楊天龍 王淑玲 顧招兵 朱仁俊 劉旭川 張春勇 楊舒黎 毛華明 冷靜
摘要:【目的】從分子生物學(xué)水平對(duì)獨(dú)龍牛的瘤胃纖維素酶基因資源進(jìn)行篩選及酶學(xué)特性研究,為后續(xù)開(kāi)發(fā)利用新的纖維素酶提供參考依據(jù),也為揭示瘤胃微生物降解纖維素的作用機(jī)理打下基礎(chǔ)。【方法】提取獨(dú)龍牛瘤胃微生物中的大片段基因組DNA,構(gòu)建瘤胃微生物基因組文庫(kù),并進(jìn)行纖維素酶活性篩選,篩選獲得的高活性基因經(jīng)測(cè)序后進(jìn)行生物信息學(xué)分析與酶學(xué)性質(zhì)研究?!窘Y(jié)果】從獨(dú)龍牛瘤胃中共獲得20352個(gè)陽(yáng)性克隆,白斑率達(dá)92%,構(gòu)建的瘤胃微生物基因組文庫(kù)容量899.6 Mb,空載率1.82%。從瘤胃微生物基因組文庫(kù)篩選獲得2個(gè)具有纖維素酶活性的陽(yáng)性克?。˙1和B2),其中,B1基因序列長(zhǎng)1230 bp,編碼409個(gè)氨基酸,基因編碼產(chǎn)物與來(lái)自Ruminococcus albus纖維素酶基因編碼產(chǎn)物(β-1,4-內(nèi)切葡聚糖酶,GenBank登錄號(hào)P23661.1)的覆蓋率高達(dá)99%,其同源性高達(dá)97%;B2基因序列長(zhǎng)1002 bp,編碼333個(gè)氨基酸,基因編碼產(chǎn)物與Uncultured microorganism纖維素酶基因編碼產(chǎn)物(纖維糊精酶,GenBank登錄號(hào)ADB80112.1)的覆蓋率高達(dá)99%,其同源性為83%。B1和B2基因可在Rosetta原核表達(dá)宿主菌中成功誘導(dǎo)表達(dá),B1纖維素酶的最適pH為6.0,最適溫度40 ℃;B2纖維素酶的最適pH為6.0,最適溫度40~50 ℃。【結(jié)論】從構(gòu)建的獨(dú)龍牛瘤胃微生物基因文庫(kù)中篩選獲得2株具有較高活力的纖維素酶(B1和B2),其中,B1為β-1,4-內(nèi)切葡聚糖酶,而B(niǎo)2為新的纖維糊精酶,可為纖維素的體外降解提供新型材料。
關(guān)鍵詞: 獨(dú)龍牛瘤胃;基因文庫(kù);纖維素酶;克隆
中圖分類號(hào): S823.89 文獻(xiàn)標(biāo)志碼:A 文章編號(hào):2095-1191(2017)05-0901-06
Gene clone of Gayal rumen bacteria cellulase
YANG Tian-long 1, WANG Shu-ling 1, GU Zhao-bing 2, ZHU Ren-jun2, LIU Xu-chuan 2, ZHANG Chun-yong 1,2, YANG Shu-li1,2, MAO Hua-ming 1,2, LENG Jing 1,2 *
(1 Yunnan Provincial Key Laboratory of Animal Nutrition and Feed Science, Kunming 650201, China; 2 College of Animal Science and Technology, Yunnan Agricultural University, Kunming 650201, China)
Abstract:【Objective】Rumen bacteria cellulase gene resources of Gayal were selected and enzymatic characteristics were studied from molecular biology level, so as to provide reference for development and utilization of new cellulases, and lay foundation for revealing the machenism of cellulose degradation. 【Method】Large fragment genome DNA was extracted from Gayal rumen microorganisms to establish rumen microorganism gene library and select cellulase activity. The selected genes with high activity were sequenced, and studied in bioinformatics and enzymatic characteristics. 【Result】20352 positive clones were obtained, the white spot rate reached 92%, the library capacity was 899.6 Mb, no load rate was 1.82%. Two positive clones with cellulase activity were obtained(B1 and B2). B1 gene sequence length was 1230 bp, encoding 409 amino acids, the coverage rate of its encoding product and encoding product from Ruminococcus albus cellulase gene(β-1,4-endoglucanase, GenBank accession number P23661.1) reached 99%, and their homology was up to 97%. B2 gene sequence length was 1002 bp, encoding 333 amino acids, coverage rate of its encoding product and encoding product from Uncultured microorganism cellulase gene(cellodextrinase, GenBank accession number ADB80112.1) reached 99% and homology was 83%. B1 and B2 genes could be induced in Rosetta prokaryotic expression host bacteria. The optimum conditions for B1 cellulase were pH 6.0 and temperature 40 ℃, and for B2 cellulase were pH 6.0 and temperature 40-50 ℃. 【Conclusion】Two strains with high-activity cellulase(B1 and B2) are selected from rumen microorganism gene library established. B1 is β-1,4-endoglucanase and B2 is cellodextrinase. They can serve as new materials for degradation of crude fiber in vitro.
Key words: Gayal rumen; genomic library; cellulase; clone
0 引言
【研究意義】纖維素和半纖維素在自然界中儲(chǔ)備量極大,是含量最多的可再生資源,其開(kāi)發(fā)利用被認(rèn)為是緩解能源問(wèn)題的最有效途徑之一(陳富榮等,2010)。纖維素酶是指能有效降解纖維素的一系列酶總稱(范東等,2016),根據(jù)其組成與功能一般分為內(nèi)切葡聚糖酶、外切葡聚糖酶和β-葡萄糖苷酶。這3種酶通過(guò)協(xié)同作用可將纖維素進(jìn)行有效降解(Jeffries et al.,2007)。纖維素酶除了在降解纖維素類生物質(zhì)方面發(fā)揮重要作用外,在其他工業(yè)領(lǐng)域也具有很高的應(yīng)用價(jià)值,如在飼料、食品、紡織、造紙、環(huán)保、醫(yī)藥等領(lǐng)域均有廣泛應(yīng)用(Cha et al.,2007;Li et al.,2009)。纖維素酶的來(lái)源非常廣泛,原生動(dòng)物、微生物(細(xì)菌、真菌、古菌、放線菌等)均具有合成與分泌纖維素酶的能力(Bhat and Bhat,1997),但因其穩(wěn)定性、活性、靈敏度等的局限,目前尚無(wú)法滿足工業(yè)生產(chǎn)需求(Ko et al.,2011)。因此,需要發(fā)掘新型高效纖維素酶以解決粗纖維和生物燃料轉(zhuǎn)化的瓶頸問(wèn)題?!厩叭搜芯窟M(jìn)展】至今,有關(guān)反芻獸瘤胃微生物的分離鑒定研究已有較多報(bào)道。Krause和Russell(1996)通過(guò)多樣性分析,發(fā)現(xiàn)從瘤胃中分離獲得的主要微生物有20多種;Stevenson和Weimer(2007)通過(guò)16S rRNA檢測(cè),發(fā)現(xiàn)黃色瘤胃球菌、白色瘤胃球菌和產(chǎn)琥珀酸絲狀桿菌等優(yōu)勢(shì)菌僅占瘤胃微生物的很小一部分。采用傳統(tǒng)分離培養(yǎng)方法,自然界99%的微生物無(wú)法在實(shí)驗(yàn)室中分離培養(yǎng)(Kellenberger,2001),進(jìn)而限制了人們對(duì)瘤胃微生物種類及作用的認(rèn)識(shí)。宏基因組學(xué)、宏轉(zhuǎn)錄組學(xué)等新型組學(xué)技術(shù)不依賴分離培養(yǎng),可直接用于研究瘤胃微生物的DNA和RNA。朱雅新等(2007)成功構(gòu)建了荷斯坦奶牛瘤胃微生物元基因組BAC文庫(kù),并從BAC文庫(kù)中篩選出16個(gè)具有淀粉酶活性的陽(yáng)性克隆和26個(gè)具有纖維素酶活性的陽(yáng)性克隆。姜海琴等(2015)從已構(gòu)建的安徽白山羊基因文庫(kù)中篩選出1個(gè)新型纖維素酶基因,以pET28a(+)為載體、大腸桿菌BL21(DE3)為表達(dá)宿主菌,經(jīng)1 mmol/L IPTG誘導(dǎo)7 h后融合蛋白大量表達(dá)。此外,還可通過(guò)組學(xué)手段研究微生物的結(jié)構(gòu)與功能。Güllert等(2016)采用宏基因組與宏轉(zhuǎn)錄組學(xué)相結(jié)合的方法分析工業(yè)沼氣罐、奶牛瘤胃和大象糞便,結(jié)果顯示,沼氣罐中厚壁菌門(mén)(Firmicutes)∶擬桿菌門(mén)(Bacteroidetes)為2.8∶1.0,在大象糞便中為1.0∶1.0,在牛瘤胃中為1.4∶1.0,因此認(rèn)為厚壁菌門(mén)與擬桿菌門(mén)比例越接近1.0∶1.0,越能提高纖維素的水解能力?!颈狙芯壳腥朦c(diǎn)】獨(dú)龍牛主產(chǎn)于我國(guó)云南貢山縣獨(dú)龍江一帶,以竹子、蘆葦、雜草等粗纖維含量高的植物為食。由于長(zhǎng)期生活在惡劣的環(huán)境下,獨(dú)龍牛形成了耐粗飼、抗高寒等極強(qiáng)的抗逆特性(Deng et al.,2007;Xi et al.,2007),但這種特性是否與其瘤胃微生物密切相關(guān)(Krause et al.,2003)仍有待進(jìn)一步探究?!緮M解決的關(guān)鍵問(wèn)題】通過(guò)構(gòu)建獨(dú)龍牛瘤胃微生物的宏基因文庫(kù),從分子生物學(xué)水平對(duì)獨(dú)龍牛的瘤胃纖維素酶基因資源進(jìn)行篩選及酶學(xué)特性研究,以期為后續(xù)開(kāi)發(fā)利用新的纖維素酶提供參考依據(jù),也為揭示瘤胃微生物降解纖維素的作用機(jī)理打下基礎(chǔ)。
1 材料與方法
1. 1 獨(dú)龍牛瘤胃微生物基因文庫(kù)構(gòu)建
從云南貢山縣(東經(jīng)98°39′99″,北緯27°46′15″,海拔2260 m)采集5頭獨(dú)龍牛的瘤胃內(nèi)容物,采集樣品-80 ℃保存。取50 g瘤胃樣品與135 mL DNA提取溶液[100 mmol/L Tris/NaCl,pH 8.0,100 mmol/L EDTA-Na,100 mmol/L NaH2PO4,1.5 mol/L NaCl,1%十六烷基三甲基溴化銨(CTAB)]混合,參照Rondon等(2015)的方法提取瘤胃微生物大片段基因組DNA。以瓊脂糖凝膠回收試劑盒純化和回收10~100 kb的DNA,與pCC1BAC載體連接,經(jīng)脫鹽與電轉(zhuǎn)后涂布于LB培養(yǎng)基(氯霉素12.5 μg/mL,X-Gal 40 μg/mL,APTG 0.4 mmol/L)上,構(gòu)建獨(dú)龍牛瘤胃微生物基因文庫(kù)。
1. 2 文庫(kù)纖維素酶基因篩選
對(duì)構(gòu)建的獨(dú)龍牛瘤胃微生物基因文庫(kù)進(jìn)行庫(kù)容量和穩(wěn)定性分析,并采用剛果紅染色法對(duì)該文庫(kù)進(jìn)行酶活性篩選(Teather and Wood,1982;鐘國(guó)祥等,2015),根據(jù)菌落周圍的水解圈直徑分析其產(chǎn)酶性能。將陽(yáng)性克隆抽提質(zhì)粒,用Not I于37 ℃下酶切,酶切產(chǎn)物以瓊脂糖凝膠電泳進(jìn)行檢測(cè);同時(shí)用Hind III和BamH I對(duì)陽(yáng)性克隆質(zhì)粒插入片段的多樣性進(jìn)行檢測(cè)。
1. 3 纖維素酶基因表達(dá)分析
1. 3. 1 纖維素酶序列分析與鑒定 將篩選出具有纖維素酶活性的陽(yáng)性克隆送至華大基因公司進(jìn)行測(cè)序,測(cè)序結(jié)果通過(guò)ExPASy(http://www.expasy.org/tools/pi_
tool.html)預(yù)測(cè)其編碼蛋白的等電點(diǎn)和分子量,采用SMART(http://smart.embl-heidelberg.de/)對(duì)編碼的蛋白序列進(jìn)行結(jié)構(gòu)域分析,最后用GenBank數(shù)據(jù)庫(kù)中的BLAST進(jìn)行同源性比對(duì)分析。
1. 3. 2 纖維素酶基因克隆與表達(dá) 針對(duì)從瘤胃微生物基因文庫(kù)中篩選獲得的纖維素酶基因設(shè)計(jì)特異引物序列進(jìn)行PCR擴(kuò)增。PCR擴(kuò)增產(chǎn)物經(jīng)1%瓊脂糖凝膠電泳檢測(cè)后,進(jìn)行雙酶切鑒定和回收,與pET28-a載體連接后轉(zhuǎn)化至DH5α感受態(tài)細(xì)胞,篩選陽(yáng)性重組質(zhì)粒進(jìn)行測(cè)序,以驗(yàn)證序列的正確性。
1. 4 酶學(xué)性質(zhì)研究
酶活性測(cè)定:采用羧甲基纖維素鈉(CMC-Na)法測(cè)定酶活性,即向25.0 mL具塞試管中加入1.5 mL的1% CMC-Na溶液(以0.2 mol/L HAc-NaAc緩沖液配制,pH 4.6),置于40 ℃水浴中預(yù)熱5 min,加0.5 mL適當(dāng)稀釋的酶液,40 ℃反應(yīng)30 min,加入DNS試劑,沸水浴顯色后定容至25.0 mL,搖勻。以相同條件下沸水浴滅活5 min的酶液為空白對(duì)照,在540 nm波長(zhǎng)處測(cè)定吸光值,然后在葡萄糖標(biāo)準(zhǔn)曲線上求得生成的葡萄糖量。在上述反應(yīng)條件下,1 min水解CMC-Na產(chǎn)生1 μg葡萄糖的酶用量定義為1個(gè)酶活性單位,以U表示。
酶最適pH測(cè)定:分別配制pH為3.0、3.5、4.0、4.5、5.0、5.5、6.0、7.0和8.0的磷酸氫二鈉—檸檬酸緩沖液,按照上述方法測(cè)定在40 ℃下不同pH緩沖液中的酶活性。酶最適溫度測(cè)定:在酶最適pH條件下測(cè)定25、30、35、40、45、50、55和60 ℃等溫度下的酶活性。
2 結(jié)果與分析
2. 1 獨(dú)龍牛瘤胃微生物基因文庫(kù)構(gòu)建及纖維素酶基因克隆篩選結(jié)果
以瓊脂糖凝膠回收試劑盒收集10~100 kb的酶切DNA片段,得到0.1~0.4 μg/mL獨(dú)龍牛瘤胃液DNA。然后與酶切處理好的pCC1BAC載體進(jìn)行連接,經(jīng)脫鹽與電轉(zhuǎn)后最終獲得含20352個(gè)陽(yáng)性克隆的瘤胃微生物基因組文庫(kù),白斑率達(dá)92%。
從獨(dú)龍牛瘤胃微生物基因組文庫(kù)20352個(gè)克隆中隨機(jī)挑取55個(gè)克隆的質(zhì)粒進(jìn)行Hind Ⅲ酶切,結(jié)果統(tǒng)計(jì)得到空載1個(gè)(空載率1.82%),構(gòu)建的文庫(kù)容量899.6 Mb。隨機(jī)挑取插入片段較合適的3個(gè)克隆進(jìn)行4次連續(xù)轉(zhuǎn)接培養(yǎng),并對(duì)Hind Ⅲ酶切指紋圖譜進(jìn)行對(duì)比分析,未發(fā)現(xiàn)有任何2個(gè)克隆的Hind Ⅲ酶切指紋圖譜存在明顯變化,充分證明克隆能穩(wěn)定繁殖。從構(gòu)建的獨(dú)龍牛瘤胃微生物基因文庫(kù)挑選出5200個(gè)克隆,結(jié)果獲得2個(gè)具有纖維素酶活性的陽(yáng)性克隆,分別命名為B1和B2。
2. 2 纖維素酶基因的序列測(cè)定分析結(jié)果
將具有纖維素酶活性的2個(gè)陽(yáng)性克隆送至華大基因公司測(cè)序,得到的測(cè)序峰峰值較單一(圖1)。B1和B2基因經(jīng)驗(yàn)證測(cè)序后,通過(guò)NCBI上的ORF Finder(http://www.ncbi.nlm.nih.gov/gorf/)細(xì)菌蛋白翻譯尋找開(kāi)放閱讀框,得知B1纖維素酶編碼基因長(zhǎng)1230 bp,編碼409個(gè)氨基酸;B2纖維素酶編碼基因長(zhǎng)1002 bp,編碼333個(gè)氨基酸。ExPASy預(yù)測(cè)結(jié)果顯示,B1理論等電點(diǎn)為4.41,分子量45517.64 Da;B2理論等電點(diǎn)為5.11,分子量38934.68 Da。SMART分析結(jié)果表明,B1蛋白的氨基酸序列顯示第1~23個(gè)氨基酸是信號(hào)肽,第86~373個(gè)氨基酸是糖苷水解酶家族5功能域;B2蛋白的氨基酸序列顯示第1~23個(gè)氨基酸是信號(hào)肽,第30~331個(gè)氨基酸是糖苷水解酶家族5功能域。BLAST分析得知,B1基因編碼產(chǎn)物與來(lái)自Ruminococcus albus纖維素酶基因編碼產(chǎn)物(β-1,4-內(nèi)切葡聚糖酶,GenBank登錄號(hào)P23661.1)的覆蓋率高達(dá)99%,其同源性最高達(dá)97%,而與其他來(lái)自不同細(xì)菌纖維素酶基因編碼產(chǎn)物的同源性均低于90%(圖2);B2基因編碼產(chǎn)物與Uncultured microorganism纖維素酶基因編碼產(chǎn)物(纖維糊精酶,GenBank登錄號(hào)ADB80112.1)的覆蓋率達(dá)99%,同源性最高達(dá)83%,而與其他來(lái)自不同細(xì)菌纖維素酶基因編碼產(chǎn)物的同源性均低于70%(圖3)。
2. 3 纖維素酶基因的克隆與原核表達(dá)
經(jīng)重組質(zhì)粒pET28a-B1/B2轉(zhuǎn)化的Rosetta原核表達(dá)宿主菌,以1.0 mmol/L IPTG誘導(dǎo)表達(dá)5 h后收集菌體,經(jīng)超聲波破碎,離心收集沉淀和上清液。分別取80 μL上清液和溶解沉淀,經(jīng)SDS-PAGE電泳檢測(cè),發(fā)現(xiàn)重組菌經(jīng)IPTG誘導(dǎo)表達(dá),B1和B2融合蛋白分別在分子量約45.5和38.9 kD處有一條明顯條帶(圖4),而空載體宿主菌在誘導(dǎo)前和誘導(dǎo)后幾乎沒(méi)有區(qū)別,與預(yù)期結(jié)果一致。
2. 4 B1和B2融合蛋白的酶學(xué)特性
超聲波破碎后離心收集的上清液用孔徑0.22 μm的濾器過(guò)濾,所得液體即為粗酶液,4 ℃保存或直接用于酶活性測(cè)定。在40 ℃水浴條件下,分別測(cè)定B1和B2纖維素酶在pH為3.0、3.5、4.0、4.5、5.0、5.5、6.0、7.0和8.0時(shí)的酶活性,結(jié)果(圖5)表明,B1和B2纖維素酶的最適pH在6.0左右。在pH 6.0的條件下,分別測(cè)定B1和B2纖維素酶在溫度為25、30、35、40、45、50、55、60、65和70 ℃時(shí)與底物反應(yīng)30 min的酶活性,結(jié)果(圖6)表明,B1纖維素酶的最適反應(yīng)溫度在40 ℃左右,B2纖維素酶的最適反應(yīng)溫度在40~50 ℃。
3 討論
纖維素是地球上分布最廣、含量最高的生物質(zhì)和糖類資源。但由于技術(shù)上的局限,人們對(duì)纖維素的利用仍然十分有限。反芻動(dòng)物能高效利用纖維素,這種特有的消化功能是由其瘤胃內(nèi)大量的微生物所賦予。目前,已從牛的瘤胃中提取獲得一些纖維素酶(Liu et al.,2009;Shedova et al.,2009;Bao et al.,2011)。本研究通過(guò)提取獨(dú)龍牛瘤胃未培養(yǎng)微生物的基因組DNA,成功構(gòu)建了一個(gè)宏基因組文庫(kù),隨后進(jìn)行活性篩選得到2個(gè)纖維素酶陽(yáng)性克?。˙1和B2),經(jīng)原核表達(dá)能獲得與預(yù)期結(jié)果一致的目的融合蛋白,說(shuō)明B1和B2基因能在原核生物中誘導(dǎo)表達(dá)。
至今,關(guān)于β-1,4-內(nèi)切葡聚糖酶的研究較多,并證實(shí)內(nèi)切葡聚糖酶是影響革蘭氏陰性內(nèi)生細(xì)菌定殖的主要因素之一(Reinhold-Hurek et al.,2006)。范曉靜等(2014)研究表明,內(nèi)生芽孢桿菌BS2菌株β-1,4-內(nèi)切葡聚糖酶活力與其在小白菜體內(nèi)的定殖數(shù)量呈正相關(guān),隨著β-1,4-內(nèi)切葡聚糖酶表達(dá)量的增加,內(nèi)生芽孢桿菌BS2菌株的定殖效果越優(yōu)。本研究采用BLAST進(jìn)行同源性比對(duì)分析,發(fā)現(xiàn)B1基因編碼產(chǎn)物與來(lái)自Ruminococcus albus纖維素酶基因編碼產(chǎn)物(β-1,4-內(nèi)切葡聚糖酶)的覆蓋率高達(dá)99%,其同源性高達(dá)97%。表明某些纖維素酶除了專一地對(duì)底物直接作用外,在增強(qiáng)定殖效果方面還具有很強(qiáng)的促進(jìn)作用,可經(jīng)改造后進(jìn)一步開(kāi)發(fā)利用。纖維素降解體系是一個(gè)多酶協(xié)同作用體系,每種酶都在發(fā)揮各自的作用(Mach-Aigner et al.,2008;Harris et al.,2010;Hori et al.,2011;Langston et al.,2011)。在纖維糊精酶基因研究方面,莊永紅等(2008)將編碼纖維糊精酶DM1(GenBank索引號(hào)ACA61162)的催化功能域DNA序列與其他3種菌合成的纖維素結(jié)合功能域和連接橋的DNA序列進(jìn)行融合,構(gòu)建了3個(gè)融合酶基因,并分別在大腸桿菌BL21菌株中得到過(guò)量表達(dá),但對(duì)纖維素的水解效果不理想。本研究結(jié)果表明,B2基因編碼產(chǎn)物與Uncultured microorganism纖維素酶基因編碼產(chǎn)物(纖維糊精酶)的覆蓋率達(dá)99%,同源性達(dá)83%;其最適pH在6.0左右,最適溫度在40~50 ℃,其他酶學(xué)特性有待進(jìn)一步探究。
雖然目前已有纖維素酶在瘤胃中被發(fā)現(xiàn)與利用(朱雅新等,2007;陳富榮等,2010;姜海琴等,2015),且一些纖維素酶經(jīng)改造后可投入生產(chǎn),但高效纖維素酶缺乏仍是粗纖維利用的瓶頸。本研究篩選獲得的B2基因經(jīng)鑒定為一個(gè)新型纖維素酶基因,其編碼產(chǎn)物的酶活力強(qiáng),具有較高的研究?jī)r(jià)值,可為纖維素的體外降解提供新型材料。
4 結(jié)論
從構(gòu)建的獨(dú)龍牛瘤胃微生物基因文庫(kù)中篩選獲得2株具有較高活力的纖維素酶(B1和B2),其中,B1為β-1,4-內(nèi)切葡聚糖酶,而B(niǎo)2為新的纖維糊精酶,可為纖維素的體外降解提供新型材料。
參考文獻(xiàn):
陳富榮,朱雅新,東秀珠,劉麗華,黃力,戴欣. 2010. 瘤胃木質(zhì)纖維素降解菌及降解酶基因的研究進(jìn)展[J]. 微生物學(xué)報(bào),50(8):981-987. [Chen F R,Zhu Y X,Dong X Z,Liu L H,Huang L,Dai X. 2010. Lignocellulose degrading bacteria and their genes encoding cellulase/hemicellulase in rumen—A review[J]. Acta Microbiologica Sinica,50(8):981-987.]
范東,劉世操,祝愛(ài)俠,陳帆. 2016. 香菇菌糠纖維素酶的提取工藝優(yōu)化[J]. 江西農(nóng)業(yè)學(xué)報(bào),28(5):83-87. [Fan D,Liu S C,Zhu A X,Chen F. 2016. Optimization of cellulase extraction process of waste material from mushroom(Lentinus edodes)[J]. Acta Agriculturae Jiangxi,28(5):83-87.]
范曉靜,楊瑞先,邱思鑫,胡方平. 2014. 內(nèi)生芽孢桿菌BS2的β-1,4-內(nèi)切葡聚糖酶基因與定殖相關(guān)性[J]. 中國(guó)農(nóng)業(yè)科學(xué),47(2):262-272. [Fan X J,Yang R X,Qiu S X,Hu F P. 2014. Relationship between β-1,4-endoglucanase gene in endophytic Bacillus strain BS2 and its colonization in plant[J]. Scientia Agricultura Sinica,47(2):262-272.]
姜海琴,程建波,王力生,李呂木,范彩云. 2015. 山羊瘤胃微生物宏基因組文庫(kù)中一個(gè)新型纖維素酶基因的克隆與表達(dá)[J]. 安徽農(nóng)業(yè)大學(xué)學(xué)報(bào),42(2):209-212. [Jiang H Q, Cheng J B, Wang L S, Li L M, Fan C Y. 2015. Cloning and expression of a new cellulase gene from the metagenomic library of the goat rumen[J]. Journal of Anhui Agricultural University,42(2):209-212.]
鐘國(guó)祥,姚健,張誠(chéng),王洪秀,馬吉平,陳柳萌,陳慶隆. 2015. 纖維素降解菌的篩選及其酶學(xué)性質(zhì)研究[J]. 江西農(nóng)業(yè)學(xué)報(bào),27(6):85-89. [Zhong G X,Yao J,Zhang C,Wang H X,Ma J P,Chen L M,Chen Q L. 2015. Screening and enzymatic properties of cellulose-degrading bacterium[J]. Acta Agriculturae Jiangxi,27(6):85-89.]
朱雅新,王加啟,馬潤(rùn)林,黃力,董志揚(yáng). 2007. 荷斯坦奶牛瘤胃微生物元基因組BAC文庫(kù)的構(gòu)建與分析[J]. 微生物學(xué)報(bào),47(2):213-216. [Zhu Y X,Wang J Q,Ma R L,Huang L,Dong Z Y. 2007. Construction and analysis of rumen bacterial artificial chromosome library from a dairy cow rumen microflora[J]. Acta Microbiologica Sinica,47(2):213-216.]
莊永紅,劉利,段承杰,唐紀(jì)良,馮家勛. 2008. 纖維糊精酶DM1與CBD的融合及融合酶性質(zhì)分析[J]. 廣西農(nóng)業(yè)生物科學(xué),27(4):365-371. [Zhuang Y H,Liu L,Duan C J,Tang J L,F(xiàn)eng J X. 2008. Fused cellodextrinase DM1 with CBDs and characterization of fused enzymes[J]. Journal of Guangxi Agricultural and Biological Science,27(4):365-371.]
Bao L,Huang Q,Chang L,Zhou J,Lu H. 2011. Screening and characterization of a cellulase with endocellulase and exocellulase activity from yak rumen metagenome[J]. Journal of Molecular Catalysis B:Enzymatic,73(1-4):104-110.
Bhat M K,Bhat S. 1997. Clulose degrading enzymes and their potential industrial applications[J]. Biotechnology Advances,15(3-4):583-620.
Cha J,Matsuoka S,Chan H,Yukawa H,Inui M,Doi R H. 2007. Effect of multiple copies of cohesins on cellulase and hemicellulase activities of Clostridium cellulovorans mini-cellulosomes[J]. Journal of Microbiology & Biotechnology,17(11):1782-1788.
Deng W,Wang L,Ma S,Jin B,He T,Yang Z,Mao H,Wanapat M. 2007. Comparison of Gayal(Bos frontalis) and Yunnan yellow cattle(Bos taurus):Rumen function,digestibilities and nitrogen balance during feeding of pelleted lucerne(Medi-
cago sativum)[J]. Asian-Australasian Journal of Animal Sciences,20(20):900-907.
Güllert S,F(xiàn)ischer M A,Turaev D,Noebauer B,Ilmberger N,Wemheuer B,Alawi M,Rattei T,Daniel R,Schmitz R A,Grundhoff A,Streit W R. 2016. Deep metagenome and metatranscriptome analyses of microbial communities affilia-
ted with an industrial biogas fermenter,a cow rumen,and elephant feces reveal major differencess in carbohydrate hydrolysis strategies[J]. Biotechnology for Biofuels,9:121.
Harris P V,Welner D,McFarland K C,Re E,Navarro Poulsen J C,Brown K,Salbo R,Ding H,Vlasenko E,Merino S,Xu F,Cherry J,Larsen S,Lo Leggio L. 2010. Stimulation of lignocellulosic biomass hydrolysis by proteins of glycoside hydrolase family 61:Structure and function of a large,enigmatic family[J]. Biochemistry,49(15):3305-3316.
Hori C,Igarashi K,Katayama A,Samejima M. 2011. Effects of xylan and starch on secretome of the basidiomycete Phanerochaete chrysosporium grown on cellulose[J]. FEMS Microbiology Letters,321(1):14-23.
Jeffries T W,Grigoriev I V,Grimwood J,Laplaza J M,Aerts A,Salamov A,Schmutz J,Lindquist E,Dehal P,Shapiro H,Jin Y S,Passoth V,Richardson P M. 2007. Genome sequence of the lignocellulose-bioconverting and xylose-fermenting yeast Pichia stipitis[J]. Nature Biotechnology,25(3):319-326.
Kellenberger E. 2001. Exploring the unknown. The silent revolution of microbiology[J]. EMBO Reports,2(1):5-7.
Ko K C,Han Y,Choi J H,Kim G J,Lee S G,Song J J. 2011. A novel bifunctional endo-/exo-type cellulase from an anaerobic ruminal bacterium[J]. Applied Microbiology and Bio-
technology,89(5):1453-1462.
Krause D O,Denman S E,Mackie R I,Morrison M,Rae A L,Attwood G T,McSweeney C S. 2003. Opportunities to improve fiber degradation in the rumen:Microbiology,ecology,and genomics[J]. FEMS Microbiology Reviews,27(5):663-693.
Krause D O,Russell J B. 1996. How many ruminal bacteria are there?[J]. Journal of Dairy Science,79(8):1467-1475.
Langston J A,Shaghasi T,Abbate E,Xu F,Vlasenko E,Sweeney M D. 2011. Oxidoreductive cellulose depolymerization by the enzymes cellobiose dehydrogenase and glycoside hydrolase 61[J]. Applied and Environmental Microbiology,77(19):7007-7015.
Li X H,Yang H J,Roy B,Wang D,Yue W F,Jiang L J,Park E Y,Miao Y G. 2009. The most stirring technology in future:Cellulase enzyme and biomass utilization[J]. African Journal of Biotechnology,8(11):2418-2422.
Liu L,F(xiàn)eng Y,Duan C J,Pang H,Tang J L,F(xiàn)eng J X. 2009. Isolation of a gene encoding endoglucanase activity from uncultured microorganisms in buffalo rumen[J]. World Journal of Microbiology and Biotechnology,25(6):1035-1042.
Mach-Aigner A R,Pucher M E,Steiger M G,Steiger M G,Bauer G E,Preis S J,Mach R L. 2008. Transcriptional regulation of xyr1,encoding the main regulator of the xylanolytic and cellulolytic enzyme system in Hypocrea jecorina[J]. Applied and Environmental Microbiology,74(21):6554-6562.
Reinhold-Hurek B,Maes T,Gemmer S,Van Montagu M,Hurek T. 2006. An endoglucanase is involved in infection of rice roots by the not-cellulose-metabolizing endophyte Azoarcus sp. strain BH72[J]. Molecular Plant-Microbe Interactions,19(2):181-188.
Rondon M R,Raffel S J,Goodman R M,Handelsman J. 2015. Toward functional genomics in bacteria:Analysis of gene expression in Escherichia coli from a bacterial artificial chromosome library of Bacillus cereus[J]. Proceedings of the National Academy of Sciences of the United States of America,96(11):6451-6455.
Shedova E N,Lunina N A,Berezina O V,Zverlov V V,Schwarz V,Velikodvorskaia G A. 2009. Expression of the genes CelA and XylA isolated from a fragment of metagenomic DNA in Escherichia coli[J]. Molekuliarnaia Genetika,Mikrobiologiia I Virusologiia,(2):28-32.
Stevenson D M,Weimer P J. 2007. Dominance of Prevotella and low abundance of classical ruminal bacterial species in the bovine rumen revealed by relative quantification real-time PCR[J]. Applied Microbiology and Biotechnology,75(1):165-174.
Teather R M,Wood P J. 1982. Use of Congo red-polysaccharide interactions in enumeration and characterization of cellulolytic bacteria from bovine rumen[J]. Applied and Environmental Microbiology,43(4):777-780.
Xi D,Wanapat M,Deng W,He T,Yang Z,Mao H. 2007. Comparison of Gayal(Bos frontalis) and Yunnan yellow cattl (Bos taurus):In vitro dry matter digestibility and gas production for a range of forages[J]. Asian-Australasian Journal of Animal Sciences,20(8):1208-1214.
(責(zé)任編輯 蘭宗寶)