[KH-*3D]邢小龍,常紀(jì)蘋,付忠軍,胡德升,胡彥民*
(1.河南農(nóng)業(yè)大學(xué)農(nóng)學(xué)院/河南糧食作物協(xié)同創(chuàng)新中心,河南鄭州450002;2.重慶市農(nóng)業(yè)科學(xué)院,重慶401329)
[反]-β-法尼烯(EβF)合成酶基因在玉米中的轉(zhuǎn)化與篩選
[KH-*3D]邢小龍1,常紀(jì)蘋1,付忠軍2,胡德升1,胡彥民1*
(1.河南農(nóng)業(yè)大學(xué)農(nóng)學(xué)院/河南糧食作物協(xié)同創(chuàng)新中心,河南鄭州450002;2.重慶市農(nóng)業(yè)科學(xué)院,重慶401329)
為獲得轉(zhuǎn)基因抗蟲玉米,將[反]-β-法尼烯(EβF)合成酶基因?qū)胗衩?,并進(jìn)行鑒定和篩選。在[反]-β-法尼烯(EβF)合成酶基因的兩端分別添加Nco I和Bam H I酶切位點(diǎn),并進(jìn)行人工合成。將EβF合成酶基因與植物表達(dá)載體pFGC5941連接,經(jīng)雙酶切和測序鑒定。結(jié)果表明:重組表達(dá)載體pFGC5941-EβF構(gòu)建成功;載體pFGC5941-EβF轉(zhuǎn)化農(nóng)桿菌EHA105后用玉米芽尖侵染法將EβF合成酶基因?qū)胗衩鬃越幌掂?8中,對轉(zhuǎn)化植株進(jìn)行除草劑抗性篩選以及EβF合成酶基因和bar基因的PCR鑒定后,共得到18株轉(zhuǎn)基因陽性植株。
[反]-β-法尼烯(EβF)合成酶基因;玉米;表達(dá)載體構(gòu)建;轉(zhuǎn)基因植株
[反]-β-法尼烯(EβF)合成酶基因是植物體內(nèi)催化法尼基焦磷酸(FPP)合成EβF的關(guān)鍵酶基因。EβF作為大多數(shù)蚜蟲報(bào)警信息素的主要甚至唯一成分,是一種重要的倍半萜烯類化合物[1-3],當(dāng)蚜蟲受到天攻擊時(shí),其體內(nèi)會(huì)產(chǎn)生EβF,以使其他蚜蟲逃離,從而停止對作物的危害。EβF對蚜蟲有強(qiáng)烈的驅(qū)避作用,并能吸引蚜蟲天敵,從而有較好的抗蚜效果。Beale等[4]將歐洲薄荷EβF合成酶基因轉(zhuǎn)入擬南芥,轉(zhuǎn)基因植株對蚜蟲產(chǎn)生警戒反應(yīng)并吸引蚜蟲寄生性天敵蚜繭蜂。Foster等[5]研究發(fā)現(xiàn),產(chǎn)生抗藥性的蚜蟲對EβF反應(yīng)變得遲鈍,故利用EβF充分吸引蚜蟲天敵可有效控制抗藥性蚜蟲。
目前該基因已先后從歐洲薄荷,香橙,花旗松,黃花蒿中得到分離和鑒定[6-9]。近年來研究人員又將EβF合成酶基因成功導(dǎo)入擬南芥,煙草,水稻[10-12]等作物中,培育了多種轉(zhuǎn)基因抗蟲植株。筆者借鑒前人經(jīng)驗(yàn),以EβF合成酶基因構(gòu)建重組表達(dá)載體pFGC5941-EβF并轉(zhuǎn)入玉米自交系鄭58,得到轉(zhuǎn)化植株,然后進(jìn)行鑒定和篩選,為獲得抗蟲玉米材料奠定基礎(chǔ)。
1.1 供試材料
受體材料:鄭58,玉米優(yōu)良自交系;菌株:大腸桿菌DH5α,根癌農(nóng)桿菌EHA105,由本實(shí)驗(yàn)室保存;[反]-β-法尼烯(EβF)合成酶基因由蘇州金唯智生物科技有限公司合成;基因測序由北京奧科鼎盛生物科技有限公司完成。
1.2 植物表達(dá)載體的構(gòu)建
在[反]-β-法尼烯(EβF)合成酶基因(1653 bp)兩端分別引入Nco I和Bam H I酶切位點(diǎn),委托蘇州金唯智生物科技有限公司合成,得到兩端帶酶切位點(diǎn)的目的基因,并用Nco I和Bam H I對其進(jìn)行雙酶切。將植物表達(dá)載體pFGC5941用Nco I和Bam H I雙酶切后回收載體骨架,表達(dá)載體骨架與目的基因按摩爾數(shù)之比1∶5的比例混合,然后加入2 μl 10×T4DNA Ligase buffer和1μl T4DNA連接酶,補(bǔ)足滅菌水至終反應(yīng)體積20 μl,22℃連接30 min。將連接產(chǎn)物轉(zhuǎn)化大腸桿菌DH5α感受態(tài)細(xì)胞、雙酶切和測序鑒定,以確定成功構(gòu)建重組表達(dá)載體pFGC5941-EβF。
1.3 轉(zhuǎn)基因植株的轉(zhuǎn)化
培養(yǎng)大腸桿菌陽性克隆子,提取陽性大腸桿菌的質(zhì)粒DNA,并用液氮凍融法轉(zhuǎn)化農(nóng)桿菌,然后對其進(jìn)行菌落PCR鑒定,培養(yǎng)陽性農(nóng)桿菌,通過農(nóng)桿菌侵染法轉(zhuǎn)化鄭58種子。
1.4 轉(zhuǎn)基因植株的PCR檢測
取轉(zhuǎn)化后的玉米植株葉片,采用CTAB法提取玉米基因組DNA。根據(jù)[反]-β-法尼烯(EβF)合成酶基因序列設(shè)計(jì)PCR引物。EβF合成酶基因的上下游引物為EβF-F1,ccatggctacaaacggcgtc;EβF-R1,ggatcctcaaaagactatggcatcaacaaag擴(kuò)增產(chǎn)物片段大小為1661 bp。PCR反應(yīng)體系為25 μl 2×PCR buffer,1 μl dNTPs,0.2 μl DNA模板,上下游引物各2 μl,1 μl DNA Polymerase,加滅菌水至50 μl,PCR擴(kuò)增程序?yàn)?5℃預(yù)變性3 min,95℃變性15 s,58℃退火15 s,72℃延伸90 s,進(jìn)行35個(gè)循環(huán)最后72℃徹底延伸5 min。擴(kuò)增產(chǎn)物用1.2%瓊脂糖凝膠電泳檢測。
1.5 轉(zhuǎn)基因植株的除草劑抗性檢測
將PCR檢測陽性的幼苗移栽至大田,自交授粉收獲種子。將收獲的玉米種子播種在營養(yǎng)缽內(nèi),放置人工氣候室內(nèi)培養(yǎng),待轉(zhuǎn)基因幼苗長至3葉期時(shí),噴灑0.2%的PPT溶液進(jìn)行除草劑篩選,每天1次,連續(xù)噴灑2,5 d后觀察結(jié)果。
2.1 重組表達(dá)載體pFGC5941-EβF的構(gòu)建
用Nco I和Bam H I對質(zhì)粒pFGC5941進(jìn)行雙酶切,切去的片段大小為1388 bp,瓊脂糖凝膠電泳檢測,產(chǎn)生2條帶,大小與預(yù)期一致。切膠回收長度為10 017 bp的載體骨架。將目的基因與切膠回收得到的載體骨架用T4連接酶進(jìn)行連接(圖1)。
2.2 重組表達(dá)載體鑒定
2.2.1 雙酶切鑒定重組表達(dá)載體pFGC5941-EβF經(jīng)雙酶切后產(chǎn)生10 017 bp的大片段和1661 bp的目的小片段。
雙酶切鑒定結(jié)果表明,目的基因EβF合成酶基因已成功連接到pFGC5941載體上,構(gòu)建的表達(dá)載體pFGC5941-EβF正確(圖2)。
2.2.2 測序鑒定重組表達(dá)載體構(gòu)建后,轉(zhuǎn)化大腸桿菌,提取質(zhì)粒,再對目的基因進(jìn)行測序,經(jīng)與目的基因進(jìn)行比對,序列完全一致,測序結(jié)果見圖3。
2.3 轉(zhuǎn)基因植株獲得
經(jīng)農(nóng)桿菌介導(dǎo)的玉米芽尖遺傳轉(zhuǎn)化、轉(zhuǎn)化后植株的PCR檢測,共得到22株擬轉(zhuǎn)基因植株(圖4)。
2.4 轉(zhuǎn)化植株除草劑抗性分析
圖1 Nco I和BamH I雙酶切電泳圖Fig.1Electrophoretogram of products digested by double enzymes
圖2 重組表達(dá)載體pFGC5941-EβF的雙酶切鑒定Fig.2Identification of the recombinant expression vector pFGC5941-EβF by double enzyme digestion
22株擬轉(zhuǎn)基因植株自交授粉結(jié)實(shí)后,對其后代分別進(jìn)行除草劑抗性篩選,幼苗長至3葉期時(shí),噴灑0.2%的PPT溶液,每天1次,連續(xù)噴灑2 d,5 d后觀察結(jié)果。結(jié)果顯示,22株轉(zhuǎn)化玉米植株中18株表現(xiàn)出除草劑抗性,可初步確定這18株為轉(zhuǎn)基因陽性植株(圖5)。
圖3 EβF合成酶基因的測序Fig.3Sequence of EβF synthase gene
圖4 EβF合成酶基因PCR檢測Fig.4EβF synthase gene PCR detection of putative transformant
圖5 T1代植株除草劑篩選Fig.5T1 plantlets herbicide-resistant test
2.5 轉(zhuǎn)基因陽性植株P(guān)CR檢測
根據(jù)Bar基因序列設(shè)計(jì)PCR引物,上游引物為Bar-F1;gcaccatcgtcaaccactacat下游引物為Bar-R1,tgtgcctccagggacttca擴(kuò)增產(chǎn)物片段大小為286 bp。瓊脂糖凝膠電泳檢測結(jié)果顯示,陽性對照及除草劑抗性植株均能擴(kuò)增出目的基因片段,而陰性對照不能擴(kuò)增出目的條帶。Bar引物擴(kuò)增片段與預(yù)期大小286 bp相符。PCR檢測進(jìn)一步確定了除草劑抗性的18株植株為轉(zhuǎn)基因陽性植株,表明抗蟲基因EβF合成酶基因已整合到玉米基因組中(圖6)。
圖6 Bar基因PCR檢測Fig.6Bar gene PCR detection of putative transformant
本研究將[反]-β-法尼烯(EβF)合成酶基因與植物表達(dá)載體pFGC5941連接,成功構(gòu)建pFGC5941-EβF重組表達(dá)載體,采用液氮凍融法轉(zhuǎn)化農(nóng)桿菌EHA105,然后用農(nóng)桿菌侵染玉米芽尖將EβF合成酶基因轉(zhuǎn)入玉米自交系鄭58,并對轉(zhuǎn)化植株進(jìn)行PCR檢測和除草劑抗性篩選,共獲得18株轉(zhuǎn)基因陽性植株。
英國洛桑研究所2005年從歐洲薄荷中克隆到[反]-β-法尼烯(EβF)合成酶基因,該基因有1653個(gè)核苷酸組成,編碼550個(gè)氨基酸[6]。由于[反]-β-法尼烯(EβF)合成酶基因?qū)ρ料x有明顯的驅(qū)避作用[4,10,13],該基因越來越多地被應(yīng)用到基因工程中。本研究選用的35S啟動(dòng)子是一種強(qiáng)啟動(dòng)子,可提高轉(zhuǎn)基因玉米[反]-β-法尼烯(EβF)的表達(dá)水平,提高其抗蟲性,被廣泛應(yīng)用于植物基因轉(zhuǎn)化中。為了得到更加純合的轉(zhuǎn)基因植株,需要對轉(zhuǎn)基因植株的后代進(jìn)行進(jìn)一步的分子檢測如Southern blotting和Western blotting等,經(jīng)過連續(xù)多代自交篩選,可得到純合的轉(zhuǎn)基因植株。另外,EβF合成酶基因還可以與Bt基因或其他抗蟲基因構(gòu)建雙價(jià)或多價(jià)抗蟲植物表達(dá)載體,拓寬抗蟲譜,培育出具有高效廣譜抗蟲性的轉(zhuǎn)基因玉米。
[1]Bowers W S,Nault L R,Webb R E,et al.Aphid alarm pheromone:I-solation,identification,synthesis[J].Science,1972,177:1121-1122.
[2]Wientjens W H,Lakwijk A C,Van D M.Alarm pheromone of grain aphids[J].Experientia,1973,29:658-660.
[3]Francis F,Martin T,Lognay G,et al.Role of(E)-β-farnesene in systematic aphid prey location by Episyrphus balteatus larvae(Diptera:Syrphidae)[J].European Journal of Entomology,2005,102: 431-436.
[4]Beale M H,Birkett M A,Bruce T J,et al.Aphid alarm pheromone produced by transgenic plants affects aphid and parasitoid behavior[J].Proceedings of the National Academy of Sciences of the USA,2006,103:10509-10513.
[5]Foster S P,Denholm I,Thompson R,et al.Reduced response of insecticide-resistant aphids and attraction of parasitoids to aphid alarm pheromone:a potential fitness trade-off[J].Bulletin of Entomological Research,2005,59:1-10.
[6]Prosser I M,Adams R J,Beale M H,et al.Cloning and functional characterisation of a cismuuroladiene synthase from black peppermint (Mentha×piperita)and direct evidence for a chemotype unable to synthesise farnesene[J].Phytochemistry,2006,67:1564-1571.
[7]Maruyama T,Ito M,Honda G.Molecular cloning,functional expression and characterization of(E)-β-farnesene synthase from Citrus junos[J].Biological&Pharmaceutical Bulletin,2001,24:1171-1175.
[8]Huber D P,Philippe R N,Godard K A,et al.Characterization of four terpene synthase cDNAs from methyl jasmonateinduced Douglas-fir,Pseudotsuga menziesii[J].Phytochemistry,2005,66:1427-1439.
[9]Park S J,Huang Y,Ayoubi P.Identification of expression profiles of sorghum genes in response to greenbug phloem-feeding using Cdna subtraction and microarray analysis[J].Planta,2005,223:932-947.
[10]Kappers I F,Aharoni A,van Herpen T W,et al.Genetic engineering of terpenoid metabolism attracts bodyguards to Arabidopsis[J].Science,2005,309(5743):2070-2072.
[11]Yu X,Zhang Y,Ma Y,et al.Expression of an(E)-β-farnesene synthase gene from Asian peppermint in tobacco affected aphid infestation[J].Crop Journal,2013,1(1):50-60.
[12]Liang G,Xi T Z,F(xiàn)ei Z,et al.Expression of a Peppermint(E)-β-Farnesene Synthase Gene in Rice Has Significant Repelling Effect on Bird Cherry-Oat Aphid(Rhopalosiphum padi)[J].Plant Mol Biol Rep,2015.
[13]Crock J,Wildung M,Croteau R.Isolation and bacterial expression of a sesquiterpene synthase cDNA clone from peppermint(Mentha x piperita L.)that produces the aphid alarm pheromone(E)-β-farnesene[J].Proceedings of the National Academy of Sciences,USA,1997,94:12833-12838.
(責(zé)任編輯 陳虹)
Transformation of(E)-β-farnesene Synthase Gene into Maize and Preliminary Screening
XING Xiao-long1,CHANG Ji-ping1,F(xiàn)U Zhong-jun2,HU De-sheng1,HU Yan-min1*
(1.College of Agronomy,Henan Agricultural University/Collaborative Innovation Center of Henan Grain Crops,Henan Zhengzhou 450002,China;2.Chongqing Academy of Agricultural Sciences,Chongqing 401329,China)
To obtain insect-resistant transgenic maize,(E)-β-farnesene synthase gene was transferred into maize,which was identified and screened.The Nco I and Bam H I enzyme cutting sites were separately added at both ends of the(E)-β-farnesene synthase gene.This sequence was artificially synthesized.The desired gene was ligated into vector pFGC5941 by double enzyme digestion and DNA ligase to construct ecombinant expression vector pFGC5941-EβF,which were sequenced and identified by double enzyme digestion.The result showed that the vector pFGC5941-EβF was successfully constructed.Then pFGC5941-EβF was transformed into Agrobacterium tumefaciens EHA105 that infected shoot apical growing point of maize Zheng58.The transgenic maize plants were identified by herbicide-resistant and PCR amplification for bar and EβF synthase genes,and a total of 18 positive transgenic maize plants were obtained.
(E)-β-farnesene synthase gene;Maize;Construction of expression vector;Transgenic plants
S513.038
A
1001-4829(2017)1-0001-04
10.16213/j.cnki.scjas.2017.1.001
2016-01-10
國家自然科學(xué)基金項(xiàng)目(31071431)
邢小龍(1989-),男,河南舞陽人,從事玉米生物技術(shù)育種研究,E-mail:xingxiaolong2013@163.com,*為通訊作者:胡彥民,E-mail:huyanmin007@163.com。