張曉東,李紅欣,侯扶林,楊陽,董寒,崔立峰
?
錳氧化物材料的制備及應用進展
張曉東,李紅欣,侯扶林,楊陽,董寒,崔立峰
(上海理工大學環(huán)境與建筑學院,上海200093)
錳作為一種常見的變價金屬,其在催化反應中能夠起到很好的催化作用。而且錳的氧化物作為最常用的過渡金屬氧化物之一,因其較易調(diào)控出較大的比表面積、較強的吸附性能、較好的氧化還原能力以及較好的低溫催化活性,已經(jīng)成為了環(huán)境治理以及能源領域中的研究熱點。介紹了MnO催化劑材料的合成、性質(zhì),以及在CO催化氧化、揮發(fā)性有機污染物的催化氧化、氣體的吸附與分離以及電池的電極材料等應用方面一些最新的研究進展。
納米結構;催化;吸附;錳氧化物;合成;應用
錳作為一種過渡變價金屬,通常有多種容易轉化的不穩(wěn)定化合價態(tài),其中+2、+3、+4、+6和+7是較穩(wěn)定的氧化態(tài)。MnO作為最具有應用前景的過渡金屬氧化物,因其較易具有高比表面積、較強的吸附性能、較好的氧化還原能力、低成本、電化學性能良好等優(yōu)點而被廣泛關注。MnO通常包括MnO、Mn3O4、Mn2O3、MnO2等。不同價態(tài)的MnO具有不同的形態(tài)結構,而相同價態(tài)的MnO也會因為合成方法、制備條件、原材料的差異而呈現(xiàn)不同的形態(tài)結構。例如MnO2,現(xiàn)已知的形貌就有納米線、中空形狀、棒狀以及蘭花狀[1-4]。此外MnO2又有a-MnO2、δ-MnO2、ε-MnO2等晶相,其中,a-MnO2晶體由于骨架上含鉀等異原子,和其他二氧化錳相比,嚴格意義上不能構成同質(zhì)異相關系。研究顯示,不同晶體結構的MnO具有不同的孔結構、比表面積以及形貌等,都會影響到MnO的性能。由于錳元素多價態(tài)的存在,導致錳氧化物的原子排布形式多種多樣,引起了學術界的關注[5]。越來越多的研究者們致力于研究出簡單易行的合成方法,不斷提升MnO的物理、化學性能進而在相應的應用領域取得較好的性能。研究顯示,納米MnO在吸附分離和催化去除氣態(tài)污染物等方面表現(xiàn)出較好的性能[6-8]。目前,MnO的綜述主要集中在電池方面[9-15],其中較多的是MnO2在超級電容、電極材料中的應用,而對于氣體吸附分離及催化氧化方面的綜述則較少。因此,本文綜述了MnO的常見的合成方法,以及其現(xiàn)階段在氣體吸附與分離、催化氧化以及電極材料等方面應用的最新進展。
近幾年來,越來越多的學者開始研究MnO的合成與制備,也衍生了越來越多的合成方法。本文將對現(xiàn)有的合成方法進行歸納。
1.1 水熱合成法
水熱合成法是合成MnO材料最常用的方法。即在密封的壓力容器中,以水溶液為溶劑,溫度100~400℃,使那些在常壓下不溶或難溶的物質(zhì)溶解,或反應生成該物質(zhì)的溶解產(chǎn)物[16-20]。Zhu等[16]采用低溫水熱法將高錳酸鉀和碳酰胺一起,通過調(diào)控反應溫度,在90℃密封條件下反應24 h得到了δ-MnO2,而這種δ-MnO2具有層狀結構以及高達230 m2·g-1的比表面積。Dai等[17]通過水熱合成法,改變合成原材料,除了硝酸錳、高錳酸鉀及P123等傳統(tǒng)材料之外,又加入了碳納米管,制備出了一種中空的錐體Mn2O3,有別于之前大部分球狀中空的Mn2O3。這種材料表現(xiàn)出高達900 mA·h·g-1的比電容以及較好的倍率性能和循環(huán)穩(wěn)定性。Guo等[18]以醋酸錳和高錳酸鉀為錳源,通過固定反應溫度,改變反應時間來調(diào)控α-MnO2的形態(tài),制備了不同形貌的MnO2和石墨烯復合物。結果顯示當時間從0.1 h到5 h時,制備的復合物形貌是片狀的,且隨著時間的增加逐漸增厚,當時間超過5 h時,則呈現(xiàn)出棒狀形貌,且復合物的比電容可達到332 F·g-1。Zhao等[19]用水熱合成法,通過控制反應溫度制備出了不同形貌的MnO2,當合成溫度在100~300℃時,合成了無定形MnO2,而當溫度超過400℃時,則制備了δ-MnO2、α-MnO2納米棒,并且具有較好的幾何性能和穩(wěn)定性。
1.2 沉淀法
沉淀法通常是在溶液狀態(tài)下將不同化學成分的物質(zhì)混合,在混合液中加入適當?shù)某恋韯┲苽淝绑w沉淀物,再將沉淀物進行干燥或煅燒,從而制得相應的粉體顆粒。Nathsarma等[21]從礦石浸出液中提取不同含量的錳,然后加入硫酸銨和銨,控制反應的pH為8.1~9.2并用空氣和氬氣吹掃,制備了MnO2,其浸出率可達57.2%~99.9%。Moradkhani等[22]通過甲烷還原錳礦石,再通過熱沉淀法,加入過硫酸銨和硫酸,調(diào)控沉淀反應溫度25~90℃,合成了納米MnO2,結果表明該方法制備的α-MnO2平均粒徑在50 nm左右,比表面積高達174 m2·g-1。Hlaing等[23]以MnSO4和KMnO4為原材料,通過控制反應溫度和時間制備錳氧化物,結果顯示在90℃,2 h的熱沉淀法條件下制備了一維α-MnO2納米棒,其粒子直徑在30~50 nm,并具有較好的晶型以及形態(tài)結構。
1.3 固相法
固相法作為一種比較傳統(tǒng)的方法,是指通過對固體物料進行加工,經(jīng)過研磨后再進行煅燒,發(fā)生固相反應后直接得到或經(jīng)過再研磨得到超細粉體的方法。通常包括熱分解法、固相反應法、溶出法以及球磨法等。Donne等[24]通過熱分解高錳酸鹽,控制溶液的pH,制備了不同形貌的α-MnO2和β-MnO2,結果表明,pH從強堿到強酸的變化會導致產(chǎn)物形貌發(fā)生很大的變化,雖然產(chǎn)物有結晶性且孔隙率低,但其具有明顯的介孔特性和優(yōu)越的電化學特性。Fang等[25]用固相法,將醋酸錳和草酸進行熱分解,調(diào)控反應溫度,在250℃、10 h的條件下制備了一種粒徑為200 nm的球形MnO2(包括α-MnO2和γ-MnO2),其電容值可達到337 F·g-1,具有較好的循環(huán)穩(wěn)定性。Hao等[26]以高錳酸鉀和水楊酸在700℃下通過控制反應時間制備了MnO納米球,封裝在碳上,再將其轉化為α-MnO2納米棒。用這種方法合成的MnO/C復合物的電容量達到了585.9 mA·h·g-1,MnO2的電容量高達1269 mA·h·g-1,具有較好的應用前景。
1.4 熔鹽法
熔鹽法是指通常采用1種或數(shù)種低熔點鹽類作為反應介質(zhì),反應物在熔鹽中有一定的溶解度,使得反應在原子級進行。反應結束后,采用合適的溶劑將鹽類溶解,經(jīng)過濾、洗滌后即可得到合成產(chǎn)物。在熔鹽法中,鹽的熔體起到了熔劑和反應介質(zhì)的作用。常見的低熔點鹽有硫酸鹽、硝酸鹽等,如硝酸錳、硝酸鉀、硝酸鈉、硝酸鈰、硫酸錳、硫酸鉀。Cao等[27]以Zn-Mn電池中的γ-MnO2為錳源,用熔鹽法調(diào)控反應溫度制備了LiMn2O4,結果顯示在770℃、4 h的條件下制備的材料具有較好的電化學性能。Peng等[28]通過熔鹽法,在380℃下反應3 h制備了α-MnO2納米線,負載金屬離子后較大地提高了電化學性能以及電子導電率。
1.5 溶膠-凝膠法
溶膠-凝膠法是目前應用最多的制備納米材料的方法。該方法是將硅氧烷或金屬鹽等在溶液中水解、縮合成溶膠液,然后加熱除去溶劑而轉化成凝膠,最終制得固體氧化物或其他固體化合物的方法。Picasso等[29]通過溶膠-凝膠法,調(diào)控反應溫度和時間,制備了層狀納米結構的MnO催化劑,將其應用到正己烷的消除當中。
表1為幾種合成方法的比較。通過歸納以上不同的合成方法,可以看出,MnO的合成方法多種多樣,MnO的形貌、比表面積、孔結構、性能等很容易受實驗條件,如溫度、pH、反應時間、金屬源、溶劑等的影響而改變。這就要求在制備中優(yōu)化實驗方法,以得到期望的結構。
2.1 MnO的催化性能
MnO由于具有出色的氧化還原能力、多種多樣的晶型等性能常被應用到VOCs(揮發(fā)性有機污染物)處理、CO催化氧化、氧催化還原反應等領域中。Kim等[30]研究發(fā)現(xiàn)催化氧化甲苯的性能主要由錳氧化物的氧化態(tài)所決定,幾種常見的MnO對于甲苯的氧化活性呈遞減趨勢:Mn3O4>Mn2O3> MnO2,這主要是與3種MnO比表面積大小、氧移動性高低及缺陷氧多少有關。Shi等[31]制備了棒狀α-MnO2、花狀ε-MnO2及啞鈴狀β-MnO2并發(fā)現(xiàn)MnO2的晶相及形態(tài)對催化氧化甲苯具有較大影響,3種MnO2對于甲苯的催化氧化順序通常為ε-MnO2>α-MnO2> β-MnO2。Zhang等[32]以MnSO4·H2O、KMnO4和(NH4)2S2O8為前體,合成了α, β, γ和δ-MnO2,并應用于催化氧化甲醛。結果δ-MnO2的催化性能最好,大約80℃將甲醛完全轉化。Li等[33]通過水熱法合成了層狀中空β-MnO2納米球、雙層中空β/α-MnO2納米球及層狀中空α-MnO2并用于催化氧化苯,結果這3種催化劑對苯的催化氧化活性按照α-MnO2> β/α-MnO2>β-MnO2順序遞減,揭示了催化劑的活性是和結構相關的。Jin等[34]研究發(fā)現(xiàn),γ-MnO2八面體分子篩對甲苯催化氧化具有出色的催化效果及良好的選擇性。除此之外,Li等[35]報道了α-MnO2對乙醛的效果要好于β-MnO2和γ-MnO2。Liu等[36]考察了由純MnO從NH3中還原NO,結果表明NO的轉化率按照MnO2> Mn5O8> Mn2O3> Mn3O4的順序遞減。
CO作為1種空氣污染物,且常被用作模型反應研究催化劑的結構。近年來,有許多負載型的催化劑被應用于去除CO,如Ag[37-40]、Pt[41-43]、Pd[44-45]和Au[46-48]等。但是由于這些貴金屬比較昂貴及熱穩(wěn)定性較差,所以應用也較局限。MnO對于CO的催化氧化機理一般被認為是氧化-還原機理[49-50]:即金屬/載體首先經(jīng)過1個單獨被氧化的過程,吸附并被活化的CO分子與催化劑表面直接參與反應的晶格氧發(fā)生反應,氣相中的分子氧吸附于催化劑表面并成為晶格氧,補充反應造成的晶格氧缺位,如此循環(huán)便實現(xiàn)CO的氧化,而產(chǎn)生的CO2則從催化劑表面脫附,見圖1。MnO中尤其是MnO2,由于其與還原劑和氧化劑之間的氧化還原周期循環(huán)較容易,展現(xiàn)出了良好的氧儲存和釋放的能力。Xu等[51]合成了不同晶相的MnO2,結果顯示α-MnO2和β-MnO2都表現(xiàn)出較好的催化氧化CO性能。由于α-MnO2具有更好的低溫還原性,故對CO的催化效果更好。表2中列舉了一些常見MnO對CO的催化氧化情況。從表2中可以看到不同MnO對于CO的催化氧化效果不同,相同MnO由于反應質(zhì)量、預處理條件等不同,對CO的催化氧化效果也不同。一般情況下,Mn2O3對CO的催化氧化效果要好于Mn3O4和MnO2,這一結果與Wang等[57]和Ramesh等[8]的一致。
表1 幾種無機材料合成方法對比
表2 MnOx對CO的催化氧化
① Temperature for 100% CO conversion.
MnO在氧還原催化領域中應用也較多。在陰極發(fā)生的電化學反應通常被叫作氧還原反應。在聚合物電解質(zhì)燃料電池和質(zhì)子交換膜燃料電池中氧還原反應發(fā)揮著關鍵的作用,而MnO由于具有低成本、較高的催化活性等特點而被用作氧還原催化劑。Wei等[66]在涂鋅空氣電池中采用以碳棒為載體負載了MnO2作為氧還原催化劑制備了一種空氣電極,通過研究發(fā)現(xiàn),MnO2最佳的負載量為6.7%(質(zhì)量),且在270~450℃范圍內(nèi)加熱發(fā)現(xiàn)在340℃加熱1 h所得到的催化劑對氧還原展現(xiàn)了最好的催化活性。Wei等[67]同時又在涂鋅空氣電池的電極上以碳棒為載體負載了Mn3O4并將其誘導形成更有效的MnO2,結果表明,當Mn3O4的負載量在15%(質(zhì)量)以內(nèi)時,通過Mn3O4的誘導可以形成兩種更有效的MnO2晶型,提高了氧還原效果。Li等[68]通過煅燒硝酸錳制備MnO2并通過對其電子結構及表面氧空位的數(shù)量和范圍進行計算,結果發(fā)現(xiàn)適當濃度的氧空位可以減少帶隙,增加MnOOH的水平并拉長了吸附氧的O—O鍵,這些變化均利于增加MnO2的導電性以及氧還原活性,最終發(fā)現(xiàn)具有適當濃度氧空位的β-MnO2具有最高的導電性及氧還原催化活性。Cheng等[69]也以MnO2為例,對其進行熱處理增加氧空位來提高氧還原催化反應能力,結果發(fā)現(xiàn)在熱處理后β-MnO2表現(xiàn)出更低的過電位、更大的電流,半波范圍內(nèi)比最初MnO2的電流高了50 mV, 通過計算也展現(xiàn)了更多的氧空位,進而增加了氧還原催化反應能力。Wang等[70]以CaMnO3作為氧還原催化劑的載體,探查了Pt/CaMnO3催化劑對氧還原催化反應活性和穩(wěn)定性的影響。通過和Pt5/石墨烯對比,當Pt負載到CaMnO3時,Pt5和CaMnO3的作用力遠遠大于Pt5和石墨烯的作用力,具有更多的氧空位、更小的禁帶寬度及更低的電子轉移阻力,進而提高了電導率以及Pt催化劑的活性和穩(wěn)定性。
研究發(fā)現(xiàn),與傳統(tǒng)催化劑相比,MnO對CO、甲苯等的催化氧化效果較佳主要是其能提供更多的活性金屬陽離子位和還原分子氧的活性位數(shù)量以及更多錳氧化物的混合氧化態(tài)。此外,MnO中錳氧化態(tài)的變化、不穩(wěn)定晶格氧和表面氧化產(chǎn)物的滯留也是影響其催化氧化效果的因素[71-72]。
2.2 電極材料
超級電容器由于具有高功率、長期循環(huán)穩(wěn)定性、節(jié)能環(huán)保、獨特的吸引力等特點而作為最具有吸引力的電化學存儲系統(tǒng)之一。研究顯示電解質(zhì)和電極在超級電容器運行過程中發(fā)揮了關鍵作用,因而目前對超級電容器的研究重點也主要集中在這兩個方向,尤其是電極材料。錳氧化物由于其高的比電容、低成本、天然豐富和環(huán)境友好型而受到越來越多的關注[73]。MnO之所以在電極材料領域引起了各國研究者的廣泛興趣,主要是其發(fā)生在電極/溶液界面的可逆Faraday反應,可產(chǎn)生遠大于碳材料雙電層電容的Faraday贗電容,即在電極活性材料的表面或體相的二維或準二維空間中,活性物質(zhì)發(fā)生欠電位沉積,進行高度可逆的化學氧化/還原反應,從而產(chǎn)生與電極充電電位相關的電容[74-75]。納米級的MnO2包含高孔隙度和良好的電導性容易形成混合或復合納米結構進而使它們電化學性能最優(yōu)化。據(jù)理論計算,MnO2的比電容可以高達1100 F·g-1,具有較好的電化學性質(zhì)[76]。
中空狀的Mn2O3核殼材料因成本低、環(huán)保和高理論容量(1018 mA·h·g-1)而成為了一種新興的陽極電極材料。此外,具有大比表面積的中空Mn2O3核殼結構可以緩沖電極的體積變化并提供更多的鋰離子插入或者提取的反應位點,這有助于增強鋰離子電池的性能。表3中列舉了一些常見MnO在電極材料中的應用情況。
表3 MnOx在電極材料中的應用情況
通過以上研究表明,采用不同方法、條件制備的MnO具有不同的晶體結構,而不同晶體結構的MnO又會導致比表面積、孔洞、尺寸以及形貌的差異,這些都會影響到MnO的比電容、導電率以及使用壽命等電化學性能及穩(wěn)定性,一些特殊形貌的MnO往往具有更高的電導率和比電容。此外,Ghodbane等[84]通過研究得出了MnO的維度也對其比電容的大小有影響,與一維隧道結構相比,二維的層狀以及三維的網(wǎng)狀結構更加開闊,從而能夠更好地使離子嵌入和脫出,因此離子傳導率和比電容性能更好。與此同時,由于表面吸附-脫附和本體脫出-嵌入兩種電荷存儲原理在MnO電極充放電的過程中同時存在,所以推測,MnO的比電容大小可能會和其表面的表面氧和晶格氧的分布情況以及Mn3+/Mn4+的摩爾比有關聯(lián)。但是如何讓MnO更抗溶解、比表面積更大、電子電導率和離子導電性更好仍是一個亟需解決的難題。
2.3 吸附
MnO作為一種多孔性的過渡金屬氧化物,因其具有較大的比表面積、表面含有豐富的羥基,結構內(nèi)部存在較多晶體缺陷,容易產(chǎn)生大量電子空穴,且與金屬離子有很強的結合力。對某些有機物和重金屬具有強烈的吸收和富集能力,而被作為一種較好的吸附劑,被廣泛應用到大氣污染物、水處理中重金屬的去除等領域,對污染物進行吸附[85]。Zhao等[86]研究了錳的價態(tài)和錳等離子釋放量與Pb2+吸附能力的關系,結果顯示Pb2+的吸附量與錳的價態(tài)呈正相關趨勢,同時,由于錳氧化物表面存在羥自由基,羥自由基基團與金屬離子結合的過程中會釋放氫離子,氫離子等的釋放量也和Pb2+吸附能力呈正相關關系。表4中列舉了一些MnO在吸附領域中的常見應用。
表4 MnOx在吸附領域中的應用
錳氧化物由于其特有的比表面積大、氧化還原能力強、低溫催化氧化效果好等優(yōu)勢,現(xiàn)已成為過渡金屬氧化物的研究熱點。關于錳氧化物以及摻雜負載其他金屬的錳氧化物的合成以及應用等方面的研究也越來越多,但是現(xiàn)在常用的主要的合成方法仍然是水熱合成法。研究設計更簡單易行、成本低廉、重現(xiàn)性好的合成方法仍然是個挑戰(zhàn)。此外,MnO比較容易中毒且不抗?jié)?,較容易吸水,關于如何提高錳氧化物催化劑材料的穩(wěn)定性也是亟需解決的難題。尋找經(jīng)濟高效的其他非貴金屬并負載到錳氧化物當中,進一步提高其催化活性,需要更多的嘗試與創(chuàng)新。
[1] CHEN Y, ZHANG M L, JING X Y. Preparation and characterization of rod-shaped MnO2crystal[J]. Solid State Communications, 2005, 133: 121-123.
[2] LI X L, LI W J, CHEN X Y,Hydrothermal synthesis and characterization of orchid-like MnO2nanostructures[J]. Journal of Crystal Growth, 2006, 297: 387-389.
[3] YUAN Z Y, ZHANG Z L, DU D H,A simple method to synthesise single-crystalline manganese oxide nanowires[J]. Chem. Phys. Lett., 2003, 378: 349-353.
[4] XIA H, FENG J K, WANG H L,MnO2nanotube and nanowire arrays by electrochemical deposition for supercapacitors[J]. Journal of Power Sources, 2010, 195: 4410-4413.
[5] CHEN Z W, JIAO Z, PAN D Y,Recent advances in manganese oxide nanocrystals: fabrication, characterization, and microstructure[J]. Chem. Rev., 2012, 112: 3833-3855.
[6] QI G S, YANG R T, CHANG R. MnO-CeO2mixed oxides prepared by co-precipitation for selective catalytic reduction of NO with NH3at low temperatures[J]. Applied Catalysis B: Environmental, 2004, 51: 93-106.
[7] TANG X F, LI J H, SUN L,Origination of N2O from NO reduction by NH3over β-MnO2and α-Mn2O3[J]. Applied Catalysis B: Environmental, 2010, 99: 156-162.
[8] RAMESH K, CHEN L W, CHEN F X,Re-investigating the CO oxidation mechanism over unsupported MnO, Mn2O3and MnO2catalysts[J]. Catalysis Today, 2008, 131: 477-482.
[9] WANG X Y, LIU L, WANG X Y,Mn2O3/carbon aerogel microbead composites synthesized bycoating method for supercapacitors[J]. Materials Science and Engineering B, 2011, 176: 1232-1238.
[10] HUANG M, LI F, DONG F,MnO2-based nanostructures for high-performance supercapacitors[J]. Journal of Materials Chemistry A, 2015, 3(43): 21380-21423.
[11] WANG J G, KANG F Y, WEI B Q. Engineering of MNO2-based nanocomposites for high-performance supercapacitors[J]. Progress in Materials Science, 2015, 74: 51-124.
[12] CAO J Y, LI X H, WANG Y M,Materials and fabrication of electrode scaffolds for deposition of MnO2and their true performance in supercapacitors[J]. Journal of Power Sources, 2015, 293: 657-674.
[13] ZHAO J C, WANG J, XU J L. Synthesis and electrochemical characterization of mesoporous MnO2[J]. Journal of Chemistry, 2015, 2015: 768023-768028.
[14] ATHOUEL L, MOSER F, DUGAS R,Variation of the MnO2birnessite structure upon charge/discharge in an electrochemical supercapacitor electrode in aqueous Na2SO4electrolyte[J]. J. Phys. Chem. C, 2008, 112: 7270-7277.
[15] SCHMACHTEL S, TOIMINEN M, KONTTURI K,New oxygen evolution anodes for metal electrowinning: MnO2composite electrodes[J]. J. Appl. Electrochem., 2009, 39: 1835-1848.
[16] ZHU G, LI H J, DENG L J,Low-temperature synthesis of δ-MnO2with large surface area and its capacitance[J]. Materials Letters, 2010, 64: 1763-1765.
[17] DAI Y H, JIANG H, HU Y J,Hydrothermal synthesis of hollow Mn2O3nanocones as anode material for Li-ion batteries[J]. RSC Adv., 2013, 3: 19778-19781.
[18] GUO M X, BIAN S W, SHAO F,Hydrothermal synthesis and electrochemical performance of MnO2/graphene/polyester composite electrode materials for flexible supercapacitors[J]. Electrochimica Acta, 2016, 209: 486-497.
[19] ZHAO Y C, MISCH J, WANG C A. Facile synthesis and characterization of MnO2nanomaterials as supercapacitor electrode materials[J]. Mater. Electron., 2016, 27: 5533-5542.
[20] LU X L, ZHENG Y Y, ZHANG Y B,Low-temperature selective catalytic reduction of NO over carbon nanotubes supported MnO2fabricated by co-precipitation method[J]. Micro & Nano Letters, 2015, 10(11): 666-669.
[21] NATHSARMA K C, ROUT P C, SARANGI K. Manganese precipitation kinetics and cobalt adsorption on MnO2from the ammoniacal ammonium sulfate leach liquor of Indian Ocean manganese nodule[J]. Hydrometallurgy, 2013, 133: 133-138.
[22] MORADKHANI D, MALEKZADEH M, AHMADI E. Nanostructured MnO2synthesizedmethane gas reduction of manganese ore and hydrothermal precipitation methods[J]. Trans. Nonferrous Met. Soc. China, 2013, 23: 134-139.
[23] HLAING A A, PHYUWIN P. The synthesis of α-MnO2nanorods using hydrothermal homogeneous precipitation[J]. Adv. Nat. Sci.: Nanosci. Nanotechnol., 2012, 3: 25001-25003.
[24] DONNE S W, HOLLENKAMP A, JONESA B C. Structure, morphology and electrochemical behavior of manganese oxides prepared by controlled decomposition of permanganate[J]. Journal of Power Sources, 2010, 195: 367-373.
[25] FANG D L, WU B C, MAO A Q,Super capacitive properties of ultra-fine MnO2prepared by a solid-state coordination reaction[J]. Journal of Alloys and Compounds, 2010, 507: 526-530.
[26] HAO Q, XU L Q, LI G D,Synthesis of MnO/C composites through a solid state reaction and their transformation into MnO2nanorods[J]. Journal of Alloys and Compounds, 2011, 509: 6217-6221.
[27] CAO X, GUO G H, LIU F F,The properties of LiMn2O4synthesized by molten salt method using MnO2as manganese source recycled from spent Zn-Mn batteries[J]. International Journal of Electrochemical Science, 2015, 10(5): 3841-3847.
[28] PENG R C, WU N, ZHENG Y,Large-scale synthesis of metal-ion-doped manganese dioxide for enhanced electrochemical performance[J]. ACS Applied Materials & Interfaces, 2016, 8(13): 8474-8480.
[29] PICASSO G, SUN KOU M D R, SALAZAR I,Synthesis of nanostructured catalysts based on Mn oxide for-hexane elimination[J]. Rev. Soc. Quím. Perú, 2011, 77(1): 11-26.
[30] KIM S C, SHIM W G. Catalytic combustion of VOCs over a series of manganese oxide catalysts[J]. Appl. Catal. B, 2010, 98: 180-185.
[31] SHI F, WANG F, DAI H,Rod-, flower-, and dumbbell-like MnO2: highly active catalysts for the combustion of toluene[J]. Applied Catalysis A: General, 2012, 433/434: 206-213.
[32] ZHANG J, LI Y, WANG L,Catalytic oxidation of formaldehyde over manganese oxides with different crystal structures[J]. Catal. Sci. Technol., 2015, 5: 2305-2313.
[33] LI D, YANG J, TANG W,Controlled synthesis of hierarchical MnO2microspheres with hollow interiors for the removal of benzene[J]. RSC Adv., 2014, 4: 26796-26803.
[34] JIN L, CHEN C H, CRISOSTOMO V M B,γ-MnO2octahedral molecular sieve: preparation, characterization, and catalytic activity in the atmospheric oxidation of toluene[J]. Appl. Catal. A., 2009, 355: 169-175.
[35] LI Y Z, FAN Z Y, SHI J W,Post plasma-catalysis for VOCs degradation over different phase structure MnO2catalysts [J]. Chem. Eng. J., 2014, 241: 251-258.
[36] LIU C, SHI J W, GAO C,Manganese oxide-based catalysts for low-temperature selective catalytic reduction of NOwith NH3: a review[J]. Applied Catalysis A: General, 2016, 522: 54-69.
[37] ZHANG X D, DONG H, WANG Y,Study of catalytic activity at the Ag/Al-SBA-15 catalysts for CO oxidation and selective CO oxidation[J]. Chemical Engineering Journal, 2016, 283: 1097-1107.
[38] ZHANG X D, DONG H, ZHAO D,Effect of support calcination temperature on Ag structure and catalytic activity for CO oxidation[J]. Chem. Res. Chin. Univ., 2016, 32(3): 455-460.
[39] QU Z P, ZHANG X D, YU F L,Role of the Al chemical environment in the formation of silver species and its CO oxidation activity[J]. Journal of Catalysis, 2015, 321: 113-122.
[40] ZHANG X D, QU Z P, YU F L,Progress in carbon monoxide oxidation over nanosized Ag catalysts (review) [J]. Chinese Journal of Catalysis, 2013, 34(7): 1277-1290.
[41] LEI T, DENG Q, ZHANG S,Fast identification of CO by using single Pt-modified WO3sensing film based on optical modulation[J]. Sensors and Actuators B: Chemical, 2016, 232: 506-513.
[42] GAO H W. CO oxidation mechanism on the gamma-Al2O3supported single Pt atom: first principle study[J]. Applied Surface Science, 2016, 379: 347-357.
[43] KIM G J, KWON D W, HONG S C. Effect of Pt particle size and valence state on the performance of Pt/TiO2catalysts for CO oxidation at room temperature[J]. Journal of Physical Chemistry C, 2016, 120(32): 17996-18004.
[44] SHIPITCYNA A, KINNUNEN N M, HILLI Y,Characterization and activity of Pd-Ir catalysts in CO and C3H6oxidation under stoichiometric conditions[J]. Topics in Catalysis, 2016, 59(13/14): 1097-1103.
[45] BAI Y, WANG C L, ZHOU X Y,Atomic layer deposition on Pd nanocrystals for forming Pd-TiO2interface toward enhanced CO oxidation[J]. Progress in Natural Science: Materials International, 2016, 26: 289-294.
[46] DENG X Q, ZHU B, LI X S,Visible-light photocatalytic oxidation of CO over plasmonic Au/TiO2: unusual features of oxygen plasma activation[J]. Applied Catalysis B: Environmental, 2016, 188: 48-55.
[47] LIU Y X, ZHANG J L, SONG L X,Au-HKUST?1 composite nanocapsules: synthesis with a coordination replication strategy and catalysis on CO oxidation[J]. ACS Applied Materials & Interfaces, 2016, 8(35): 22745-22750.
[48] LI H F, PAN C, ZHAO S J,Enhancing performance of PEM fuel cells: using the Au nanoplatelet/nafion interface to enable CO oxidation under ambient conditions[J]. Journal of Catalysis, 2016, 339: 31-37.
[49] MORGAN K, COLE K J, GOGUET A,TAP studies of CO oxidation over CuMnOand Au/CuMnOcatalysts [J]. J. Catal., 2010, 276(1): 38-48.
[50] LUO Y, DENG Y, MAO W,Probing the surface structure of α-Mn2O3Nanocrystals during CO oxidation by operando Raman spectroscopy[J]. The Journal of Physical Chemistry, 2012, 116 (39): 20975-20981
[51] XU R, WANG X, WANG D,Surface structure effects in nanocrystal MnO2and Ag/MnO2catalytic oxidation of CO[J]. J. Catal., 2006, 237(2): 426-430.
[52] LE M T, NGUYEN T T, PHAM P T M,Activated MnO2-Co3O4-CeO2catalysts for the treatment of CO at room temperature[J]. Applied Catalysis A: General, 2014, 480: 34-41.
[53] KUNLEKAR R K, SALKER A V. Activity of Pd doped and supported Mn2O3nanomaterials for CO oxidation[J]. Reac. Kinet. Mech. Cat., 2012, 106: 395-405.
[54] LIU Y X, DAI H X, DENG J G,. Controlled generation of uniform spherical LaMnO3, LaCoO3, Mn2O3, and Co3O4nanoparticles and their high catalytic performance for carbon monoxide and toluene oxidation[J]. Inorganic Chemistry, 2013, 52 (15): 8665-8676.
[55] CARABINEIRO S A C, BASTOS S S T, óRFAO J J M,Carbon monoxide oxidation catalysed by exotemplated manganese oxides[J]. Catal. Lett., 2010, 134(3): 21-227.
[56] NASKAR M K, ROY M, BASAK S. Bi-template assisted synthesis of mesoporous manganese oxide nanostructures: tuning properties for efficient CO oxidation[J]. Phys. Chem. Chem. Phys., 2016, 18: 5253-5263.
[57] WANG L C, HUANG S, LIU Q,Gold nanoparticles deposited on manganese (III) oxide as novel efficient catalyst for low temperature CO oxidation[J]. J. Catal., 2008, 259: 66-74.
[58] WANG L C, LIU Q, HUANG X S,Gold nanoparticles supported on manganese oxides for low-temperature CO oxidation[J]. Appl. Catal. B, 2009, 88: 204-212.
[59] LEE Y H, PARK J H, SHIN C H. Physicochemical properties of manganese dioxide synthesized using C2–C5 alcohols as reducing agents and their catalytic activities for CO oxidation[J]. Catalysis Today, 2016, 265: 7-13.
[60] PARK J H, KANG D C, PARK S J,CO oxidation over MnO2catalysts prepared by a simple redox method: influence of the Mn (II) precursors[J]. Journal of Industrial and Engineering Chemistry, 2015, 25: 250-257.
[61] ZHANG C, HAN L, LIU W,Facile synthesis of novel MnOnano-structures and their catalytic performance on CO oxidation[J]. CrystEngComm, 2013, 15: 5150-5155.
[62] 葉青, 霍飛飛, 閆立娜, 等.α-MnO2負載納米Au催化劑低溫催化氧化CO和苯的性能[J]. 物理化學學報, 2011, 27 (12): 2872-2880. YE Q, HUO F F, YAN L N,Highly active Au/α-MnO2catalysts for the low-temperature oxidation of carbon monoxide and benzene[J]. Acta Phys.-Chim. Sin., 2011, 27 (12): 2872-2880.
[63] LIANG S H, TENG F, BULGAN G,Effect of phase structure of MnO2nanorod catalyst on the activity for CO oxidation[J]. J. Phys. Chem. C, 2008, 112: 5307-5315.
[64] KUNKALEKAR R K, SALKER A V. Low temperature carbon monoxide oxidation over nanosized silver doped manganese dioxide catalysts[J]. Catalysis Communications, 2010, 12: 193-196.
[65] CHEN S Y, SONG W Q, LIN H J,Manganese oxide nano-array based monolithic catalysts: tunable morphology and high efficiency for CO oxidation[J]. ACS Appl. Mater. Interfaces, 2016, 8 (12): 7834-7842.
[66] WEI Z D, HUANG W Z, ZHANG S T,Carbon-based air electrodes carrying MnO2in zinc-air batteries[J]. Journal of Power Sources, 2000, 91: 83-85.
[67] WEI Z D, HUANG W Z, ZHANG S T,Induced effect of Mn3O4on formation of MnO2crystals favourable to catalysis of oxygen reduction[J]. Journal of Applied Electrochemistry, 2000, 30: 1133-1136.
[68] LI L, FENG X H, NIE Y,Insight into the effect of oxygen vacancy concentration on the catalytic performance of MnO2[J]. ACS Catalysis, 2015, 5: 4825-4832.
[69] CHENG F Y, ZHANG T R, ZHANG Y,Enhancing electrocatalytic oxygen reduction on MnO2with vacancies[J]. Angew. Chem. Int. Ed., 2013, 52: 2474-2477.
[70] WANG J, LIU D F, QI X Q,Insight into the effect of CaMnO3support on the catalytic performance of platinum catalysts[J]. Chemical Engineering Science, 2015, 135: 179-186.
[71] BAI B Y, LI J H, HAO J M. 1D-MnO2, 2D-MnO2and 3D-MnO2for low-temperature oxidation of ethanol[J]. Appl. Catal. B, 2015, 164: 241-250.
[72] LIUY X, DAI H, DENG J G,Controlled generation of uniform spherical LaMnO3, LaCoO3, Mn2O3and Co3O4nanoparticles and their high catalytic performance for carbon monoxide and toluene oxidation[J].Inorganic Chemistry, 2013, 52 (15): 8665-8676.
[73] SUN S M, WANG P Y, WU Q,Template-free synthesis of mesoporous MnO2under ultrasound irradiation for supercapacitor electrode[J]. Mater. Lett., 2014, 137: 206-209.
[74] AN C H, WANG Y J, HUANG Y N,Porous NiCo2O4nanostructures for high performance supercapacitorsa microemulsion technique[J]. Nano Energy, 2014, 10: 125-134.
[75] WANG C H, HSU H C, HU J H. High-energy asymmetric supercapacitor based on petal-shaped MnO2nanosheet and carbon nanotube-embedded polyacrylonitrile-based carbon nanofiber working at 2 V in aqueous neutral electrolyte[J]. J. Power Sources, 2014, 249: 1-8
[76] WANQ Q W, LI Z S, HUANG Y G,A novel hybrid supercapacitor based on spherical activated carbon and spherical MnO2in a non-aqueous electrolyte[J]. J. Mater. Chem., 2010, 20: 3883-3889.
[77] ZHANG C C, GUO C L, WEI Y H,A simple synthesis of hollow Mn2O3core-shell microspheres and its application in lithium ion batteries[J]. Phys. Chem. Chem. Phys., 2016, 18(6): 4739-4744.
[78] ZHAO J Z, TAO Z L, LIANG J,Facile synthesis of nanoporous γ-MnO2structures and their application in rechargeable Li-ion batteries[J]. Cryst. Growth Des., 2008, 8(8): 2799-2805.
[79] ZHONG K, ZHANG B, LUO S,Investigation on porous MnO microsphere anode for lithium ion batteries[J]. J. Power Sources, 2011, 196(16): 6802-6808.
[80] ZHU G, LI H J, DENG L J,Low-temperature synthesis of δ- MnO2with large surface area and its capacitance[J]. Materials Letters, 2010, 64: 1763-1765.
[81] CHEN Z D, GAO L, CAO J Y,Preparation and properties of γ-MnO2nanotubes as electrode materials of supercapacitor[J]. Acta Chimica Sinica., 2011, 69: 503-507.
[82] WANG Y T, LU A H, ZHANG H L,Synthesis of nanostructured mesoporous manganese oxides with three-dimensional frameworks and their application in supercapacitors[J]. J. Phys. Chem. C, 2011, 115(13): 5413-5421.
[83] LI W Y, SHAO J J, LIU Q,Facile synthesis of porous Mn2O3nanocubics for high-rate supercapacitors[J]. Electrochimica Acta, 2015, 157: 108-114.
[84] GHODBANE O, PASCAL J L, FAVIER F. Microstructural effects on charge-storage properties in MnO2-based electrochemical supercapacitors[J]. ACS Appl. Mater. Interfaces, 2009, 1(5): 1130-1139.
[85] HAN R P, LU Z, ZOU W H,Removal of copper (II) and lead (II) from aqueous solution by manganese oxide coated sand (II): Equilibrium study and competitive adsorption[J]. Journal of Hazardous Materials, 2006, B 137 (1): 480-488.
[86] ZHAO W, FENG X H, TAN W F,Relation of lead adsorption on birnessites with different average oxidation states of manganese and release of Mn2+/H+/K+[J]. Journal of Environmental Sciences, 2009, 21(4): 520-526.
[87] WANG S G, GONG W X, LIU X W,Removal of lead (II) from aqueous solution by adsorption onto manganese oxide-coated carbon nanotubes[J]. Separation and Purification Technology, 2007, 58(1): 17-23.
[88] LI X L, PAN G, QIN Y W,EXAFS studies on adsorption- desorption reversibility at manganese oxide-water interfaces(Ⅱ): Reversible adsorption of zinc on δ-MnO2[J]. Journal of Colloid and Interface Science, 2004, 271(1): 35-40.
[89] BARLING J, ANBAR A D. Molybdenum isotope fractionation during adsorption by manganese oxides[J]. Earth and Planetary Science Letters, 2004, 217(3): 315-329.
[90] WANG J, LIU J, ZHOU Y C,One-pot facile synthesis of hierarchical hollow microspheres constructed with MnO2nanotubes and their application in lithium storage and water treatment[J]. RSC Advances, 2013, 3(48): 25937-25943.
[91] 劉德宏, 謝江坤, 晏乃強. 錳氧化物的零價汞吸附性能初探[J]. 電力科技與環(huán)保, 2015, 31(3): 004-008. LIU D H, XIE J K, YAN N Q. Discussion on capacities for adsorbing elemental mercury of manganese oxides[J]. Electric Power Environmental Protection, 2015, 31(3): 004-008.
[92] 彭昌軍, 姜秀麗, 計紅芳,等. 鐵錳復合氧化物對3As( Ⅲ)、As(Ⅴ)的吸附性能研究及其在沼液中的應用[J]. 化工學報, 2014, 65(5): 1848-1855. PENG C J, JIANG X L, JI H F,Adsorption behavior of Fe-Mn binary oxide towards As (Ⅲ) and As (Ⅴ) and its application in biogas slurry[J]. CIESC Journal, 2014, 65(5): 1848-1855.
Progress in preparation of MnOand its application
ZHANG Xiaodong, LI Hongxin, HOU Fulin, YANG Yang, DONG Han, CUI Lifeng
(School of Environment and Architecture, University of Shanghai for Science and Technology, Shanghai 200093, China)
It is know that Mn is a common variable valene metal, which plays a good catalytic role in catalytic reaction. Due to the large specific surface area, strong adsorption performance and the excellent catalytic activity, a common transition metal oxide MnOhas become a hot topic in the field of environmental pollution control and energy. In this paper, recent progress in the synthesis method of MnOand its application, such as CO catalytic oxidation, volatile organic pollutants catalytic oxidation, gas adsorption and separation and battery electrode materials, has been summarized.
nanostructure;catalysis; adsorption; manganese oxides; synthesis; application
10.11949/j.issn.0438-1157.20161329
O 614; O 643.3; X 131.1
A
0438—1157(2017)06—2249—09
張曉東(1986—),男,副教授。
國家自然科學基金項目(21507086, 51508327);上海市青年科技英才揚帆計劃項目(14YF1409900, 16YF1408100)。
2016-09-21收到初稿,2017-03-05收到修改稿。
2016-09-21.
ZHANG Xiaodong, fatzhxd@126.com
supported by the National Natural Science Foundation of China (21507086, 51508327) and the Shanghai Sailing Program (14YF1409900, 16YF1408100).