王舒,張治然,襲榮剛 ,王曉波
1.沈陽軍區(qū) 藥物研究所,遼寧 大連 116015;2.解放軍第210醫(yī)院,遼寧 大連 116015
綜
神經(jīng)膠質(zhì)細(xì)胞與腦出血
王舒1,2,張治然1,2,襲榮剛1,2,王曉波1,2
1.沈陽軍區(qū) 藥物研究所,遼寧 大連 116015;2.解放軍第210醫(yī)院,遼寧 大連 116015
腦出血指非外傷性腦實(shí)質(zhì)內(nèi)出血,又稱腦溢血,是世界范圍內(nèi)死亡率和致殘率極高的常見多發(fā)病,目前為止尚無有效的治療方案能顯著降低其病死率。神經(jīng)膠質(zhì)細(xì)胞是中樞神經(jīng)系統(tǒng)中的一類細(xì)胞,主要包括小膠質(zhì)細(xì)胞、星形膠質(zhì)細(xì)胞和少突膠質(zhì)細(xì)胞等3種,具有支持、滋養(yǎng)神經(jīng)元,吸收和調(diào)節(jié)因損傷而解體破碎的神經(jīng)元的作用,并且能修補(bǔ)填充損傷組織,形成瘢痕。近年來,小膠質(zhì)細(xì)胞和星形膠質(zhì)細(xì)胞在腦出血中的作用引發(fā)廣泛關(guān)注,本文將簡(jiǎn)要闡述這2種膠質(zhì)細(xì)胞與腦出血后繼發(fā)性腦損傷的關(guān)系。
腦出血;神經(jīng)膠質(zhì)細(xì)胞;小膠質(zhì)細(xì)胞;星形膠質(zhì)細(xì)胞
腦出血(intracerebral hemorrhage,ICH)指非外傷性腦實(shí)質(zhì)內(nèi)出血,又稱腦溢血,發(fā)病因素多種多樣,大多數(shù)是由血壓升高引發(fā)硬化的小動(dòng)脈血管破裂所致,因此也稱高血壓性腦出血[1]。ICH是各類腦卒中死亡率和致殘率最高的疾病。在國內(nèi),每年約有40萬新發(fā)ICH患者,多集中在老年人群[1],發(fā)病率占腦卒中的17.1%~55.4%,明顯高于國外6.5%~19.6%的發(fā)病率[1-3]。幸存者也大都有不同程度的后遺癥,嚴(yán)重影響患者及其家庭生活質(zhì)量,帶來沉重的經(jīng)濟(jì)和社會(huì)負(fù)擔(dān)[3-6]。盡管近年來醫(yī)學(xué)進(jìn)步很大,但對(duì)于ICH的研究相對(duì)滯后,長期以來治療方案主要包括:在發(fā)病后第1 h內(nèi)減緩血流量、清除血凝塊以減輕機(jī)械性和化學(xué)性腦損傷,脫水降低顱內(nèi)壓,調(diào)整血壓,止血治療和亞低溫治療,個(gè)別案例輔以手術(shù)治療[5]。但是,上述治療方案只能緩解ICH后癥狀、減輕病情,不能達(dá)到有效治療ICH、清除后遺癥、改善存活病人生活質(zhì)量的目的。因此,對(duì)于ICH發(fā)病機(jī)制及其藥物治療需要進(jìn)一步研究。
神經(jīng)膠質(zhì)細(xì)胞簡(jiǎn)稱膠質(zhì)細(xì)胞,是中樞神經(jīng)系統(tǒng)中除神經(jīng)元以外的所有細(xì)胞[6],具有支持、營養(yǎng)神經(jīng)元,吞噬并調(diào)節(jié)受損傷的神經(jīng)元,修補(bǔ)填充損傷組織,形成瘢痕的作用[7]。神經(jīng)膠質(zhì)細(xì)胞主要包括小膠質(zhì)細(xì)胞、星形膠質(zhì)細(xì)胞、少突膠質(zhì)細(xì)胞[6]。近年來,小膠質(zhì)細(xì)胞和星形膠質(zhì)細(xì)胞在ICH中的作用引發(fā)廣泛關(guān)注,本文將主要闡述這2種膠質(zhì)細(xì)胞與ICH后繼發(fā)性腦損傷的關(guān)系。
血腫吸收過程中引發(fā)的炎癥反應(yīng)是ICH繼發(fā)性損傷的重要原因,過去幾十年的研究集中在炎癥反應(yīng)啟動(dòng)及其發(fā)展的細(xì)胞分子機(jī)制,但對(duì)其終止機(jī)制知之甚少?,F(xiàn)已證實(shí),炎癥消退是一個(gè)主動(dòng)序化過程,由多種細(xì)胞和抗炎介質(zhì)共同參與,炎癥發(fā)生后數(shù)小時(shí)即可啟動(dòng)。炎癥具有雙重效應(yīng)——防御和損傷,過度炎癥可以導(dǎo)致自身組織損傷。
小膠質(zhì)細(xì)胞和巨噬細(xì)胞能快速吞噬凋亡和壞死細(xì)胞碎片及有害物質(zhì),產(chǎn)生多種抗炎因子和神經(jīng)營養(yǎng)因子,防止神經(jīng)炎癥反應(yīng)。研究表明,腦缺血后24 h,具有吞噬能力的阿米巴樣小膠質(zhì)細(xì)胞聚集在腦梗死部位形成保護(hù)性屏障,從而阻止損傷進(jìn)一步發(fā)展;同時(shí),球狀小膠質(zhì)細(xì)胞分布在梗死核心,起到減輕損傷和炎癥的作用[8]。另有研究表明,ICH數(shù)分鐘后小膠質(zhì)細(xì)胞即可出現(xiàn),1~3 d為高峰期,并持續(xù)至ICH后4周;而中性粒細(xì)胞在ICH后3 d顯著升高,主要浸潤部位在腦室、皮質(zhì)和海馬,并在ICH后3周內(nèi)消退[9-11]。這些研究表明,調(diào)控小膠質(zhì)細(xì)胞活化是促進(jìn)腦組織修復(fù)的一個(gè)重要手段。
小膠質(zhì)細(xì)胞是腦內(nèi)“專職”吞噬細(xì)胞,能夠清除凋亡細(xì)胞和壞死組織殘骸。吞噬凋亡細(xì)胞過程中,小膠質(zhì)細(xì)胞能夠釋放抗炎癥介質(zhì),如轉(zhuǎn)化生長因子β(TGF-β)和白細(xì)胞介素10(IL-10)等,并阻止促炎因子分泌,如減少腫瘤壞死因子α(TNF-α)的分泌[12]。小膠質(zhì)細(xì)胞還通過天然免疫信號(hào)模式識(shí)別受體(PRRs)監(jiān)測(cè)細(xì)胞外和細(xì)胞內(nèi)感染、組織損傷或其他細(xì)胞應(yīng)激征象。PRRs包括Toll樣受體(TLRs)的跨膜受體和NOD樣受體(NLRs)的胞漿受體[13]。在ICH中,通過MyD88通路,TLR4介導(dǎo)小膠質(zhì)細(xì)胞激活促炎轉(zhuǎn)錄因子NF-κB,產(chǎn)生大量炎性因子,如TNF-α和IL-1β[14]。而清道夫受體CD36能夠促進(jìn)小膠質(zhì)細(xì)胞吞噬紅細(xì)胞,并降低炎性因子TNF-α和IL-1β的分泌[15]。
過氧化物酶體增殖物激活受體γ(PPARγ)是一種細(xì)胞核受體,同時(shí)也是影響巨噬細(xì)胞活化的重要轉(zhuǎn)錄因子。PPARγ活化巨噬細(xì)胞,并且通過與NF-κB結(jié)合抑制炎性因子轉(zhuǎn)錄,發(fā)揮其抗炎功能[16],同時(shí)上調(diào)清道夫受體CD36表達(dá),吞噬紅細(xì)胞,促進(jìn)血腫清除[15,17],但是當(dāng)ICH時(shí),TLR4抑制CD36表達(dá),延緩血腫吸收。腦卒中時(shí),腦組織中PPARγ DNA結(jié)合及其靶基因表達(dá)沒有增加,缺少內(nèi)在啟動(dòng)因子,須激動(dòng)劑活化PPARγ通路[16]。15(S)-HETE作為血腫吸收過程中小膠質(zhì)和單核細(xì)胞PPARγ啟動(dòng)因子,誘導(dǎo)小膠質(zhì)細(xì)胞活化,促進(jìn)血腫吸收和神經(jīng)修復(fù)。
ICH后,血腫周圍組織的病理生理學(xué)機(jī)制及其過程非常復(fù)雜,多種繼發(fā)的損害因素參與其中。除血腫占位性損害外,血腦屏障破壞也是導(dǎo)致ICH后繼發(fā)性腦損傷的重要因素。血腦屏障(blood-brain barrier,BBB)是在腦組織周圍形成的保護(hù)屏障,具有維持腦穩(wěn)態(tài)的重要功能。ICH后,BBB完整性遭到破壞,觸發(fā)腦水腫的形成,這是ICH最為嚴(yán)重的并發(fā)癥[18]。
一氧化氮(NO)由一氧化氮合酶(NOS)合成,是一個(gè)重要的生物調(diào)控分子。它是一柄雙刃劍,在生理?xiàng)l件下,NO在血管和中樞神經(jīng)系統(tǒng)中發(fā)揮有益作用,但過量的NO卻有神經(jīng)毒性。已證實(shí),在急性高血壓中,腦組織內(nèi)NO大量釋放會(huì)破壞BBB,引發(fā)細(xì)菌性腦膜炎、局灶性腦缺血[19]。另外,不僅NO有細(xì)胞毒性,其衍生物,尤其是過氧化亞硝酸鹽,可能對(duì)細(xì)胞造成興奮性損傷,并且破壞BBB[20]。
研究表明,誘導(dǎo)型一氧化氮合酶(iNOS)和神經(jīng)元型一氧化氮合酶(nNOS)[21]損傷BBB,但內(nèi)皮型一氧化氮合酶(eNOS)能起到保護(hù)作用[22]。BBB的功能及完整性依賴TJ蛋白的表達(dá),緊密連接蛋白5(claudin-5)構(gòu)成TJ蛋白基本蛋白骨架,對(duì)BBB的滲透性及完整性起關(guān)鍵決定作用。ICH后,血紅蛋白引發(fā)NOS過表達(dá),釋放過多的NO能夠改變TJ蛋白結(jié)構(gòu),進(jìn)而造成BBB的破壞。
過氧化亞硝酸離子(ONOO-)直接參與繼發(fā)性ICH后BBB的破壞、內(nèi)皮功能障礙、炎性反應(yīng)及膠質(zhì)細(xì)胞毒性[23-25]。ONOO-可能是ICH后破壞BBB的罪魁禍?zhǔn)?。ONOO-硝化細(xì)胞色素C還原酶(復(fù)合物Ⅲ)[26]和ATP合酶(復(fù)合物Ⅴ)[27],削弱細(xì)胞能量代謝;ONOO-修飾Na+-K+-ATP酶的半胱氨酸亞基,抑制Na+-K+-ATP酶活性[28],從而導(dǎo)致細(xì)胞內(nèi)離子水平失衡,引發(fā)細(xì)胞毒性腦水腫;ONOO-通過修飾MMP-2和MMP-9的半胱氨酸亞基,直接激活MMP-2,間接破壞BBB[28],并且引發(fā)血管源性腦水腫。持續(xù)抑制或清除ONOO-,可以顯著減緩腦血腫的形成并減輕神經(jīng)功能缺損[29]。降低ONOO-表達(dá)水平不僅可防止神經(jīng)細(xì)胞損傷,而且能修復(fù)BBB[30]。這為今后ICH的治療提供了新的方向。
BBB及血腫分解產(chǎn)物釋放的活性介質(zhì)對(duì)大腦有損害[31]。其中,興奮性氨基酸毒性在ICH后破壞BBB完整性中發(fā)揮非常重要的病理作用[31]。
目前,N-甲基-D-天冬氨酸受體(N-methyl-D-aspartic acid receptor,NMDAR)被認(rèn)為是介導(dǎo)神經(jīng)興奮性毒性最主要的受體[32]。NMDAR是離子型谷氨酸受體的一個(gè)亞型,分子結(jié)構(gòu)復(fù)雜,具有獨(dú)特的藥理學(xué)性質(zhì),在神經(jīng)系統(tǒng)發(fā)育過程中起重要的生理作用,如影響神經(jīng)元存活率,調(diào)節(jié)神經(jīng)元的樹突、軸突結(jié)構(gòu)生長發(fā)育,參與突觸可塑性的形成等[32]。而且NMDAR對(duì)神經(jīng)元回路的形成至關(guān)重要[33]。谷氨酸是中樞神經(jīng)系統(tǒng)中最重要興奮性神經(jīng)遞質(zhì),ICH后,谷氨酸通過NMDAR引發(fā)神經(jīng)元損傷[34]。
星形膠質(zhì)細(xì)胞是神經(jīng)膠質(zhì)細(xì)胞的一種,因胞體呈星形而得名。它可以調(diào)節(jié)細(xì)胞外離子和化學(xué)環(huán)境,支持血腦屏障。在缺氧條件下,星形膠質(zhì)細(xì)胞作為神經(jīng)血管的重要組成部分,為神經(jīng)組織提供營養(yǎng)物質(zhì)[35-36]。
星形膠質(zhì)細(xì)胞分枝狀突起,填充在神經(jīng)細(xì)胞胞體之間,對(duì)神經(jīng)細(xì)胞起支撐和分隔作用。突起能完全包繞在BBB中的毛細(xì)血管周圍,是構(gòu)成BBB的重要結(jié)構(gòu),也是維持BBB功能的重要保障。
ICH后,巨噬細(xì)胞、活化的小膠質(zhì)細(xì)胞、活化的星形膠質(zhì)細(xì)胞在血腫周圍形成膠質(zhì)瘢痕,瘢痕分泌的活性介質(zhì)具有雙重作用:一方面,被激活的星形膠質(zhì)細(xì)胞能夠提高滅活興奮性谷氨酸的能力,從而提高神經(jīng)細(xì)胞的存活率,并且為神經(jīng)元軸突生長提供有利環(huán)境;另一方面,在腦損傷初期,星形膠質(zhì)細(xì)胞的活性形式可以分泌大量的NO,引起神經(jīng)元的凋亡和壞死[37],有文獻(xiàn)報(bào)道,大鼠ICH模型中,星形膠質(zhì)細(xì)胞能夠降解腦血管基底膜,對(duì)BBB造成進(jìn)一步損害[38]。因此,調(diào)節(jié)星形膠質(zhì)細(xì)胞的活化對(duì)ICH后BBB的修復(fù)具有重要作用,這也為ICH的防治提供新策略。
綜上所述,ICH后繼發(fā)性腦損傷機(jī)制復(fù)雜,目前并沒有有效治療手段。但是,調(diào)控小膠質(zhì)細(xì)胞的活化,對(duì)ICH后抑制甚至清除炎癥具有積極作用;并且,星形膠質(zhì)細(xì)胞抑制興奮性氨基酸毒性,有效控制NO及ONOO-的生成,這對(duì)BBB滲透性及保持其完整性起決定性作用,為ICH臨床治療提供新思路。
[1]趙芳芳,羅玉敏,徐敏,等.高血壓性腦出血病理研究進(jìn)展[J].卒中與神經(jīng)疾病,2013,20(3):189-192.
[2]Flaherty M L,Haverbusch M,Sekar P,et al.Longterm mortality after intracerebral hemorrhage[J].Neurol?ogy,2006,66(8):1182-1186.
[3]Wong G K,Wong R,Mok V C,et al.Clinical study on cognitive dydfunction after spontaneous subarach?noid haemorrhage:patient profiles and relationship to cholinergic dysfunction[J].Acta Neurochir,2009,151(12):1601-1607.
[4]Nys G M,van Zandvoort M J,de Kort PL,et al.Cog?nitive disorders in acute stroke:prevalence and clini?cal determinants[J].Cerebrovasc Dis,2007,23(5-6):408-416.
[5]Broderick J,Connolly S,Feldmann E,et al.Guide?lines for the management of spontaneous intracerebral hemorrhage in adults:2007 update:a guideline from the American Heart Association/American Stroke Asso?ciation Stroke Council,High Blood Pressure Research Council,and the Quality of Care and Outcomes in Re?search Interdisciplinary Working Group[J].Circulation,2007,116(16):391-413.
[6]王西林.神經(jīng)膠質(zhì)細(xì)胞的功能.黔南民族醫(yī)學(xué)學(xué)報(bào)[J].2007,1(20):61-64.
[7]韓濟(jì)生.神經(jīng)學(xué)原理[M].2版.上海:上海醫(yī)科大學(xué)出版社,1999.
[8]Benakis C,Garcia-Bonilla L,Iadecola C,et al.The role of microglia and myeloid immune cells in acute cerebral ischemia[J].Front Cell Neurosci,2015,8:461.
[9]Zhao X,Sun G,Zhang J,et al.Hematoma resolution as a target for intracerebral hemorrhage treatment:role for peroxisome proliferator-activated receptor gam?ma in microglia/macrophages[J].Ann Neurol.2007,61(4):352-362.
[10]Zhu W,Gao Y,Chang C F,et al.Mouse models of intracerebral hemorrhage in ventricle,cortex,and hip?pocampus by injections of autologousblood or collage?nase[J].PLoS One,2014,9(5):e97423.
[11]Zhang Y,Gao Z,Wang D,et al.Accumulation of nat?ural killer cells in ischemic brain tissues and the che?motactic effect of IP-10[J].J Neuroinflammation,2014,11:79.
[12]Hu X,Li P,Guo Y,et al.Microglia/macrophage polar?ization dynamics reveal novel mechanism of injury ex?pansion after focal cerebral ischemia[J].Stroke,2012,43(11):3063-3070.
[13]Latz E,Xiao T S,Stutz A.Activation and regulation of the inflammasomes[J].Nat Rev Immunol,2013,13(6):397-411.
[14]Lin S,Yin Q,Zhong Q,et al.Heme activates TLR4-mediated inflammatory injury via MyD88/TRIF signal?ing pathway in intracerebral hemorrhage[J].J Neuroin?flammation,2012,9:46.
[15]Fang H,Chen J,Lin S,et al.CD36-mediated hemato?ma absorption following intracerebral hemoeehage:neg?ative regulation by TLR4 signaling[J].J Immunol,2014,192(12):5984-5992.
[16]Lamkanfi M,Dixit V M.Mechanisms and functions of inflammasomes[J].Cell,2014,157(5):1013-1022.
[17]Brown G C,Neher J J.Microglial phagocytosis of live neurons[J].Nat Rev Neurosci,2014,15(4):209-216.
[18]Neher J J,Emmrich J V,Fricker M,et al.Phagocyto?sis executes delayed neuronal death after focal brain ischemia[J].Proc Natl Acad Sci USA,2013,110(43):E4098-4107.
[19]Keep R F,Xiang J,Ennis S R,et al.Blood-brain barrierfunction in intracerebral hemorrhage[J].Acta Neurochir Suppl,2008,105:73-77.
[20]Koeppen A H,Dickson A C,McEvoy J A.The cellu?lar reactions to experimental intracerebral hemorrhage[J].J Neurol Sci,1995,134:102-112.
[21]Bao X,Wu G,Hu S,et al.Poly(ADP-ribose)poly?merase activation and brain edema formation by hemo?globin after intracerebral hemorrhage in rats[J].Acta Neurochir Suppl,2008,105:23-27.
[22]Butt O I,Buehler P W,D'Agnillo F.Blood-brain bar?rier disruption and oxidative stress in guinea pig after systemic exposure to modified cell-free hemoglobin[J].Am J Pathol,2011,178:1316-1328.
[23]Misra H P,Fridovich I.The generation of superoxide radical during the autoxidation of hemoglobin[J].J Bi?ol Chem,1972,247:6960-6962.
[24]Katsu M,Niizuma K,Yoshioka H,et al.Hemoglobininduced oxidative stress contributes to matrix metallo?proteinase activation and blood-brain barrier dysfunc?tion in vivo[J].J Cereb Blood Flow Metab,2010,30:1939-1950.
[25]Xu M,Chen X,Gu Y,et al.Baicalin can scavenge peroxynitrite and ameliorate endogenous peroxynitritemediated neurotoxicity in cerebral ischemia-reperfu?sion injury[J].Ethnopharmacology,2013,150:116-124.
[26]Pearce L L,Kanai A J,Epperly M W,et al.Nitrosa?tive stress results in irreversible inhibition of purified mitochondrial complexesⅠ and Ⅲ without modifica?tion of cofactors[J].Nitric Oxide,2005,13:254-263.
[27]Cassina A,Radi R.Differential inhibitory action of ni?tric oxide and peroxynitrite on mitochondrial electron transport[J].Arch Biochem Biophys,1996,328:309-316.
[28]Muriel P,Castaneda G,Ortega M,et al.Insights into the mechanism of erythrocyte Na+-K+-ATPase inhibi?tion by nitric oxide and peroxynitrite anion[J].J Appl Toxicol,2003,23:275-278.
[29]Deng-Bryant Y,Singh I N,Carrico K M,et al.Neuro?protective effects of tempol,a catalytic scavenger of peroxynitrite-derived free radicals,in a mouse traumat?ic brain injury model[J].J Cereb Blood Flow Metab,2008,28l:1114-1126.
[30]Gursoy-Ozdemir Y,Can A,Dalkara T.Reperfusion-in?duced oxidative/nitrative injury to neurovascular unit after focal cerebral ischemia[J].Stroke,2004,35:1449-1453.
[31]Liu D Z,Sharp F R.The dual role of SRC kinases in intracerebral hemorrhage[J].Acta Neurochir Suppl,2011,111:77-81.
[32]Yeganeh F,Nikbakht F,Bahmanpour S,et al.Neuro?protective effects of NMDA and groupⅠmetabotropic glutamate receptor antagonists against neurodegenera?tion induce by homocysteine in rat hippocampus:in vi?vo study[J].J Mol Neurosci,2013,50(3):551-557.
[33]陳???何德富,周紹慈.D-Ser—NMDA受體的新調(diào)控因子[J].中國神經(jīng)科學(xué)雜志,2003,19(2):127-129.
[34]Hwang B Y,Appelboom G,Ayer A,et al.Advances in neuroprotective strategies:potential therapies for in?tracerebral hemorrhage[J].Cerebrovasc Dis,2011,31(3):211-222.
[35]Ishitsuka K,Ago T,Arimura K,et al.Neurotrophin production in brain pericytes during hypoxia:a role of pericytes for neuroprotection[J]. Microvasc Res,2012,83:352-259.
[36]Chung C Y,Yang J T,Kuo Y C.Polybutylcyanoacry?late nanoparticles for delivering hormone response ele?ment-conjugated neurotrophin-3 to the brain of intra?cerebral hemorrhagic rats[J].Biomaterials,2013,34(37):9717-9727.
[37]韓玉生,宮鑫梅,孫洪恩,等.針刺對(duì)更年期腦缺血大鼠GFAP和OX42表達(dá)的影響[J].針灸臨床雜志,2011,27(12):49-52.
[38]Jason K W,Lyanne C S.Minocycline protects the blood-brain barrier and reduces edema following intra?cerebral hemorrhage in the rat[J].Exp Neurol,2007,207:227-237.
Glial Cells and Cerebral Hemorrhage
WANG Shu1,2,ZHANG Zhi-Ran1,2,XI Rong-Gang1,2,WANG Xiao-Bo1,2*
1.Institute of Materia Medica of Shenyang Military Region,Dalian 116015;2.210th Hospital of PLA,Dalian 116015;China
Intracerebral hemorrhage(ICH) refers to traumatic parenchymal hemorrhage,and it is also known as cerebral hemorrhage.ICH is a common disease with high mortality and morbidity around the world,the pathogene?sis of which is not fully understood,and the mortality can't significantly reduced for lacking of effective treatment.The glial cells including microglia,astrocytes and oligodendrocytes exist in the central nervous system,playing an important role in supporting,nourishing neurons,absorbing and regulating the fragmentation of broken neurons due to injury,and can repair the damaged tissue filled with scars.In recent years,the role of microglia and astrocytes in ICH has triggered widespread concern.This article will briefly explain the relationship between these two types of glial cells and secondary brain injury after ICH.
intracerebral hemorrhage;glial cells;microglia;astrocytes
Q24
A
1009-0002(2017)05-0689-05
10.3969/j.issn.1009-
*Corresponding author,E-mail:wxbbenson0653@sina.com
2016-11-29
王舒(1987- ),女,初級(jí)藥師,(E-mail)tantaixuan1213@sina.com
王曉波,(E-mail)wxbbenson0653@sina.com