbibed seed crush test in comparison with the tetrazolium test[J]. Weed Technology, 2002, 16: 781-786.
[23] Churchill A C. Growth characteristics ofZosteramarinaseedlings under anaerobic conditions[J]. Aquatic Botany, 1992, 43: 379-392.
[24] Tanner C E, Parham T. GrowingZosteramarina(eelgrass) from seeds in land-based culture systems for use in restoration projects[J]. Restoration Ecology, 2010, 18(4): 527-537.
[25] Baskin C B, Baskin J. Ecologically meaningful germination studies[M]. Seeds. London: Academic Press,1998: 5-26.
[26] Woodin S A, Marinelli R L, Lindsay S M. Process-specific cues for recruitment in sedimentary environments: Geochemical signals[J]. Journal of Marine Research, 1998, 56: 535-558.
[27] Lamounette R G. A Study of the Germination and Viability ofZosteramarinaL. Seeds[D]. Adelphi University, 1977: 41.
[28] Probert R J, Brenchly J L. The effect of environmental factors on field and laboratory germination in a population ofZosteramarinaL. from southern England[J]. Seed Science Research, 1999, 9: 331-339.
[29] van Katwijk M M, Wijgergangs L J M. Effects of locally varying exposure, sediment type and low-tide water cover onZosteramarinarecruitment from seed[J]. Aquatic Botany, 2004, 80: 1-12.
[30] Morita T, Kakinuma M, Mizuno G, et al. Morphological characteristics of annualZosteramarinashoots at various germination temperatures[J]. Aquatic Botany, 2010, 92: 49-54.
[31] Hootsmans M J M, Vermaat J E, Van Vierssen W. Seed-bank development, germination and early seedling survival of two seagrass species from the Netherlands:ZosteramarinaL. andZosteranoltiiHornem[J]. Aquatic Botany, 1987, 28: 275-285.
[32] Pirc H, Bula M C, Mazzella L. Germination and seedling development ofCymodoceanodosa(Ucria) Asherson under laboratory conditions and “in situ”[J]. Aquatic Botany, 1986, 26: 181-188.
[33] Granger S L, Traber M S, Nixon S W. The influence of planting depth and density on germination and development ofZosteramarinaL. seeds[J]. Biologia Marina Mediterranea, 2000, 7(3): 55-58.
[34] Marion S R, Orth R J. Seedling establishment in eelgrass: seed burial effects on winter losses of developing seedlings[J]. Marine Ecology Progress Series, 2012, 448: 197-207.
[35] Koch E W, Ailstock S M, Booth D M, et al. The role of currents and waves in the dispersal of submersed angiosperm seeds and seedlings[J]. Restoration Ecology, 2010, 18: 584-595..
[36] Jarvis J C, Moore K A. Effects of seed source, sediment type, and burial depth on mixed-annual and perennialZosteramarinaL. seed germination and seedling establishment[J]. Estuaries and Coasts, 2015, 38(3): 964-978
[37] Shafer D J, Bergstrom P. Large-Scale Submerged Aquatic Vegetation Restoration in Chesapeake Bay[M]. Army Engineer Research and Development Center. US: Vicksburg, 2008.
[38] Fonseca M S, Bell S S. Influence of physical setting on seagrass landscapes near Beaufort, North Carolina, USA[J]. Marine Ecology Progress Series, 1998, 171: 109-121.
[39] Orth R J, Harwell M C, Fishman J R. A rapid and simple method for transplanting eelgrass using single, unanchored shoots[J]. Aquatic Botany, 1999, 64: 77-85.
[40] Marion S R, Orth R J. Innovative techniques for large-scale seagrass restoration usingZosteramarina(eelgrass) seeds[J]. Restoration Ecology, 2010, 18(4): 514-526.
[41] Orth R J, Marion S R, Granger S, et al. Restoring Eelgrass (Zosteramarina) from Seed: A Comparison of Planting Methods for Large-Scale Projects. U S Army Engineer Research and Development Center[M]. Vicksburg: Mississippi, 2008: 1-11.
[42] Orth R J, Marion S R. Innovative Techniques for Large-Scale Collection, Processing, and Storage of Eelgrass (Zosteramarina) Seeds[M]. Army Engineer Research and Development Center. Vicksburg: Mississippi, 2007: 1-14.
[43] Orth R J, Luckenbach M, Moore KA. Seed dispersal in a marine macrophyte: Implications for colonization and restoration[J]. Ecology, 1994, 75: 1927-1939.
責(zé)任編輯 高 蓓
Study on Techniques forZosteramarinaL. Seedling Raising and Transplantation
ZHANG Zhuang-Zhi1,2, PAN Jin-Hua1,2, LI Xiao-Jie1,2, YU Shen-Hui1,2, HAN Hou-Wei1,2, JIANG Xin1,2, WANG Wei-Wei1,2, LIANG Guang-Jin1,2, ZHAO Nan1,2, YANG Guan-Pin3
(1. Key Laboratory of Algae Genetic Breeding and Cultivation Techniques of Shandong Province, Shandong Oriental Ocean Sci-tech Co., Ltd., Yantai 264003, China; 2. National Algae and Sea Cucumber Engineering and Technique Research Center, Shandong Oriental Ocean Sci-tech Co., Ltd., Yantai 264003, China;3. College of Marine Life Sciences, Ocean University of China, Qingdao 266003, China)
Seagrasses are aquatic angiosperms which have adapted to the marine environment successfully after nearly on hundred million years’ evolution from the land.Zosteramarinais one of the most widely distributed seagrasses in the world. It used to be abundant along the coast of Shandong Peninsula in the Yellow Sea, China. Unfortunately, obvious declines that caused by human activities and natural factors since 80s last century has been observed, which had brought great damage to the coastal ecosystem and led to sharp dereases in fishery resources.Z.marinarestoration project has been launched for many years all over the word, especially in the developed countries. However, the experience from other coastal areas in the world may not be directly applied locally because of the unique hydrologic conditions of each coastal area. Restoration ofZ.marinameadows in China has been tried in recent years. But practical techniques, especially the large scale restoration and construction techniques forZ.marinameadows using seeds, have scarcely documented. In this study, theZ.marinaseeds were collected from the coast of Shandong Peninsula in the Yellow Sea. The effects of vernalization temperatures and durations onZ.marinaseed germination rate were tested, and the seed sowing depth on its seedling establishment rate were determined. By referring to the findings obtained in this study, theZ.marinaseedling raising and seedling transplanting techniques and seedling transplanting apparatus was developed and put into practice, which were proved effectively and successfully. The results indicated that vernalizing temperature and duaration had significant effect onZ.marinaseed germination rate (p<0.01). VernalizingZ.marinaseeds at 4 ℃ for 50 days achieved the highest mean germination rate of 55.3%. Seed sowing depth affected both seedling establishment rate and seedling growth. It was found that seed germination rate and seedling establishment rate at depths of 0.5~1, 1~1.5 and 2~2.5cm were similar with each other, but significantly higher than those at 3~3.5 and 4~4.5 cm (p<0.01). The sowing depth of 1~1.5 cm achieved the highest seedling establishment rate of 62.7% and the largest seedling length of 13.5 cm after 101 d. According to these studies above, in total, 76 000 seedlings were successfully raised in 110 days, which were 16.3 cm on average and 24 cm as the maximum. In addition, a highly effective cup-raisedZ.marinaseedling transplanting apparatus was developed and applied successfully and efficiently on the water surface transplating of cup-raisedZ.marinaseedlings to the sea bottom sediment.
ZosteramarinaL. seed; vernalization; seed sowing depth; seedling raising; transplanting apparatus
山東省科技發(fā)展計(jì)劃項(xiàng)目(2010GSF10612);國家科技支撐計(jì)劃項(xiàng)目(2012BAD55G01)資助 Spported by Provincial Developmental Program of Science and Technology of Shandong(2010GSF10612);the National Technical Supporting Project Foundation(2012BAD55G01)
2016-06-23;
2016-08-30
張壯志(1976-),男,高級工程師,主要從事大型海藻遺傳育種與苗種繁育工作
?? 通訊作者:E-mail: yguanpin@ouc.edu.cn
P745
A
1672-5174(2017)05-080-08
10.16441/j.cnki.hdxb.20160215
張壯志, 潘金華, 李曉捷, 等. 大葉藻種子育苗及移栽技術(shù)研究[J]. 中國海洋大學(xué)學(xué)報(bào)(自然科學(xué)版), 2017, 47(5): 80-87.
ZHANG Zhuang-Zhi, PAN Jin-Hua, LI Xiao-Jie, et al. Study on techniques forZosteramarinaL. seedling raising and transplantation[J]. Periodical of Ocean University of China, 2017, 47(5): 80-87.