樸勇日,吳曉敏,馬強(qiáng),李通
?
填充泡沫銅圓管內(nèi)R32單相流動(dòng)換熱
樸勇日1,2,吳曉敏1,馬強(qiáng)1,李通1
(1清華大學(xué)熱能工程系,熱科學(xué)與動(dòng)力工程教育部重點(diǎn)實(shí)驗(yàn)室,北京市CO2資源利用與減排技術(shù)重點(diǎn)實(shí)驗(yàn)室,北京100084;2朝鮮金策工業(yè)綜合大學(xué),朝鮮平壤999093)
在泡沫金屬纖維兩端布置電極,采用電加熱方法,實(shí)驗(yàn)測(cè)量了填充泡沫金屬的管內(nèi)R32流體和泡沫金屬纖維的溫度分布,得到了泡沫纖維與流體之間的對(duì)流傳熱系數(shù)。實(shí)驗(yàn)條件為:實(shí)驗(yàn)段管徑5 mm,泡沫銅孔隙率0.95,孔隙密度15、45 PPI,流體溫度280~325 K,熱通量1~18 kW·m?2,質(zhì)量流速20~200 kg·m?2·s?1。實(shí)驗(yàn)及模擬結(jié)果表明:泡沫纖維與單相R32的對(duì)流傳熱系數(shù)隨、泡沫銅的孔隙密度的增大而增大?;诹黧w外掠光滑圓管換熱實(shí)驗(yàn)數(shù)據(jù)的Zukauskas經(jīng)驗(yàn)關(guān)聯(lián)式的預(yù)測(cè)值與泡沫金屬纖維和R32流體之間的對(duì)流傳熱系數(shù)的實(shí)測(cè)值偏差為?35%~?67%,即該關(guān)聯(lián)式不適用于泡沫金屬纖維與流體之間的對(duì)流傳熱系數(shù)的預(yù)測(cè)。
泡沫金屬;R32;傳熱系數(shù)
泡沫金屬具有高孔隙率和大比表面積的優(yōu)點(diǎn),將其填充于換熱器管內(nèi)有望提高制冷劑換熱性能[1-2]。學(xué)者對(duì)泡沫金屬換熱性能的研究歷史不長,已有研究包括泡沫金屬內(nèi)單相、兩相流動(dòng)的實(shí)驗(yàn)[3-8]與模擬[9-11],并分析了材料和結(jié)構(gòu)對(duì)泡沫金屬內(nèi)傳熱性能和壓降特性的影響。
Gholamreza等[12]實(shí)驗(yàn)研究了孔隙密度為20、30和60 PPI的泡沫銅內(nèi)R245fa的單相流動(dòng)換熱特性和壓降特性。結(jié)果表明,泡沫銅的孔隙率為60 PPI時(shí),換熱效果最強(qiáng),但壓降最大。此時(shí),傳熱系數(shù)為光管的5.1倍,壓降為光管的5.7倍。Leong等[13]對(duì)于不同結(jié)構(gòu)的石墨泡沫內(nèi)空氣的流動(dòng)進(jìn)行了實(shí)驗(yàn)與模擬研究。實(shí)驗(yàn)結(jié)果表明,未開槽的石墨泡沫的傳熱系數(shù)最大,其壓降也最大。Zhao等[14]實(shí)驗(yàn)研究了填充泡沫金屬的水平管內(nèi)R134a流動(dòng)換熱性能和壓降特性。結(jié)果表明,孔隙密度從20 PPI增大到40 PPI時(shí),由于換熱面積增大和更細(xì)密的固體纖維骨架引起的強(qiáng)烈混合流動(dòng),使得傳熱系數(shù)增大為原來的兩倍。但是上述泡沫材料填充管內(nèi)流體的單相和兩相流動(dòng)換熱特性實(shí)驗(yàn)研究均采用了壁面加熱方式。
填充泡沫材料于管內(nèi)后,流體的流動(dòng)換熱包括3部分:管道內(nèi)壁面與流體之間的對(duì)流換熱,泡沫纖維的導(dǎo)熱以及泡沫纖維與流體之間的對(duì)流換熱[15-16]。對(duì)于非金屬泡沫材料,Dietrich等[17]基于非穩(wěn)態(tài)方法研究了泡沫纖維表面與空氣之間的換熱特性。實(shí)驗(yàn)開始時(shí),泡沫材料實(shí)驗(yàn)段的溫度處于常溫。通過流體通道中安裝的電加熱絲加熱空氣,使得空氣與泡沫材料之間產(chǎn)生一定的溫差。實(shí)驗(yàn)開始后,由于空氣和泡沫材料的換熱,泡沫纖維的溫度也逐漸升高,最后達(dá)到與流體相同的溫度。該實(shí)驗(yàn)在線測(cè)量了泡沫材料特定位置的溫度與空氣溫度。通過求解固體和流體的非穩(wěn)態(tài)能量守恒方程,最終得出了泡沫纖維與流體之間的傳熱系數(shù)。Kouichi等[18]也實(shí)驗(yàn)研究了泡沫纖維表面與空氣之間的流動(dòng)換熱特性。
綜上,對(duì)于金屬泡沫纖維與流體之間的對(duì)流換熱特性的研究很少,尤其是對(duì)于液相流體流動(dòng)換熱特性的實(shí)驗(yàn)研究尚未見文獻(xiàn)報(bào)道。
針對(duì)已有研究的不足,改變傳統(tǒng)壁面加熱方式,采用電加熱直接加熱泡沫纖維的方式,研究單相R32流體與泡沫纖維之間的換熱特性,并與現(xiàn)有關(guān)聯(lián)式預(yù)測(cè)的傳熱系數(shù)進(jìn)行了對(duì)比分析。
1.1 實(shí)驗(yàn)裝置
實(shí)驗(yàn)裝置如圖1所示[19-21]。工質(zhì)循環(huán)系統(tǒng)包括儲(chǔ)液罐、循環(huán)泵、預(yù)熱段、實(shí)驗(yàn)段和冷卻段等。過冷工質(zhì)從儲(chǔ)液罐中流出,由循環(huán)泵驅(qū)動(dòng)進(jìn)入質(zhì)量流量計(jì)測(cè)量質(zhì)流密度后,經(jīng)過預(yù)熱段被加熱至預(yù)定的溫度。然后流入實(shí)驗(yàn)段,與被由直流穩(wěn)壓電源加熱的泡沫纖維進(jìn)行換熱。交流電源和恒流電源分別用于為預(yù)熱段和實(shí)驗(yàn)段提供所需的加熱功率。兩臺(tái)低溫冷卻液循環(huán)泵分別與冷卻器和儲(chǔ)液罐相連,用于冷卻工質(zhì)而使工質(zhì)達(dá)到過冷狀態(tài)。
工質(zhì)循環(huán)流量由Coriolis質(zhì)量流量計(jì)測(cè)量。3個(gè)鉑電阻分別安裝在預(yù)熱段入口、實(shí)驗(yàn)段入口和出口,用于測(cè)量工質(zhì)溫度。沿著泡沫銅的軸向布置5個(gè)熱電偶,以測(cè)量泡沫纖維表面的溫度分布。為了將熱電偶焊接到泡沫纖維表面上,利用細(xì)電加熱線,先將其穿過泡沫銅實(shí)驗(yàn)段,然后使用直流電源加熱電加熱線提供熱源,再通過錫焊方式將熱電偶直接焊接到泡沫纖維表面上。壓力變送器和壓差變送器用于測(cè)量實(shí)驗(yàn)段出口壓力和實(shí)驗(yàn)段進(jìn)出口壓差。數(shù)字電壓表和數(shù)字電流表用于測(cè)量預(yù)熱段和實(shí)驗(yàn)段的加熱功率。所有的測(cè)量數(shù)據(jù)儲(chǔ)存在數(shù)據(jù)采集器34970A,可直接傳送到計(jì)算機(jī)在線記錄。表1為測(cè)量參數(shù)及精度。
表1 測(cè)量參數(shù)及精度
1.2 實(shí)驗(yàn)段
為了研究泡沫纖維和R32流體之間的換熱特性,所設(shè)計(jì)的實(shí)驗(yàn)段如圖2所示。圓形石英管內(nèi)填充了長度s=82 mm、直徑s=5 mm的泡沫銅纖維,泡沫銅的兩端有可直接連接到直流電源的正負(fù)極。接通電源時(shí),泡沫纖維被加熱,加熱功率可以由加熱電流和電壓表達(dá),。
這樣可以形成泡沫纖維與流體之間的溫差,R32在填充泡沫金屬的石英管內(nèi)流動(dòng)時(shí),能夠與泡沫金屬進(jìn)行換熱。
圖3為實(shí)驗(yàn)段中使用的孔隙密度分別為15和45 PPI,孔隙率均為0.95的泡沫銅材料??梢钥吹剑菽~材料具有無規(guī)則的泡沫纖維。
泡沫纖維的直徑f、泡沫金屬內(nèi)流固接觸的比表面積sf等泡沫材料的結(jié)構(gòu)特征量按照Calmidi[22]提出的經(jīng)驗(yàn)公式來確定
(2)
式中,p為泡沫材料的孔徑;為孔隙率;為泡沫纖維形態(tài)函數(shù),
按照上述公式所得的實(shí)驗(yàn)段泡沫銅結(jié)構(gòu)特征量列于表2。
表2 實(shí)驗(yàn)段泡沫銅結(jié)構(gòu)特征量
2.1 數(shù)據(jù)處理與不確定度
泡沫纖維與流體之間的對(duì)流傳熱系數(shù)的計(jì)算式如下
式中,s為泡沫纖維的表面溫度,取值于泡沫纖維表面5個(gè)點(diǎn)溫度的平均值;f為流體溫度,取值于實(shí)驗(yàn)段R32進(jìn)出口溫度的平均值。
對(duì)液相和氣相R32分別進(jìn)行了實(shí)驗(yàn),實(shí)驗(yàn)工況為流體溫度280~325 K,流體壓力1.1~1.25 MPa,實(shí)驗(yàn)段熱通量1~18 kW·m?2,質(zhì)量流速20~200 kg·m?2·s?1。
由式(4)可知,傳熱系數(shù)的不確定度與實(shí)驗(yàn)段加熱電流、電壓、比表面積sf、圓柱形泡沫銅實(shí)驗(yàn)段的長度s及直徑s、泡沫纖維表面溫度s和流體溫度f7個(gè)量的精度相關(guān)。最終得到的傳熱系數(shù)測(cè)量的不確定度為±10.5%。
2.2 實(shí)驗(yàn)結(jié)果與分析
分別在填充表2中兩種泡沫銅的圓管中,進(jìn)行了液相和氣相R32流體流動(dòng)換熱實(shí)驗(yàn)。圖4為不同孔隙密度的填充泡沫金屬管內(nèi)液相及氣相R32流動(dòng)傳熱系數(shù)的實(shí)驗(yàn)值隨的變化。由圖可見,泡沫纖維與單相R32之間的流動(dòng)傳熱系數(shù)隨、泡沫銅孔隙密度的增大而增大。
到目前為止,對(duì)泡沫纖維與流體之間換熱的研究很少,在此借用Zukauskas[23]基于流體外掠光滑圓管換熱實(shí)驗(yàn)總結(jié)的流體與管壁換熱的經(jīng)驗(yàn)關(guān)聯(lián)式[24-26]
式中,f為流體的熱導(dǎo)率;為水力直徑,對(duì)于泡沫纖維,取泡沫纖維直徑f。
圖5為液相及氣相R32與不同孔隙密度的泡沫纖維之間的對(duì)流傳熱系數(shù)的實(shí)驗(yàn)值與經(jīng)驗(yàn)關(guān)聯(lián)式(5)的預(yù)測(cè)值的對(duì)比。
圖4 傳熱系數(shù)隨Re的變化
圖5 實(shí)驗(yàn)數(shù)據(jù)和預(yù)測(cè)值的對(duì)比
由圖可見,預(yù)測(cè)值與實(shí)驗(yàn)測(cè)量值偏差較大,為-35%~-67%。原因在于經(jīng)驗(yàn)關(guān)聯(lián)式只是基于光管的實(shí)驗(yàn)數(shù)據(jù),而泡沫纖維大比表面積和無規(guī)則結(jié)構(gòu)對(duì)流體的擾動(dòng)作用增強(qiáng)了換熱。同時(shí),泡沫纖維表面粗糙度較大,亦使換熱效果得到增強(qiáng)。
對(duì)于氣相及液相R32工質(zhì)在泡沫纖維里的換熱進(jìn)行了實(shí)驗(yàn)研究。主要結(jié)論如下。
(1)在泡沫金屬纖維兩端布置電極,采用電加熱方法,實(shí)驗(yàn)研究了泡沫纖維與流體之間的對(duì)流換熱。泡沫纖維與單相R32之間的對(duì)流傳熱系數(shù)隨、泡沫銅的孔隙密度的增大而增大。
(2)基于流體外掠光滑圓管換熱實(shí)驗(yàn)的Zukauskas經(jīng)驗(yàn)關(guān)聯(lián)式的預(yù)測(cè)值與泡沫金屬纖維和R32流體之間的對(duì)流傳熱系數(shù)的實(shí)測(cè)值偏差為-35%~-67%,即該關(guān)聯(lián)式不適用于泡沫金屬纖維與流體之間的對(duì)流傳熱系數(shù)的預(yù)測(cè)。
a——面積,m2 D, d——直徑,m h——傳熱系數(shù),W·m?2·K?1 I——電流,A L——長度,m Nu——Nusselt數(shù) PPI——孔隙密度 Pr——Prandtl數(shù) Q——加熱功率,W Re——Reynolds數(shù) T——溫度,K U——電壓,V V——體積,m3 ε——孔隙率 λ——熱導(dǎo)率,W·m?1·K?1 下角標(biāo) f——流體,纖維 p——孔隙 s——固體
[1] LU W, ZHANG T, YANG M. Analytical solution of forced convective heat transfer in parallel-plate channel partially filled with metallic foams[J]. International Journal of Heat and Mass Transfer, 2016, 100: 718-727.
[2] CALMIDI V V, MAHAJANR L. Forced convection in high porosity metal foams[J]. Journal of Heat Transfer, 2000, 122(3): 557-565.
[3] ZHAO C Y. Review on thermal transport in high porosity cellular metal foams with open cells[J]. International Journal of Heat and Mass Transfer, 2012, 55(13/14): 3618-3632.
[4] HU H T, ZHU Y, DING G L,. Effect of oil on two-phase pressure drop of refrigerant flow boiling inside circular tubes filled with metal foam[J]. International Journal of Refrigeration, 2013, 36(2): 516-526.
[5] JI X B, XU J L. Experimental study on the two-phase pressure drop in copper foams[J]. Heat Mass Transfer, 2012, 48(1): 153-164.
[6] MAO S L, LOVE N, LEANOS A,. Correlation studies of hydrodynamics and heat transfer in metal foam heat exchangers[J].Applied Thermal Engineering, 2014, 71(1): 104-118.
[7] ZHU Y, HU H T, SUN S,. Heat transfer measurements and correlation of refrigerant flow boiling in tube filled with copper foam[J]. International Journal of Refrigeration, 2014, 38: 215-226.
[8] MADANI B, TADRIST L, TOPIN F. Experimental analysis of upward flow boiling heat transfer in a channel provided with copper metallic foam[J]. Applied Thermal Engineering, 2013, 52(2): 336-344.
[9] ?SMAIL S. Numerical investigation of heat transfer and fluid flow behaviors of a block type graphite foam heat sink inserted in a rectangular channel[J]. Applied Thermal Engineering, 2015, 78(5): 605-615.
[10] WU Z Y, CALIT C, FLAMANT G,. Coupled radiation and flow modeling in ceramic foam volumetric solar air receivers[J]. Solar Energy, 2011, 85(9): 2374-2385.
[11] ZHAO C Y, LU W, TASSOU S A. Thermal analysis on metal-foam filled heat exchangers (Ⅱ): Tube heat exchangers[J]. International Journal of Heat and Mass Transfer, 2006, 49(15/16): 2762-2770.
[12] GHOLAMREZA B A, MOON C, KIM K C. Experimental study on single-phase heat transfer and pressure drop of refrigerants in a plate heat exchanger with metal-foam-filled channels[J]. Applied Thermal Engineering, 2016, 102(5): 423-431.
[13] LEONG K C, LI H Y, JIN LW,. Numerical and experimental study of forced convection in graphite foams of different configurations[J]. Applied Thermal Engineering, 2010, 30(5): 520-532.
[14] ZHAO C Y, LU W, TASSOU S A. Flow boiling heat transfer in horizontal metal-foam tubes[J]. Journal of Heat Transfer, 2009, 131(12): 1210021-1210027.
[15] HSIEH W H, LU S F. Heat-transfer analysis and thermal dispersion in thermally-developing region of a sintered porous metal channel[J]. International Journal of Heat and Mass Transfer, 2000, 43(16): 3001-3011.
[16] MAHDI R A, MOHAMMED H A, MUNISAMY K M,Review of convection heat transfer and fluid flow in porous media with nanofluid[J]. Renewable and Sustainable Energy Reviews, 2015, 41(C): 715-734.
[17] DIETRICH B. Heat transfer coefficients for solid ceramic sponges – experimental results and correlation[J]. International Journal of Heat and Mass Transfer, 2013, 61(6): 627-637.
[18] KOUICHI K, SAN S Y. Heat transfer correlations for open-cellular porous materials[J]. International Communications in Heat and Mass Transfer, 2005, 32(7): 947-953.
[19] ZHU Y, WU X M, WEI Z F. Heat transfer characteristics and correlation for CO2/propane mixtures flow evaporation in a smooth mini tube[J]. Applied Thermal Engineering, 2015, 81: 253-261.
[20] WU X M, ZHU Y, HUANG X J. Influence of 0° helix angle micro fins on flow and heat transfer of R32 evaporating in a horizontal mini multichannel flat tube[J]. Experimental Thermal and Fluid Science, 2015, 68: 669-680.
[21] WU X M, ZHU Y, TANG Y J. New experimental data of CO2flow boiling in mini tube with micro fins of zero helix angle[J]. International Journal of Refrigeration, 2015, 59: 281-294.
[22] CALMIDI V V. Transport phenomena in high porosity fibrous metal foams[D]. Colorado: University of Colorado, 1998.
[23] ZUKAUSKAS A A. Convective heat transfer in cross-flow[M]// Handbook of Single-Phase Heat Transfer. New York: John Wiley & Sons Inc., 1987: 23-205.
[24] LI H Y, LEONG K C. Experimental and numerical study of single and two-phase flow and heat transfer in aluminum foams[J]. International Journal of Heat and Mass Transfer, 2011, 54(23/24): 4904-4912.
[25] LIU Z Y, YAO Y P, WU H Y. Numerical modeling for solid-liquid phase change phenomena in porous media: shell-and-tube type latent heat thermal energy storage[J]. Applied Energy, 2013, 112: 1222-1232.
[26] LU W, ZHAO C Y, TASSOU S A. Thermal analysis on metal-foam filled heat exchangers (Ⅰ): Metal-foam filled pipes[J]. International Journal of Heat and Mass Transfer, 2006, 49(15/16): 2751-2761.
Single-phase heat transfer characteristics of R32 flowing through metallic foam filled channel
PAK Yongil1,2, WU Xiaomin1, MA Qiang1, LI Tong1
(1Key Laboratory for Thermal Science and Power Engineering of Ministry of Education, Beijing Key Laboratory of CO2Utilization and Reduction Technology, Department of Thermal Engineering, Tsinghua University, Beijing 100084,China;2KimChaek University of Technology, Pyongyang 999093, DPRK)
By electric heating method of metal foam, temperature distribution of R32 and porous fibre were measured and the heat transfer coefficients between them were obtained in metallic foam filled channels. The experiments were conducted for R32 in a metallic foam filled tube with an internal diameter of 5 mm, the 0.95 porosity and 15, 45 PPI pore densities, under the conditions of fluid temperature of 280—325 K, heat flux ranging of 1—18 kW·m?2, and mass flux ranging of 20—200 kg·m?2·s?1. Following conclusions could be summarized from the results of the experiments. The heat transfer coefficients of R32 flowing through porous fibres increased with the increase ofand pore densities. The deviation between predicted values of heat transfer coefficient based on conventional correlation and experimental data reached to-35%—-67%, that is, the conventional correlation is not suitable to predict the convective heat transfer between the porous fibre and the fluid.
metal foam; R32; heat transfer coefficient
10.11949/j.issn.0438-1157.20161218
TK 1
A
0438—1157(2017)06—2275—05
吳曉敏。
樸勇日(1979—),男,博士研究生。
2016-09-01收到初稿,2017-03-05收到修改稿。
2016-09-01.
Prof. WU Xiaomin, wuxiaomin@mail. tsinghua. edu.cn