熊維玲 甘樺源
摘 要:利用李群分析法得到(3+1)維Jimbo-Miwa方程的一個(gè)對(duì)稱和兩個(gè)對(duì)稱約化方程.通過行波變換將對(duì)稱約化方程轉(zhuǎn)換為復(fù)域的常微分方程,給出復(fù)域的常微分方程的亞純解結(jié)構(gòu),從而得到了(3+1)維Jimbo-Miwa方程的兩類非行波解的結(jié)構(gòu),并給出該方程的新的非行波精確解.
關(guān)鍵詞:(3+1)維Jimbo-Miwa方程;非行波解;李群分析法;對(duì)稱約化方程;精確解
中圖分類號(hào):O175.4 文獻(xiàn)標(biāo)志碼:A
0 引言
參考文獻(xiàn)
[1] WAZ A M. New solutions of distinct physical structures to high-dimensional nonlinear evolution equations[J].Applied Mathematics and Computation, 2008,196(1):363-370.
[2] 李富志,劉希強(qiáng). Jimbo-Miwa方程的對(duì)稱約化及不變解[J].量子電子學(xué)報(bào),2008,25(2):155-160.
[3] 傅海明,戴正德. Jimbo-Miwa方程的周期孤波解[J].河南科技大學(xué)學(xué)報(bào)(自然科學(xué)版),2009,30(3):92-95.
[4] 田疇.李群及其在微分方程中的應(yīng)用[M].北京:科學(xué)技術(shù)出版社,2001.
[5] YUAN W Y,LI Y Z,LIN J M. Meromorphic solutions of an auxiliary ordinary differential equation using complex method[J]. Mathematical Methods in the Applied Sciences,2013,36(13):1776-1782.
[6] LANG S. Elliptcic Function[M].2nd ed. New York:Springer Verlag,1987.
[7] 熊維玲,梁海珍.(3+1)維Kdv-Zakharov-Kuznetsev 方程的亞純行波解[J].廣西科技大學(xué)學(xué)報(bào),2015,26(4):9-15.
[8] 何曉瑩,趙展輝.(3+1)維非線性方程的呼吸類和周期類孤子解[J].廣西科技大學(xué)學(xué)報(bào),2015,26(4):18-20.
Abstract: In this paper, the extract solutions for (3+1)-D Jimbo-Miwa equation have been investigated. One symmetry and two symmetry reduced equations of (3+1)-D Jimbo-Miwa equation are obtained by Lie-group analysis method, which are changed into ordinary differential equations in complex domain by traveling wave transformation. The two classes of non traveling wave solutions for (3+1)-D Jimbo-Miwa equation are constructed making use of the structure of meromorphic solutions for the corresponding ordinary differential equations in complex domain. Meanwhile, the new non traveling wave extract solutions for it are obtained.
Key words:(3+1)-D Jimbo-Miwa equation; non traveling wave solution; Lie-group analysis method; symmetry reduced equation; extract solutions
(學(xué)科編輯:張玉鳳)