靳丹萍+劉歡歡+趙杰
摘要:對(duì)AlMnSiX合金進(jìn)行不同溫度和不同時(shí)間的退火,采用金相顯微鏡(OM)、掃描電子顯微(SEM)和電導(dǎo)率儀對(duì)不同狀態(tài)的合金組織進(jìn)行觀察、能譜(EDS)分析和電導(dǎo)率測(cè)試,研究AlMnSiX合金的再結(jié)晶行為.結(jié)果表明:隨著退火溫度的升高,再結(jié)晶晶粒尺寸越來越小.AlMnSiX合金的再結(jié)晶晶粒大小主要受再結(jié)晶形核數(shù)量的影響,再結(jié)晶后期的晶粒長(zhǎng)大現(xiàn)象不明顯.AlMnSiX合金存在著大量細(xì)小彌散的AlMnSi/AlMnSiFe析出相,這些析出相強(qiáng)烈抑制了再結(jié)晶形核和再結(jié)晶后期的晶粒長(zhǎng)大.當(dāng)退火溫度低時(shí),形核激活能較大,形核率低,再結(jié)晶晶粒粗大;當(dāng)退火溫度高時(shí),形核激活能較小,形核率增加,再結(jié)晶晶粒細(xì)小.
關(guān)鍵詞:AlMnSiX合金; 再結(jié)晶; 退火; 析出相
中圖分類號(hào): TM 911.4 文獻(xiàn)標(biāo)志碼: A
Study on Recrystallization Behavior of Al-Mn-Si-X Alloy
JIN Danping, LIU Huanhuan, ZHAO Jie
(Suzhou Guohuan Environment Detection Co., Ltd., Suzhou 215011, China)
Abstract:In this paper,the recrystallization behavior of Al-Mn-Si-X alloy was investigated,such as microstructure,EDS composition and electrical conductivity,which were characterized respectively by metallographic microscopy(OM),scanning electron microscope(SEM) and electrical conductivity equipment after annealing at different temperature and time.It is found that the size of recrystallization grains will become smaller and smaller with the temperature increase gradually.The size of the recrystallization grains of Al-Mn-Si-X alloy is mainly affected by the number of recrystallization nucleation.After that,fully recrystallized the size of grains remains constant.We also found that a large amount of fine and dispersed AlMnSi/AlMnSiFe precipitates existing in the Al-Mn-Si-X alloy can strongly inhibit both recrystallization nucleation and grain growth in the later complete recrystallization.At low annealing temperature,recrystallization had low nucleation rate and coarse grains due to it requires relatively high activation energy of nucleation.On the other hand,the high annealing temperature can attain higher nucleation rate and fine recrystallization grains due to the lower activation energy.
Keywords:Al-Mn-Si-X alloy; recrystallization; annealing; precipitates
AlMn系鋁合金屬于熱處理不可強(qiáng)化的變形鋁合金,因其具有高的質(zhì)強(qiáng)比、良好的加工成型性、優(yōu)異的焊接性和抗腐蝕性等特點(diǎn),在航空航天、汽車和能源等領(lǐng)域中的應(yīng)用非常廣泛[1].在AlMn系合金的加工成型中,為了消除加工硬化的影響,退火處理成為關(guān)鍵的工藝環(huán)節(jié).在退火處理過程中,再結(jié)晶是主要的軟化機(jī)制,對(duì)材料的力學(xué)性能、抗腐蝕性能和成形性能有著重要的影響[2-4].因此,本文對(duì)AlMnSiX合金在不同退火溫度下的再結(jié)晶行為進(jìn)行研究.
1 試驗(yàn)材料和方法
試驗(yàn)材料為AlMnSiX合金,其化學(xué)成分如表1所示.為試驗(yàn)室熔煉的5 kg鑄錠,切頭去尾銑面后,在480 ℃保溫5 h,隨后熱軋到5 mm厚,再進(jìn)行多道次冷軋,每道次壓下量約為40%,冷軋至1 mm厚,分別在350,450和550 ℃退火0.5 h和20 h.退火后的試樣經(jīng)砂紙打磨、機(jī)械拋光后,采用配比為氟硼酸(5 mL)+水(95 mL)的溶液進(jìn)行覆膜.
采用Axio Imager A2金相顯微鏡(OM)、JSM6480掃
描電子顯微鏡SEM)和SEM配備的能譜儀(EDS)以及電導(dǎo)率儀,對(duì)不同狀態(tài)的AlMnSiX合金進(jìn)行微觀組織觀察、EDS分析和電導(dǎo)率分析,研究不同退火處理?xiàng)l件下AlMnSiX合金的再結(jié)晶行為.
2 結(jié)果和討論
圖1為冷軋態(tài)試驗(yàn)合金組織的金相(OM)照片.由圖1可知,經(jīng)過冷軋后,材料的晶粒組織在變形中被軋碎,呈纖維狀.
圖2為試驗(yàn)合金在不同溫度和不同保溫時(shí)間下的再結(jié)晶組織的OM照片.從圖2中可以看出,在不同溫度退火后,合金發(fā)生了明顯的再結(jié)晶,并且隨著退火溫度的升高,再結(jié)晶晶粒越來越小.同時(shí),合金在350,450和550 ℃保溫0.5 h后,均發(fā)生了再結(jié)晶,隨后保溫時(shí)間延長(zhǎng)到20 h,其再結(jié)晶晶粒尺寸并未發(fā)生明顯變化.
表2為試驗(yàn)合金在不同溫度下退火時(shí)的電導(dǎo)率測(cè)試結(jié)果.從圖2中可以看出,隨著退火溫度的升高及退火時(shí)間的延長(zhǎng),合金的電導(dǎo)率并無明顯的變化.一般來說,第二相的析出和溶解會(huì)導(dǎo)致電導(dǎo)率的顯著變化[5].結(jié)合表2中電導(dǎo)率的測(cè)試結(jié)果可以推知,在退火過程中沒有發(fā)生可測(cè)量的析出現(xiàn)象.
圖3和表3分別為試驗(yàn)合金冷軋態(tài)組織的SEM照片和EDS分析結(jié)果.由圖3可知,合金的冷軋態(tài)組織中存在大量的第二相,這些第二相的尺寸大都<0.5 μm.由表3可知,這些第二相是AlMnSi/AlMnSiFe彌散相[6-7],這些彌散相由于尺寸較小,具有強(qiáng)烈的Zener釘扎效應(yīng),嚴(yán)重阻礙界面的遷移[8].
再結(jié)晶過程一般分為3個(gè)階段:(1) 再結(jié)晶晶粒的形核;(2) 再結(jié)晶晶核吞噬變形區(qū)域,進(jìn)而長(zhǎng)大,此階段至變形組織消失而結(jié)束;(3) 再結(jié)晶晶粒之間的相互吞噬長(zhǎng)大,即晶粒長(zhǎng)大階段[5].
在AlMnX合金中,關(guān)于析出相和再結(jié)晶形核階段的關(guān)系已經(jīng)有了一些比較深入的研究[9-15],這些研究認(rèn)為,在低溫退火時(shí),析出先于再結(jié)晶發(fā)生,這些析出相阻礙了后續(xù)發(fā)生的再結(jié)晶過程,導(dǎo)致再結(jié)晶形核率低,再結(jié)晶晶粒粗大;在高溫退火時(shí),再結(jié)晶先于析出發(fā)生,所以再結(jié)晶形核率高,再結(jié)晶晶粒細(xì)小.由此可見,預(yù)先存在的析出相會(huì)顯著影響再結(jié)晶的形核階段,從而使再結(jié)晶晶粒粗大.由圖3可知,在未退火前,材料中就已經(jīng)析出了大量的彌散相.結(jié)合表2的結(jié)果可知,這些彌散相在退火過程中一直保持不變,并未發(fā)生重新析出或者溶解.所以在本試驗(yàn)中,不論退火溫度高低,再結(jié)晶形核都會(huì)受到彌散相的阻礙.退火0.5 h后,高溫退火時(shí)的再結(jié)晶晶粒比低溫退火時(shí)更為細(xì)小,主要是因?yàn)楫?dāng)退火溫度低時(shí),形核激活能較大,導(dǎo)致形核率低,再結(jié)晶晶粒粗大;當(dāng)退火溫度高時(shí),形核激活能較小,形核率增加,再結(jié)晶晶粒細(xì)小.保溫20 h后,再結(jié)晶晶粒未見明顯長(zhǎng)大,這表明彌散相不僅影響了再結(jié)晶的形核,同時(shí)也阻礙了再結(jié)晶后期的晶粒長(zhǎng)大.同時(shí),再結(jié)晶晶粒呈明顯拉長(zhǎng)狀,并沒有形成等軸狀,這是由于第二相沿軋向分布,阻礙了再結(jié)晶晶粒向兩側(cè)的生長(zhǎng),而優(yōu)先沿軋向生長(zhǎng).
3 結(jié) 論
(1) 隨著退火溫度的升高,再結(jié)晶晶粒越來越小.
(2) 在同一退火溫度下,隨著退火時(shí)間的延長(zhǎng),再結(jié)晶晶粒的長(zhǎng)大現(xiàn)象不明顯.
(3) 細(xì)小的彌散相阻礙再結(jié)晶形核和再結(jié)晶后期的晶粒長(zhǎng)大.
參考文獻(xiàn):
[1] 肖亞慶.鋁加工技術(shù)實(shí)用手冊(cè)[M].北京:冶金工業(yè)出版社,2005.
[2] 劉楚明,張新明,陳志永.高純鋁在軋制及退火過程中微觀組織與結(jié)構(gòu)的演變[J].輕合金加工技術(shù),2001,29(1):18-21.
[3] 葛列里克S S.金屬和合金的再結(jié)晶[M].仝健民,譯.北京:機(jī)械工業(yè)出版社,1985.
[4] 李松瑞,周善初.金屬熱處理[M].長(zhǎng)沙:中南大學(xué)出版社,2003.
[5] 余永寧.材料科學(xué)基礎(chǔ)[M].北京:高等教育出版社,2006.
[6] LI Y J,ARNBERG L.Quantitative study on the precipitation behavior of dispersoids in DC-cast AA3003 alloy during heating and homogenization[J].Acta Materialia,2003,51(12):3415-3428.
[7] 張永皞,張志清,林林.3xxx系罐身鋁合金第二相及其對(duì)加工過程的影響研究進(jìn)展[J].材料導(dǎo)報(bào),2012,26(13):101-108.
[8] SMITH C S.Grains,phases,and interphases:an interpretation of microstructure[J].Transactions of the Metallurgical Society of AIME,1948,175:15-51.
[9] LIU W C,RADHAKRISHNAN B.Recrystallization behavior of a supersaturated Al-Mn alloy[J].Materials Letters,2010,64(16):1829-1832.
[10] HUANG K,LI Y J,MARTHINSEN K.Microstructural evolution during isothermal annealing of a cold-rolled Al-Mn-Fe-Si alloy with different microchemistry states[J].Materials Science Forum,2014,794-796:1163-1168.
[11] HUANG K,LOG R E,MARTHINSEN K.On the sluggish recrystallization of a cold-rolled Al-Mn-Fe-Si alloy[J].Journal of Materials Science,2016,51(3):1632-1643.
[12] HUANG K,WANG N,LI Y J,et al.The influence of microchemistry on the softening behaviour of two cold-rolled Al-Mn-Fe-Si alloys[J].Materials Science and Engineering:A,2014,601:86-96.
[13] WANG N,HUANG K,LI Y J,et al.The influence of processing conditions on microchemistry and the softening behavior of cold rolled Al-Mn-Fe-Si alloys[J].Metals,2016,6(3):61-66.
[14] SOMERDAY M,HUMPHREYS F J.Recrystallisation behaviour of supersaturated Al-Mn alloys:part 1-Al-1.3wt%Mn[J].Materials Science and Technology,2003,19(1):20-29.
[15] BIROL Y.Impact of homogenization on recrystallization of a supersaturated Al-Mn alloy[J].Scripta Materialia,2009,60(1):5-8.