王寧寧 劉洋 丁寧 聞德亮
1大連醫(yī)科大學(xué)公共衛(wèi)生學(xué)院(大連 116044)
2中國(guó)醫(yī)科大學(xué)公共衛(wèi)生學(xué)院(沈陽(yáng) 110122)
運(yùn)動(dòng)對(duì)棕色脂肪活性和白色脂肪棕色化的影響及其干預(yù)肥胖的作用研究進(jìn)展
王寧寧1劉洋2丁寧2聞德亮2
1大連醫(yī)科大學(xué)公共衛(wèi)生學(xué)院(大連 116044)
2中國(guó)醫(yī)科大學(xué)公共衛(wèi)生學(xué)院(沈陽(yáng) 110122)
運(yùn)動(dòng)能有效減少脂肪組織體積和甘油三酯的儲(chǔ)存,是公認(rèn)最健康的肥胖干預(yù)手段。隨著對(duì)白色脂肪組織和棕色脂肪組織不同生理功能認(rèn)識(shí)的不斷深入,人們發(fā)現(xiàn)運(yùn)動(dòng)還能調(diào)控脂肪組織的活性及分化,從而展開(kāi)了對(duì)運(yùn)動(dòng)減肥新的生理機(jī)制的探討。本文就關(guān)于運(yùn)動(dòng)通過(guò)影響棕色脂肪活性及白色脂肪棕色化干預(yù)肥胖的研究進(jìn)行綜述,分析其可能的作用機(jī)制,并展望今后的相關(guān)研究重點(diǎn),為更好地利用運(yùn)動(dòng)干預(yù)肥胖提供理論基礎(chǔ)。
運(yùn)動(dòng);白色脂肪組織;棕色脂肪組織;肥胖
肥胖已成為目前全球最嚴(yán)峻的公共衛(wèi)生問(wèn)題之一[1]。多項(xiàng)研究指出,久坐行為是現(xiàn)代社會(huì)肥胖流行的重要原因[2,3],因此,增加體力活動(dòng)或適當(dāng)運(yùn)動(dòng)作為控制體重、對(duì)抗肥胖的健康手段引起人們的高度重視。肥胖最直接的表現(xiàn)是體內(nèi)脂肪堆積過(guò)多和(或)分布異常導(dǎo)致的體重增加,多年來(lái)的研究證實(shí)運(yùn)動(dòng)能明顯減少脂肪體積和甘油三酯儲(chǔ)存[4,5],而其中白色脂肪組織(white adipose tissue,WAT)受到的關(guān)注度較高。隨著研究的不斷深入,人們開(kāi)始關(guān)注運(yùn)動(dòng)對(duì)棕色脂肪組織(brown adipose tissue,BAT)的影響,尤其是2012年Spiegelman研究小組在《Nature》雜志報(bào)道了一種人和小鼠運(yùn)動(dòng)時(shí)骨骼肌產(chǎn)生的激素irisin,并用體內(nèi)外實(shí)驗(yàn)均證實(shí)了其具有促進(jìn)白色脂肪細(xì)胞棕色化的重要生物學(xué)功能[6],掀起了運(yùn)動(dòng)調(diào)控脂肪細(xì)胞活性和分化研究的熱潮。
經(jīng)典脂肪組織分為WAT和BAT兩種類(lèi)型,兩者在形態(tài)、顯微結(jié)構(gòu)、生理功能上有很大區(qū)別[7,8]:BAT比WAT顏色更深,呈棕色,嚙齒動(dòng)物主要分布于肩胛間區(qū);棕色脂肪細(xì)胞體積小,脂滴小而多(多腔室脂滴),細(xì)胞核居中,含大量線粒體,有豐富的毛細(xì)血管和交感神經(jīng)纖維支配。WAT將多余能量以甘油三酯的形式儲(chǔ)存起來(lái),并通過(guò)釋放激素和脂肪因子如瘦素、脂聯(lián)素、抵抗素等參與調(diào)節(jié)內(nèi)分泌代謝[9];BAT則通過(guò)線粒體的解偶聯(lián)作用將脂質(zhì)氧化產(chǎn)生的能量以熱能的形式釋放,兩者在維持機(jī)體能量平衡過(guò)程中共同發(fā)揮重要作用。
1.1 棕色脂肪組織活性的提高對(duì)減輕肥胖的作用
BAT同骨骼肌一樣,是人體內(nèi)非戰(zhàn)栗產(chǎn)熱的主要器官[10],其線粒體內(nèi)膜上表達(dá)的解偶聯(lián)蛋白-1(UCP1)作為一種脂肪酸陰離子載體,將質(zhì)子轉(zhuǎn)運(yùn)入線粒體,破壞了氧化磷酸化必需的質(zhì)子梯度,使二磷酸腺苷(ADP)不能利用能量轉(zhuǎn)化為三磷酸腺苷(ATP),將脂質(zhì)β氧化的能量以熱能的形式釋放[11]。非戰(zhàn)栗產(chǎn)熱占人體日均基礎(chǔ)代謝率的20%[12],50 g活化的BAT每天能增加5%的靜息能耗(resting energy expenditure,REE)消耗(相當(dāng)于75~100 kcal/天),一年相當(dāng)于減少4~4.7 kg脂肪[13]。BAT的活化可以減少脂肪儲(chǔ)存和降低體重[14];相反,BAT活性減弱導(dǎo)致總脂肪含量和身體質(zhì)量指數(shù)(body mass index,BMI)增加[15],因此研究認(rèn)為BAT活性可能與BMI成負(fù)相關(guān)[16]。人類(lèi)新生兒體內(nèi)BAT重量約占體重的2%~5%[17],以往認(rèn)為BAT隨年齡增長(zhǎng)而失活或減少,因此忽視了對(duì)其的研究。有人利用18氟脫氧葡萄糖-正電子發(fā)射計(jì)算機(jī)斷層顯像(18FDGPET/CT)掃描技術(shù)發(fā)現(xiàn)成人的頸部、鎖骨上、脊柱旁、縱隔、主動(dòng)脈周?chē)?、腎周等區(qū)域均存在BAT,在寒冷刺激和交感神經(jīng)系統(tǒng)(SNS)活化時(shí)具有較高活性[15,18,19]。如果能增加組織中BAT含量或提高其活性,將有可能使其在對(duì)抗肥胖方面具有實(shí)際作用[12,15,20]。
1.2 白色脂肪組織棕色化對(duì)減輕肥胖的作用
人類(lèi)WAT主要分為內(nèi)臟和皮下WAT,前者位于腹部臟器周?chē)?,后者主要位于大腿和臀部皮下。WAT尤其是內(nèi)臟WAT異常堆積可導(dǎo)致肥胖及諸多代謝性并發(fā)癥如胰島素抵抗、血脂異常、動(dòng)脈粥樣硬化等[21,22]。近年來(lái)在嚙齒動(dòng)物和人類(lèi)WAT中發(fā)現(xiàn)的棕色樣脂肪細(xì)胞(brown fat-like adipocytes)備受矚目,這些細(xì)胞含多腔室脂滴和豐富的線粒體,表達(dá)棕色脂肪特異基因UCP1,也被稱(chēng)為米色(beige)或brite(brown-in-white)脂肪細(xì)胞[23-25],被認(rèn)為是存在于人類(lèi)和嚙齒動(dòng)物體內(nèi)的第三種脂肪細(xì)胞[25]。這些細(xì)胞平時(shí)處于靜息狀態(tài),在持續(xù)冷暴露和β腎上腺能刺激下具有產(chǎn)熱功能[26]。Vi?tali等[27]定量分析了冷刺激下的肥胖和有2型糖尿病傾向的小鼠模型增加的棕色脂肪細(xì)胞和減少的白色脂肪細(xì)胞,發(fā)現(xiàn)二者幾乎等量,脂肪細(xì)胞總數(shù)也無(wú)明顯增減,無(wú)凋亡、分裂征象。同樣,Rosenwald等[28]發(fā)現(xiàn)小鼠皮下WAT在低溫(8℃)下出現(xiàn)的棕色樣脂肪細(xì)胞在恢復(fù)常溫后轉(zhuǎn)變回白色脂肪細(xì)胞,均證實(shí)了WAT是棕色樣脂肪細(xì)胞的主要來(lái)源。另外,這些棕色樣細(xì)胞特異性表達(dá)的TBX1、TMEM26、CD137等基因在經(jīng)典BAT和WAT中均不表達(dá),與Wu等[25]的結(jié)論相符。關(guān)于brite脂肪細(xì)胞的起源學(xué)說(shuō)大致分為:從存在于WAT中的前棕色脂肪細(xì)胞分化而來(lái)[24];由前白色脂肪細(xì)胞分化而來(lái)[29,30];從已經(jīng)存在的白色脂肪細(xì)胞轉(zhuǎn)化而來(lái)[31,32];起源于骨骼肌前體細(xì)胞[33]。雖然關(guān)于brite脂肪細(xì)胞起源的爭(zhēng)議仍然存在,但毋庸置疑的是有關(guān)BAT的研究視野被拓寬,除了上述散在的BAT部位,任何有WAT分布的區(qū)域都可能被誘導(dǎo)出棕色樣脂肪細(xì)胞,并產(chǎn)生同BAT相似的生理功能。
從能量平衡的角度來(lái)看,肥胖是能量收支失衡的結(jié)果。通過(guò)上調(diào)BAT活性或誘導(dǎo)白色脂肪棕色化可增加能耗以對(duì)抗肥胖。有許多研究致力于通過(guò)小分子藥物或者生長(zhǎng)因子來(lái)刺激BAT的活化和分化,如β-腎上腺素能受體(β-AR)激動(dòng)劑[34]、過(guò)氧化物酶體增殖物激活受體γ(PPARγ)激動(dòng)劑[35,36]、胰高血糖素樣肽-1(GLP-1)激動(dòng)劑[37]、α-糖苷酶抑制劑[38]等。但令研究者困惑的是,這些藥物在人體脂肪組織中缺乏特異性結(jié)合受體,造成脫靶效應(yīng)。例如β3-AR激動(dòng)劑能增加小鼠能耗,對(duì)抗肥胖和T2DM,而人體內(nèi)BAT的β3-AR表達(dá)相當(dāng)有限,因此并不能復(fù)制動(dòng)物試驗(yàn)中的效果[39]。另外,運(yùn)用擬交感活性藥物如麻黃堿等則會(huì)對(duì)其他組織臟器產(chǎn)生腎上腺能刺激,導(dǎo)致卒中、心血管意外等副作用[40]。PPARγ輔助激活因子1α(PGC-1α)是BAT適應(yīng)性產(chǎn)熱和WAT棕色化調(diào)控中重要的轉(zhuǎn)錄調(diào)節(jié)因子,但它同時(shí)參與心、腦、肝臟、腎臟等臟器的線粒體生物合成、脂肪酸及糖代謝、氧化代謝等,研究靶向作用于脂肪組織PGC-1α的藥物同樣充滿(mǎn)挑戰(zhàn)。而運(yùn)動(dòng)作為一種生理刺激能否對(duì)BAT活性及WAT棕色化調(diào)控產(chǎn)生影響?圍繞這一假設(shè),研究者們?cè)O(shè)計(jì)了多種嚙齒動(dòng)物實(shí)驗(yàn)。
2.1 相關(guān)動(dòng)物實(shí)驗(yàn)研究現(xiàn)狀
多數(shù)研究認(rèn)為,運(yùn)動(dòng)能使動(dòng)物體重下降,糖脂代謝狀況改善,WAT含量減少,BAT產(chǎn)熱活性增強(qiáng),線粒體活性改善,WAT中出現(xiàn)棕色樣細(xì)胞及棕色脂肪特異基因表達(dá)上調(diào)。De Matteis等[41]發(fā)現(xiàn),進(jìn)行6周強(qiáng)度為60%最大攝氧量(VO2max)的跑臺(tái)運(yùn)動(dòng)可使大鼠棕色脂肪細(xì)胞線粒體更大,UCP1表達(dá)更顯著,但不及冷刺激對(duì)產(chǎn)熱的影響明顯;腹膜后WAT出現(xiàn)棕色樣細(xì)胞,但棕色脂肪特異基因表達(dá)無(wú)明顯改變。Xu等[42]的研究發(fā)現(xiàn),無(wú)論是高脂飲食還是標(biāo)準(zhǔn)飲食小鼠,8周的跑臺(tái)運(yùn)動(dòng)都使前棕色脂肪細(xì)胞向棕色脂肪細(xì)胞轉(zhuǎn)化增多,WAT和BAT中的棕色脂肪特異性基因表達(dá)均上調(diào)。Slocum等[43]對(duì)高脂誘導(dǎo)的肥胖小鼠分別予飲食控制、跑臺(tái)運(yùn)動(dòng)和麻黃素處理,運(yùn)動(dòng)組小鼠BAT的UCP1及線粒體功能相關(guān)基因如PGC1α、核呼吸因子(nuclear re?spiratory factors 1,NRF1)、鳥(niǎo)嘌呤和腺嘌呤結(jié)合蛋白α(guanine and adenine-binding protein alpha,GABPA)和線粒體轉(zhuǎn)錄因子A(mitochondrial transcription fac?tor A,TFAM)表達(dá)均上調(diào);同時(shí)體重減輕,非脂肪含量比重增加,說(shuō)明減輕的體重以脂肪組織為主。Suther?land等[44]發(fā)現(xiàn),4周的游泳訓(xùn)練能降低小鼠體重和脂肪量,上調(diào)附睪和腹膜后WAT的PGC-1α mRNA表達(dá)。還有研究設(shè)計(jì)了一種包含自主跑輪運(yùn)動(dòng)的設(shè)施多樣的環(huán)境(enriched environment),在這種環(huán)境中飼養(yǎng)的小鼠WAT中出現(xiàn)棕色樣細(xì)胞,棕色化調(diào)控基因PRDM16及產(chǎn)熱相關(guān)基因上調(diào)[45]。近期一些關(guān)注殘障人士運(yùn)動(dòng)的學(xué)者還觀察了振動(dòng)訓(xùn)練對(duì)小鼠脂肪組織的影響,發(fā)現(xiàn)振動(dòng)同樣能降低小鼠體重,增加BAT中PGC-1α、UCP1的表達(dá),同時(shí)腹膜后WAT體積減小且PGC-1α和UCP1表達(dá)上調(diào)[46]。陰性結(jié)果報(bào)道相對(duì)較少:Wu[47]、Queirez等[48]的研究發(fā)現(xiàn),8周跑臺(tái)運(yùn)動(dòng)對(duì)大鼠高脂/高糖飲食誘導(dǎo)的BAT活性增強(qiáng)具有一定抑制作用。Larue-Achagiotis等[49]將經(jīng)過(guò)20天跑臺(tái)運(yùn)動(dòng)的大鼠置于5℃環(huán)境10天和28℃環(huán)境4天,發(fā)現(xiàn)運(yùn)動(dòng)使體重、WAT含量、BAT產(chǎn)熱活性下降(質(zhì)子傳導(dǎo)性低40%),認(rèn)為運(yùn)動(dòng)引起能量負(fù)平衡,而B(niǎo)AT產(chǎn)熱活性下降可以代償性抑制體重下降和攝食增加(具體見(jiàn)表1)。
表1 運(yùn)動(dòng)對(duì)BAT活性和WAT棕色化影響的部分嚙齒動(dòng)物研究
現(xiàn)有動(dòng)物實(shí)驗(yàn)多數(shù)從BAT和WAT形態(tài)結(jié)構(gòu)變化、分化調(diào)控及功能相關(guān)(多數(shù)圍繞線粒體功能)的特異基因表達(dá)、產(chǎn)熱能力等幾個(gè)方面評(píng)價(jià)運(yùn)動(dòng)對(duì)脂肪組織分化及功能活性的影響,但不同研究報(bào)道的結(jié)論不一,很大程度上與實(shí)施的運(yùn)動(dòng)處方、采用的動(dòng)物模型以及脂肪組織取材部位不同等因素相關(guān)。如標(biāo)準(zhǔn)飲食或非肥胖動(dòng)物實(shí)驗(yàn)可能更易得出陽(yáng)性結(jié)果,陰性報(bào)道中的實(shí)驗(yàn)對(duì)象以肥胖或高營(yíng)養(yǎng)飲食基礎(chǔ)動(dòng)物居多。
2.2 運(yùn)動(dòng)誘導(dǎo)白色脂肪組織棕色化具有部位特異性
通過(guò)嚙齒動(dòng)物實(shí)驗(yàn)又進(jìn)一步發(fā)現(xiàn),可被誘導(dǎo)的棕色樣細(xì)胞主要出現(xiàn)在皮下WAT中[6,50-52]。最近有研究把運(yùn)動(dòng)后小鼠皮下和內(nèi)臟WAT植入12周齡對(duì)照(靜坐)小鼠,發(fā)現(xiàn)被植入皮下WAT的小鼠糖耐量、胰島素敏感性和血脂水平等均有所改善,骨骼肌和BAT的糖攝取能力明顯增加;而被植入內(nèi)臟WAT的小鼠均無(wú)上述變化;進(jìn)一步用微陣列分析發(fā)現(xiàn)了運(yùn)動(dòng)使皮下WAT中有關(guān)代謝、線粒體生物合成、氧化應(yīng)激、信號(hào)轉(zhuǎn)導(dǎo)和跨膜轉(zhuǎn)運(yùn)等基因表達(dá)上調(diào);PCR進(jìn)一步確認(rèn)運(yùn)動(dòng)使皮下WAT中UCP1 mRNA表達(dá)增加30倍;組織學(xué)分析發(fā)現(xiàn)運(yùn)動(dòng)后皮下WAT中含棕色樣脂肪細(xì)胞(多腔室脂滴、支配血管增多),運(yùn)動(dòng)后的內(nèi)臟WAT中均無(wú)上述改變[50]。Wu等[47]的研究發(fā)現(xiàn),運(yùn)動(dòng)使大鼠腹股溝皮下WAT的中部區(qū)域出現(xiàn)棕色化改變,而腹股溝皮下WAT兩端及內(nèi)臟WAT中均無(wú)相應(yīng)改變。可見(jiàn)運(yùn)動(dòng)誘導(dǎo)的白色脂肪棕色化是有脂肪組織部位特異性的,其潛在的機(jī)制和具體原因未知,但很可能因?yàn)檫@兩個(gè)部位的WAT本身具有不同的分子特性。皮下與內(nèi)臟WAT起源于不同的前體細(xì)胞,具有不同的基因表達(dá)譜[53]:相比內(nèi)臟WAT,皮下WAT更多地表達(dá)與糖脂代謝、胰島素作用相關(guān)的基因,如葡萄糖轉(zhuǎn)運(yùn)蛋白-1(GLUT1)、胰島素樣生長(zhǎng)因子-1(IGF1)、胰島素樣生長(zhǎng)因子結(jié)合蛋白-3(IGFBP3)、PPARγ、激素敏感脂肪酶(HSL)、β-AR、3-羥基-3-甲基戊二酰-CoA合成酶(3-hydroxy-3-methyl glutaricacyl-CoA synthetase,HMGS);更重要的是皮下WAT表達(dá)PRDM16,是棕色脂肪分化關(guān)鍵的轉(zhuǎn)錄調(diào)控因子[54],與皮下WAT更容易被誘導(dǎo)產(chǎn)生棕色樣細(xì)胞可能相關(guān)。內(nèi)臟WAT在體內(nèi)異常堆積與胰島素抵抗及2型糖尿病發(fā)病風(fēng)險(xiǎn)相關(guān)[9,22,55],而皮下WAT恰恰相反[56,57]。導(dǎo)致二者不同的代謝特性和對(duì)運(yùn)動(dòng)刺激產(chǎn)生不同反應(yīng)的分子機(jī)制仍有待進(jìn)一步研究。
2.3 相關(guān)人群研究現(xiàn)狀
第一項(xiàng)關(guān)于體力活動(dòng)與BAT活性關(guān)系的人群研究見(jiàn)于Dinas等[58]通過(guò)PET/CT檢測(cè)40名腫瘤患者的BAT活性,利用自答問(wèn)卷(International Physical Activity Questionnaire,IPAQ)進(jìn)行日常體力活動(dòng)評(píng)估,發(fā)現(xiàn)正常體重、超重和肥胖者之間BAT活性有差異且BMI和 BAT活性呈負(fù)相關(guān);低、中、高強(qiáng)度日?;顒?dòng)者之間BAT活性有差異;女性BAT活性更強(qiáng);年齡和BAT活性呈負(fù)相關(guān)。Lee等[59]發(fā)現(xiàn)健康成人一次中等強(qiáng)度運(yùn)動(dòng)(60 min,40%VO2max單車(chē))后血中irisin水平升高3倍,并通過(guò)體外試驗(yàn)證實(shí)受試者頸部皮下WAT中棕色脂肪細(xì)胞及brite脂肪細(xì)胞特異基因表達(dá)增加。同時(shí)也有不少相反的研究結(jié)果陸續(xù)報(bào)道。Norheim等[60]招募26名平時(shí)運(yùn)動(dòng)較少(近1年每周運(yùn)動(dòng)少于1小時(shí))的男性(40~65歲)作為研究對(duì)象,其中13名為糖尿病風(fēng)險(xiǎn)組(高血糖、超重),13名血糖、體重正常男性為對(duì)照組,對(duì)其實(shí)施12周耐力結(jié)合力量訓(xùn)練(每周各60 min)的運(yùn)動(dòng)干預(yù)后發(fā)現(xiàn),兩組受試者皮下WAT中UCP-1表達(dá)均有所上調(diào),但與各自運(yùn)動(dòng)前的表達(dá)量無(wú)統(tǒng)計(jì)學(xué)差異,只有合并數(shù)據(jù)后才有顯著差異,且皮下WAT中棕色化基因表達(dá)并未上調(diào)。最近Vosselman等[61]的一項(xiàng)人體試驗(yàn)納入了12名運(yùn)動(dòng)員和12名對(duì)照非肥胖男性(年齡、BMI匹配),運(yùn)動(dòng)員組近2年來(lái)每周至少進(jìn)行3次VO2max>55 ml/min/kg的耐力訓(xùn)練(長(zhǎng)跑、單車(chē)、游泳),非訓(xùn)練組近2年內(nèi)每周運(yùn)動(dòng)不超過(guò)1小時(shí)且VO2max<45 ml/min/kg。用PET/CT檢測(cè)輕度冷刺激后的BAT活性,并活檢取腹部皮下WAT檢測(cè)棕色化基因,結(jié)果發(fā)現(xiàn):運(yùn)動(dòng)組BAT活性低于對(duì)照組,皮下WAT中棕色化基因表達(dá)無(wú)差別。同樣有研究[62]比較了16名運(yùn)動(dòng)員(過(guò)去6個(gè)月內(nèi)每周進(jìn)行不少于4小時(shí)或20英里的負(fù)重有氧運(yùn)動(dòng)如越野、足球、曲棍球等)和非運(yùn)動(dòng)員年輕女性(18~25歲)的BAT含量和活性,同樣發(fā)現(xiàn)運(yùn)動(dòng)組BAT含量低于非運(yùn)動(dòng)組,且與BMI無(wú)相關(guān)性;BAT含量、活性均與去脂體重成負(fù)相關(guān)。2015年,西班牙格拉納達(dá)大學(xué)開(kāi)展了一項(xiàng)名為ACTIBATE(activating brown adipose tissue through exercise)、為期6個(gè)月的隨機(jī)對(duì)照試驗(yàn),由體育運(yùn)動(dòng)、食品營(yíng)養(yǎng)、生理學(xué)等多學(xué)院及其他地區(qū)大學(xué)、醫(yī)院共同實(shí)施,招募BMI在18.5~35 kg/m2之間的18~25歲青年,利用PET/CT掃描技術(shù),研究不同運(yùn)動(dòng)方式(中等強(qiáng)度vs高強(qiáng)度)對(duì)BAT含量和活性的影響(直接指標(biāo)),并檢測(cè)一系列與BAT活性相關(guān)的間接指標(biāo):REE,進(jìn)食產(chǎn)熱(meal-induced thermo?genesis,MIT)、冷刺激產(chǎn)熱(cold-induced thermogene?sis,CIT)、機(jī)體體溫調(diào)節(jié)、寒戰(zhàn)閾值、身體成分組成、心血管危險(xiǎn)因素以及腹部皮下WAT、骨骼肌產(chǎn)熱相關(guān)基因等[63],相關(guān)結(jié)果還未見(jiàn)正式報(bào)道但令人非常期待,因?yàn)榧韧€未見(jiàn)在正常健康人中實(shí)施的運(yùn)動(dòng)和BAT活性關(guān)系的隨機(jī)對(duì)照人體試驗(yàn)。
3.1 交感神經(jīng)系統(tǒng)
運(yùn)動(dòng)時(shí)引起SNS活化和兒茶酚胺類(lèi)如去甲腎上腺素等激素釋放[64],去甲腎上腺素與β-AR結(jié)合后活化腺苷酸環(huán)化酶,從而激活環(huán)磷酸腺苷(cAMP)、cAMP依賴(lài)的蛋白激酶A(PKA)和絲裂原活化蛋白激酶p38(p38 MAPK),進(jìn)而磷酸化靶蛋白如HSL、脂肪甘油三酯脂肪酶、單酰甘油脂肪酶,促進(jìn)脂肪細(xì)胞內(nèi)甘油三酯降解,釋放的游離脂肪酸進(jìn)一步激活UCP1引起產(chǎn)熱增加;同時(shí),PKA還可以通過(guò)激活cAMP反應(yīng)元件結(jié)合蛋白(CREB),增加UCP1的表達(dá)。因此運(yùn)動(dòng)通過(guò)興奮SNS減少WAT中甘油三酯儲(chǔ)存,增強(qiáng)BAT活性,誘導(dǎo)白色脂肪棕色化是既往研究較多也較為公認(rèn)的通路[41,44]。
3.2 肌肉因子
近年來(lái)發(fā)現(xiàn)運(yùn)動(dòng)時(shí)骨骼肌釋放的一些細(xì)胞因子如irisin(Fndc5編碼的I型膜蛋白被水解后釋放入血的激素)[6]和β-氨基異丁酸(BAIBA)也被認(rèn)為能作用于BAT活性和白色脂肪棕色化,這些新的發(fā)現(xiàn)打開(kāi)了運(yùn)動(dòng)通過(guò)骨骼肌改善其他臟器代謝的新視野[65]。它們的上游信號(hào)分子研究都集中于PGC-1α,運(yùn)動(dòng)時(shí)骨骼肌誘導(dǎo)PGC-1α表達(dá),進(jìn)而刺激irisin和BAIBA表達(dá),促進(jìn)WAT中棕色脂肪特異基因表達(dá),增加機(jī)體能耗,改善肥胖和糖穩(wěn)態(tài)。Roberts等[65]進(jìn)一步用人群研究(隊(duì)列來(lái)源于HERITAGE Family Study,納入了557名年齡在16~65歲之間的個(gè)體,耐力訓(xùn)練處方:從55%VO2max×30 min開(kāi)始,逐漸增到75%VO2max×50 min,3 d/w×20 w)證實(shí)BAIBA血漿濃度在運(yùn)動(dòng)時(shí)升高,并用著名的弗雷明漢心臟研究的大隊(duì)列表明,BAIBA血漿濃度和心血管危險(xiǎn)因素成負(fù)相關(guān)。后續(xù)也有人群研究觀察這些運(yùn)動(dòng)刺激表達(dá)的肌肉因子對(duì)BAT活性或白色脂肪棕色化的作用,但并沒(méi)能得到類(lèi)似于嚙齒動(dòng)物試驗(yàn)的預(yù)期效果。Vosselman等[61]的研究認(rèn)為,耐力訓(xùn)練雖然能使人骨骼肌中FNDC5表達(dá)增加,但并沒(méi)有引起皮下WAT的棕色化改變。同樣Norheim等[60]發(fā)現(xiàn),12周的耐力聯(lián)合力量訓(xùn)練使骨骼肌FNDC5 mRNA表達(dá)增加,血中irisin水平卻下降,皮下WAT棕色化基因表達(dá)無(wú)改變,而且認(rèn)為皮下WAT、骨骼肌的FNDC5表達(dá)及血中irisin水平與WAT中UCP1表達(dá)無(wú)相關(guān)性;同時(shí),他們發(fā)現(xiàn)一次急性運(yùn)動(dòng)(持續(xù)45 min強(qiáng)度為70%VO2max的單車(chē)運(yùn)動(dòng))后血中irisin水平上升1.2倍。研究者們還發(fā)現(xiàn)不同的運(yùn)動(dòng)方式和/或強(qiáng)度對(duì)這些激素的表達(dá)也有一定影響。Bostr?m等[6]的研究比較了小鼠1小時(shí)急性運(yùn)動(dòng)和3周自由跑輪(夜間12小時(shí),白天休息12 h)運(yùn)動(dòng)后相關(guān)基因的表達(dá),發(fā)現(xiàn)前者皮下WAT中FNDC5、UCP1 mRNA表達(dá)無(wú)改變,骨骼肌中FNDC5表達(dá)和血漿中irisin水平無(wú)明顯改變而后者顯著上調(diào)。Lee等[59]研究健康成人不同強(qiáng)度(100%VO2max 5 min vs.40% VO2max 1 h)單車(chē)運(yùn)動(dòng),結(jié)果發(fā)現(xiàn)前者血清irisin水平無(wú)明顯改變而后者升高3倍,認(rèn)為耐力運(yùn)動(dòng)更能刺激irisin的分泌。因此,關(guān)于PGC-lα/irisin等肌肉因子/ UCP1的通路還存在很大爭(zhēng)議,并存在廣闊的研究空間。
3.3 鈉尿肽(natriuretic peptides,NPs)
另外還有研究指出,運(yùn)動(dòng)可以通過(guò)NPs作用于脂肪組織。運(yùn)動(dòng)后心率加快、心肌細(xì)胞牽拉等都會(huì)刺激NPs釋放[66],脂肪組織有豐富的心房鈉尿肽(atrial natri?uretic peptide,ANP)和B型鈉尿肽(B-type natriuretic peptide,BNP)受體,Bordicchia等[67]發(fā)現(xiàn)NPs能促進(jìn)脂肪細(xì)胞脂肪分解及WAT棕色化,可能是通過(guò)p38 MAPK通路實(shí)現(xiàn),但是否與β腎上腺素能刺激協(xié)同作用還有待進(jìn)一步研究。
3.4 脂肪組織自噬活性
還有研究[68]發(fā)現(xiàn),運(yùn)動(dòng)引起的自噬活性改變和脂肪分化調(diào)控因子具有相關(guān)性。9周跑臺(tái)運(yùn)動(dòng)抑制小鼠附睪WAT自噬活性,卻增強(qiáng)了腹股溝WAT自噬活性,而且這兩種WAT中p62水平與棕色化調(diào)控因子PPARγ的表達(dá)高度相關(guān),附睪WAT中LC3-Ⅱ和PPARγ表達(dá)具有相關(guān)性。運(yùn)動(dòng)對(duì)脂肪組織自噬活性的不同影響與部位相關(guān),同時(shí)又與脂肪組織分化調(diào)控因子相關(guān),因此自噬也有可能參與介導(dǎo)了運(yùn)動(dòng)對(duì)脂肪組織分化的作用。2016年的諾貝爾生理或醫(yī)學(xué)獎(jiǎng)?lì)C給“自噬”之后,相信人們將會(huì)在相關(guān)領(lǐng)域中展開(kāi)更深入的研究。
綜上所述,運(yùn)動(dòng)不僅能通過(guò)影響脂肪組織活性和分化起到減肥的作用,還是SNS、骨骼肌、心臟改善機(jī)體代謝的樞紐。運(yùn)動(dòng)對(duì)BAT活性及白色脂肪棕色化的作用可能與運(yùn)動(dòng)方式、持續(xù)時(shí)間、強(qiáng)度及運(yùn)動(dòng)者本身身體條件有關(guān)?,F(xiàn)有研究無(wú)論動(dòng)物試驗(yàn)還是人群研究對(duì)運(yùn)動(dòng)處方的各個(gè)維度缺乏統(tǒng)一歸類(lèi),無(wú)法形成“劑量-效應(yīng)”關(guān)系;同時(shí)還需進(jìn)一步對(duì)不同條件的模式動(dòng)物及人體,采用不同部位的脂肪組織進(jìn)行研究;更需要設(shè)計(jì)精良的流行病學(xué)研究來(lái)揭示運(yùn)動(dòng)和人體BAT活性及WAT棕色化之間的確切關(guān)系,以期為肥胖干預(yù)提供安全高效的運(yùn)動(dòng)處方。
[1] 實(shí)況報(bào)道.肥胖和超重[ER/OL].[2016-6].http://www.who. int/mediacentre/factsheets/fs311/zh/.
[2] Ho M,Garnett SP,Baur LA,et al.Impact of dietary and exerciseinterventionson weightchangeand metabolic outcomes in obese children and adolescents:a systematic review and meta-analysis of randomized trials[J].JAMA Pediatr,2013,167(8):759-768.
[3] Bauman AE,Reis RS,Sallis JF,et al.Correlates of physi?cal activity:why are some people hysically active andothers not?[J]Lancet,2012,380(9838):258-271.
[4] Gollisch KS,Brandauer J,Jessen N,et al.Effects of exer?cise training on subcutaneous and visceral adipose tissue in normal-and high-fat diet-fed rats[J].Am J Physiol Endocrinol Metab,2009,297(2):E495-504.
[5] Madsen L,Pedersen LM,Lillefosse HH,et al.UCPl induc?tion during recruitment of brown adipocytes in white adi?pose tissue is dependent on cycIooxygenase activity[J]. PLoS One,2010,5(6):e11391.
[6] Bostr?m P,Wu J,Jedrychowski MP,et al.A PGC1-α-de?pendent myokine that drives brown-fat-like development ofwhite fatand thermogenesis[J].Nature,2012,481(7382):463-468.
[7] FrontiniA,CintiS.Distribution and developmentof brown adipocytes in the murine and human adipose organ [J].Cell Metab,2010,11(4):253-256.
[8] Sharp LZ,Shinoda K,Ohno H,et al.Human BAT possess?es molecular signatures that resemble beige/brite cells[J]. PLoS One,2012,7(11):e49452.
[9] Rosen ED,Spiegelman BM.Adipocytes as regulators of energy balance and glucose homeostasis[J].Nature,2006,444(7121):847-853.
[10]Craig BW,Hammons GT,Garthwaite SM,et al.Adapta?tion of fat cells to exercise:response of glucose uptake and oxidation to insulin[J].J Appl Physiol Respir Envi?ron Exerc Physiol,1981,51(6):1500-1506.
[11]Nedergaard J,Bengtsson T,Cannon B.Unexpected evi?dence for active brown adipose tissue in adult humans [J].Am J Physiol Endocrinol Metab,2007,293(2):E444-452.
[12]van Marken Lichtenbelt WD,Schrauwen P.Implications of nonshivering thermogenesis for energy balance regula?tion in humans[J].Am JPhysiolRegulIntegrComp Physiol,2011,301(2):R285-296.
[13]Ruiz JR,Martinez-Tellez B,Sanchez-Delgado G,et al. Regulation of energy balance by brown adipose tissue:at least three potential roles for physical activity[J].Br J Sports Med,2015,49(15):972-973.
[14]Valente A,Jamurtas AZ,Koutedakis Y,et al.Molecular pathways linking non-shivering thermogenesis and obesi?ty:focusing on brown adipose tissue development[J].Biol Rev Camb Philos Soc,2015,90(1):77-88.
[15]van Marken Lichtenbelt WD,Vanhommerig JW,Smulders NM,eta1.Cold-activated brown adipose tissue in healthy men[J].N Engl J Med,2009,360(15):1500-1508.
[16]Seale P,Kajimura S,Spiegelman BM.Transcriptional con?trolofbrown adipocyte developmentand physiological function-of mice and men[J].Genes Dev,2009,23(7):788-797.
[17]Frfihbeck G,Becerril S,Sdinz N,et al.BAT:a new target for human obesity[J]?Trends Pharmacol Sci,2009,30:387-396.
[18]Virtanen KA,Lidell ME,Orava J,et al.Functional brown adipose tissue in healthy adults[J].N Engl J Med,2009,360(15):1518-1525.
[19]Cypess AM,Lehman S,Williams G,et al.Identification and importance of brown adipose tissue in adult humans [J].N Engl J Med,2009,360(15):1509-1517.
[20]Carrillo AE,F(xiàn)louris AD.Caloric restriction and longevity:effects of reduced body temperature[J].Ageing Res Rev,2011,10(1):153-162.
[21]Wang Y,Rimm EB,Stampfer MJ,et al.Comparison of ab?dominal adiposity and overall obesity in predicting risk of type 2 diabetes among men[J].Am J Clin Nutr,2005,81:555-563.
[22]Zhang C,Rexrode KM,van Dam RM,et al.Abdominal obesity and the risk of all-cause,cardiovascular,and can?cer mortality:sixteen years of follow-up in US women[J]. Circulation,2008,117(13):1658-1667.
[23]Enerback S.The origins of brown adipose tissue[J].N Engl J Med,2009,360(19):2021-2023.
[24]Petrovic N,Walden TB,Shabalina IG,et al.Chronic per?oxisome proliferator-activated receptor gamma(PPARgam?ma)activation of epididymally derived white adipocyte cul?tures reveals a population of thermogenically competent,UCP1-containing adipocytes molecularly distinctfrom classic brown adipocytes[J].J Biol Chem,2010,285(10):7153-7164.
[25]Wu J,Bostr?m P,Sparks LM,et al.Beige adipocytes are a distinct type of thermogenic fat cell in mouse and hu?man[J].Cell,2012,150(2):366-376.
[26]Barbatelli G,Murano I,Madsen L,et a1.The emergence of cold-induced brown adipocytes in mouse white fat de?pots is determined predominantly by white to brown adi?pocyte transdifferentiation[J].Am J PhysiolEndocrinol Metab,2010,298(6):E1244-1253.
[27]Vitali A,Murano I,Zingaretti MC,et a1.The adipose or?gan ofobesity-proneC57BL/6Jmiceiscomposed of mixed white and brown adipocytes[J].J Lipid Res,2012,53(4):619-629.
[28]Rosenwald M,Perdikari A,Rfilicke T,et al.Bi-direction?al interconversion of brite and white adipocytes[J].Nat Cell Biol,2013,15(6):659-667.
[29]Pisani DF,Djedaini M,Beranger GE,et al.Differentiation ofHuman Adipose-Derived Stem Cells into“Brite”(Brown-in-White)Adipocytes[J].Front Endocrinol(Laus?anne),2011,2:87.
[30]Elabd C,Chiellini C,Carmona M,et al.Human multipo?tent adipose-derived stem cells differentiate into function?al brown adipocytes[J].Stem Cells,2009,27(11):2753-2760.
[31]Cinti S.The adipose organ at a glance[J].Dis Model Mech,2012,5(5):588-594.
[32]Chechi K,Carpentier AC,Richard D.Understanding the brown adipocyte as a contributor to energy homeostasis [J].Trends Endocrinol Metab,2013,24(8):408-420.
[33]Long JZ,Svensson KJ,Tsai L,et al.A smooth musclelike origin for beige adipocytes[J].Cell Metab,2014,19(5):810-820.
[34]Bronnikov G,Bengtsson T,Kramarova L,et al.Beta1 to beta3 switch in control of cyclic adenosine monophos?phate during brown adipocyte development explains dis?tinct beta-adrenoceptor subtype mediation of proliferation and differentiation[J].Endocrinology,1999,140(9):4185-4197.
[35]Fukui Y,Masui S,Osada S,et al.A new thiazolidinedi?one,NC-2100,which is a weak PPAR-gamma activator,exhibits potent antidiabetic effects and induces uncou?pling protein 1 in white adipose tissue of KKAy obese mice[J].Diabetes,2000,49(5):759-767.
[36]Petrovic N,Walden TB,Shabalina IG,et al.Chronic per?oxisome proliferator-activated receptor gamma(PPARgam?ma)activation of epididymally derived white adipocyte cul?tures reveals a population of thermogenically competent,UCP1-containing adipocytes molecularly distinctfrom classic brown adipocytes[J].J Biol Chem,2010,285(10):7153-7164.
[37]Wei Q,Li L,Chen JA,et al.Exendin-4 improves thermo?genic capacity by regulating fat metabolism on brown adi?pose tissue in mice with diet-induced obesity[J].Ann Clin Lab Sci,2015,45(2):158-165.
[38]Sasaki T,Hiraga H,Yokota-Hashimoto H,et al.Miglitol protects against age-dependent weight gain in mice:A po?tential role of increased UCP1 content in brown adipose tissue[J].Endocr J,2015,62(5):469-473.
[39]Arch JR.Beta(3)-Adrenoceptor agonists:potential,pitfalls and progress[J].Eur J Pharmacol,2002,440(2-3):99-107.
[40]Di Dalmazi G,Vicennati V,Pasquali R,et al.The unre?lenting fall of the pharmacological treatment of obesity [J].Endocrine,2013,44(3):598-609.
[41]De Matteis R,Lucertini F,Guescini M,et al.Exercise as a new physiological stimulus for brown adipose tissue ac?tivity[J].Nutr Metab Cardiovasc Dis,2013,23(6):582-590.
[42]Xu X,Ying Z,Cai M,et al.Exercise ameliorates high-fat diet-induced metabolic and vascular dysfunction,and in?creases adipocyte progenitor cell population in brown adi?pose tissue[J].Am J Physiol Regul Integr Comp Physiol,2011,300(5):R1115-1125.
[43]Slocum N,DurrantJR,BaileyD,etal.Responsesof brown adipose tissue to diet-induced obesity,exercise,di? etary restriction and ephedrine treatment[J].Exp Toxicol Pathol,2013,65(5):549-557.
[44]Sutherland LN,Bomhof MR,Capozzi LC,et al.Exercise and adrenaline increase PGC-1{alpha}mRNA expression in rat adipose tissue[J].J Physiol,2009,587(Pt 7):1607-1617.
[45]Cao L,Choi EY,Liu X,et al.White to brown fat pheno?typic switch induced by genetic and environmental activa?tion ofa hypothalamic-adipocyte axis[J].CellMetab,2011,14(3):324-338.
[46]Sun C,Zeng R,Cao G,et al.Vibration Training Triggers Brown Adipocyte Relative Protein Expression in Rat White Adipose Tissue[J].Biomed Res Int,2015,2015:919401.
[47]Wu MV,Bikopoulos G,Hung S,et al.Thermogenic capaci?ty is antagonistically regulated in classical brown and white subcutaneous fat depots by high fat diet and endur?ance training in rats:impact on whole-body energy expen?diture[J].J Biol Chem,2014,289(49):34129-34140.
[48]de Queirez KB,Rodovalho GV,Guimaraes JB,et al.En?durance training blocks uncoupling protein l up regula?tion in brown adipose tissue while increasing uncoupling protein 3 in the muscle tissue of rats fed with a highsugar diet[J].Nutr Res,2012,32(9):709-717.
[49]Larue-Achagiotis C,Rieth N,Goubern M.Exercise-train?ing reduces BAT thermogenesis in rats[J].Physiol Behav,1995,57(5):1013-1017.
[50]Stanford KI,Middelbeek RJ,Townsend KL,et al.A novel role for subcutaneous adipose tissue in exercise-induced improvements in glucose homeostasis[J].Diabetes,2015,64(6):2002-2014.
[51]Trevellin E,Scorzeto M,Olivieri M,et al.Exercise train?ing induces mitochondrial biogenesis and glucose uptake in subcutaneous adipose tissue through eNOS-dependent mechanisms[J].Diabetes,2014,63(8):2800-2811.
[52]Cao L,Choi EY,Liu X,et al.White to brown fat pheno?typic switch induced by genetic and environmental activa?tion ofa hypothalamic-adipocyte axis[J].CellMetab,2011,14(3):324-338.
[53]Tchkonia T,Lenburg M,Thomou T,et al.Identification of depot-specific human fat cell progenitors through distinct expression profilesand developmentalgene patterns[J]. Am J Physiol Endocrinol Metab,2007,292(1):E298-307.
[54]AtzmonG,YangXM,MuzumdarR,etal.Differential gene expression between visceral and subcutaneous fat depots[J].Horm Metab Res,2002,34(11-12):622-628.
[55]Carey VJ,Walters EE,Colditz GA,et al.Body fat distri?bution and risk of non-insulin-dependent diabetes melli?tus in women.The Nurses’Health Study.Am J Epidemi?ol,1997,145(7):614-619.
[56]Misra A,Garg A,Abate N,et al.Relationship of anterior and posterior subcutaneous abdominal fat to insulin sensi?tivity in nondiabetic men[J].Obes Res,1997,5(2):93-99.
[57]Snijder MB,Dekker JM,Visser M,et al.Associations of hip and thigh circumferences independent of waist cir?cumference with the incidence of type 2 diabetes:the Hoorn Study[J].Am J Clin Nutr,2003,77(5):1192-1197.
[58]Dinas PC,Nikaki A,Jamurtas AZ,et al.Association be?tween habitual physical activity and brown adipose tis?sue activity in individuals undergoing PET-CT scan[J]. Clin Endocrinol(Oxf),2015,82(1):147-154.
[59]Lee P,Linderman JD,Smith S,et al.Irisin and FGF21 are cold-induced endocrine activators of brown fat func?tion in humans[J].Cell Metab,2014,19(2):302-309.
[60]Norheim F,Langleite TM,Hjorth M,et al.The effects of acute and chronic exercise on PGC-1α,irisin and brown?ing of subcutaneous adipose tissue in humans[J].FEBS J,2014,281(3):739-749.
[61]Vosselman MJ,Hoeks J,Brans B,et al.Low brown adi?pose tissue activity in endurance-trained compared with lean sedentary men[J].Int J Obes(Lond),2015,39(12):1696-1702.
[62]Singhal V,Maffazioli GD,Ackerman KE,et al.Effect of Chronic Athletic Activity on Brown Fat in Young Women [J].PLoS One,2016,11(5):e0156353.
[63]Sanchez-Delgado G,Martinez-Tellez B,Olza J,et al.Acti?vating brown adipose tissue through exercise(ACTIBATE)in young adults:Rationale,design and methodology[J]. Contemp Clin Trials,2015,45(Pt B):416-425.
[64]Zouhal H,Jacob C,Delamarche P,et al.Catecholamines and the effects of exercise,training and gender[J].Sports Med,2008,38(5):401-423.
[65]Roberts LD,Bostr?m P,O'Sullivan JF,et al.β-Aminoiso?butyric acid induces browning of white fat and hepatic β-oxidation and is inversely correlated with cardiometa?bolic risk factors[J].Cell Metab,2014,19(1):96-108.
[66]Hansen D,Meeusen R,Mullens A,et al.Effect of acute endurance and resistance exercise on endocrine hor?mones directly related to lipolysis and skeletal muscle protein synthesis in adultindividuals with obesity[J]. Sports Med,2012,42(5):415-431.
[67]Bordicchia M,Liu D,Amri EZ,et al.Cardiac natriuretic peptides act via p38 mapk to induce the brown fat ther?mogenic program in mouse and human adipocytes[J].J Clin Invest,2012,122(3):1022-1236.
[68]Tanaka G,Kato H,Izawa T.Endurance exercise training induces fat depot-specific differences in basal autopha?gic activity[J].Biochem Biophys Res Commun,2015,466(3):512-517.
[69]Oh-ishi S,Kizaki T,Toshinai K,et al.Swimming training improves brown-adipose-tissue activity in young and old mice[J].Mech Ageing Dev,1996,89(2):67-78.
[70]Segawa M,Oh-Ishi S,Kizaki T,et al.Effect of running training on brown adipose tissue activity in rats:a reeval?uation[J].Res Commun Mol Pathol Pharmacol,1998,100(1):77-82.
2016.08.16
沈陽(yáng)市科技計(jì)劃項(xiàng)目(編號(hào):F14-231-1-57),第三批遼寧特聘教授(遼教[2013]204號(hào))
第1作者:王寧寧,Email:zkxwnn@163.com;
聞德亮,Email:dlwen@cmu.edu.cn
中國(guó)運(yùn)動(dòng)醫(yī)學(xué)雜志2017年5期