敬媛媛,吳 凡,李 蓉
(重慶醫(yī)科大學(xué)附屬第一醫(yī)院內(nèi)分泌科,重慶 400016)
GDF11在棕櫚酸誘導(dǎo)骨骼肌細(xì)胞胰島素抵抗中的作用研究
敬媛媛,吳 凡,李 蓉
(重慶醫(yī)科大學(xué)附屬第一醫(yī)院內(nèi)分泌科,重慶 400016)
GDF11;骨骼肌細(xì)胞;胰島素抵抗;PGC-1α;棕櫚酸;葡萄糖攝取
胰島素抵抗增加2型糖尿病、心血管疾病和高血壓的發(fā)病風(fēng)險(xiǎn)[1-2]。胰島素抵抗的特征為胰島素作用的敏感性或反應(yīng)性降低,主要表現(xiàn)在骨骼肌、肝臟和脂肪組織。骨骼肌胰島素抵抗與線粒體數(shù)目減少或功能紊亂密切相關(guān)。既往研究發(fā)現(xiàn)肥胖伴胰島素抵抗人群骨骼肌內(nèi)線粒體數(shù)目減少[3]。骨骼肌線粒體減少或功能紊亂可降低其氧化脂肪酸的能力,致肌細(xì)胞內(nèi)脂質(zhì)沉積最終導(dǎo)致胰島素抵抗[4-5]。
GDF11(growth differential factor 11)是新近發(fā)現(xiàn)的一種具有逆轉(zhuǎn)衰老作用的分泌性蛋白,近年來(lái)備受關(guān)注。研究發(fā)現(xiàn)血循環(huán)中GDF11隨年齡的增長(zhǎng)而下降,并且GDF11有明顯改善骨骼肌代謝,逆轉(zhuǎn)心肌肥厚,改善大腦認(rèn)知等功能[6-9],顯示出GDF11廣泛的生物學(xué)活性和潛在的應(yīng)用價(jià)值。Sinha等[6]發(fā)現(xiàn)GDF11可改善衰老骨骼肌的線粒體的形態(tài)結(jié)構(gòu),增強(qiáng)線粒體功能,同時(shí)增加老年小鼠骨骼肌中PGC-1α的表達(dá)。PGC-1α為PPARs的轉(zhuǎn)錄共激活因子,參與機(jī)體線粒體生物合成[10]。研究發(fā)現(xiàn)過(guò)表達(dá)小鼠骨骼肌PGC-1α可改善糖代謝[11]?;贕DF11在改善衰老骨骼肌功能方面的重要作用,本研究首次從體外實(shí)驗(yàn)探索GDF11是否可改善骨骼肌細(xì)胞胰島素抵抗。
1.1 材料 C2C12小鼠成肌細(xì)胞購(gòu)自中國(guó)科學(xué)院上海細(xì)胞庫(kù);棕櫚酸(PA)購(gòu)自美國(guó)Sigma公司;GDF11購(gòu)自美國(guó)R&D公司;2NBDG購(gòu)自美國(guó)Invitrogen公司;CCK-8試劑盒購(gòu)自美國(guó)Biotool公司;實(shí)時(shí)定量逆轉(zhuǎn)錄及擴(kuò)增試劑盒購(gòu)自日本TaKaRa公司;兔抗鼠PGC-1α一抗購(gòu)自美國(guó)Abcam公司,羊抗兔二抗購(gòu)自德國(guó)Millipore公司。
1.2 方法
1.2.1 細(xì)胞培養(yǎng)及實(shí)驗(yàn)分組 C2C12小鼠成肌細(xì)胞用高糖DMEM培養(yǎng)基(含10%胎牛血清、1%青霉素及鏈霉素)于37℃,飽和濕度,5% CO2培養(yǎng)箱中培養(yǎng)。細(xì)胞匯合達(dá)到80%~100%時(shí),換用誘導(dǎo)培養(yǎng)基(含2%馬血清,1%青霉素及鏈霉素)培養(yǎng),每天更換培養(yǎng)基。經(jīng)過(guò)6 d誘導(dǎo)分化,形成多核肌管細(xì)胞用于后續(xù)實(shí)驗(yàn)研究。將實(shí)驗(yàn)分為以下6組:對(duì)照組;GDF11(50 μg·L-1)干預(yù)組; GDF11(100 μg·L-1)干預(yù)組;棕櫚酸(0.5 mmol·L-1)干預(yù)組;GDF11(50 μg·L-1)聯(lián)合棕櫚酸(0.5 mmol·L-1)干預(yù)組;GDF11(100 μg·L-1)聯(lián)合棕櫚酸(0.5 mmol·L-1)干預(yù)組。
1.2.2 CCK-8 法檢測(cè)細(xì)胞活力 取對(duì)數(shù)生長(zhǎng)期細(xì)胞,以5×106·L-1細(xì)胞懸液按每孔100 μL接種于96孔板。培養(yǎng)24 h細(xì)胞貼壁后,吸棄培養(yǎng)液,分別加入含不同濃度的GDF11(0、50、100 μg·L-1)的培養(yǎng)基培養(yǎng)24 h。吸棄培養(yǎng)液,每孔加入100 μL含CCK-8的無(wú)血清培養(yǎng)基(CCK-8 ∶培養(yǎng)基=1 ∶10)培養(yǎng)30 min。在酶標(biāo)儀上以450 nm波長(zhǎng)測(cè)吸光度值。
1.2.3 2NBDG糖攝取的檢測(cè) 細(xì)胞接種于6孔板,誘導(dǎo)分化6 d后形成肌管。細(xì)胞經(jīng)干預(yù)后加入100 nmol·L-1胰島素作用30 min。用預(yù)冷的HBSS緩沖液洗3遍后,加入含有100 μmol·L-12NBDG的HBSS緩沖液培養(yǎng)30 min。分別提取6孔板每孔細(xì)胞的總蛋白,操作過(guò)程需避光。將提取的總蛋白分別轉(zhuǎn)移至96孔板中,在熒光酶標(biāo)儀上以激發(fā)波長(zhǎng)/發(fā)射波長(zhǎng)(Ex/Em,485/535 nm)測(cè)吸光度值。每組吸光度值以相應(yīng)蛋白濃度進(jìn)行校正。
1.2.4 實(shí)時(shí)熒光定量PCR檢測(cè)mRNA的表達(dá) 采用TRIzol法提取細(xì)胞總RNA,反轉(zhuǎn)錄為cDNA,進(jìn)行實(shí)時(shí)熒光定量PCR擴(kuò)增反應(yīng)。具體操作步驟按照說(shuō)明書(shū)進(jìn)行,引物設(shè)計(jì)見(jiàn)Tab 1。根據(jù)擴(kuò)增曲線測(cè)得內(nèi)參基因及目的基因的Ct值,目的基因的表達(dá)用GAPDH進(jìn)行標(biāo)化,采用2-△△ct法分析。
Tab 1 Sequences of primers for RT-PCR
Fig 1 C2C12 myoblasts successfully differentiate into ±s,n=3)
A: C2C12 myoblasts(×100); B: C2C12 myotubes(×100);C:The mRNA level of desmin after differentiation;D:The mRNA level of myogenin after differentiation.*P<0.05,**P<0.01vsundifferentiation group
1.2.5 Western blot檢測(cè)蛋白的表達(dá) 提取細(xì)胞總蛋白,BCA法測(cè)定蛋白濃度。蛋白經(jīng)SDS-PAGE電泳分離后轉(zhuǎn)至PVDF膜;5%脫脂奶粉封閉2 h后,加入兔抗鼠PGC-1α一抗4℃孵育過(guò)夜,TBST 緩沖液洗3次后,加入羊抗兔二抗室溫孵育1 h;TBST充分洗膜3次,ECL試劑顯影及成像。用蛋白條帶吸光度與相應(yīng)內(nèi)參吸光度比值進(jìn)行分析。
2.1 C2C12成肌細(xì)胞分化鑒定 C2C12成肌細(xì)胞經(jīng)2%馬血清完全培養(yǎng)基培養(yǎng)6 d后分化為長(zhǎng)梭形且含有多個(gè)細(xì)胞核的肌管細(xì)胞。分化細(xì)胞較未分化細(xì)胞肌管標(biāo)志基因desmin及myogenin的表達(dá)明顯升高(P<0.05,P<0.01)。提示誘導(dǎo)分化條件適當(dāng)。見(jiàn)Fig 1。
2.2 GDF11對(duì)骨骼肌細(xì)胞葡萄糖攝取的影響 如Fig 2A所示,不同濃度GDF11(50、100 μg·L-1)干預(yù)對(duì)細(xì)胞活性無(wú)明顯影響,所以后續(xù)實(shí)驗(yàn)采用這兩個(gè)濃度。2NBDG糖攝取結(jié)果顯示,與對(duì)照組相比,棕櫚酸干預(yù)組胰島素介導(dǎo)的葡萄糖攝取明顯降低(P<0.01),提示胰島素抵抗模型建立成功。而GDF11(50、100 μg·L-1)干預(yù)組與對(duì)照組相比葡萄糖攝取無(wú)明顯變化。與棕櫚酸干預(yù)組比較,GDF11 (50、100 μg·L-1)聯(lián)合棕櫚酸干預(yù)組葡萄糖攝取無(wú)明顯變化。棕櫚酸干預(yù)組GLUT4及IRS-1的表達(dá)較對(duì)照組明顯降低(P<0.01)。而聯(lián)合GDF11干預(yù)后與單純棕櫚酸組比較GLUT4及IRS-1表達(dá)無(wú)明顯變化。見(jiàn)Fig 2。
2.3 GDF11對(duì)PGC-1α表達(dá)的影響 與對(duì)照組比較,棕櫚酸干預(yù)組PGC-1α mRNA及蛋白的表達(dá)均降低(P<0.01),而GDF11(50、100 μg·L-1)干預(yù)對(duì)PGC-1α mRNA及蛋白的表達(dá)無(wú)明顯影響。與棕櫚酸干預(yù)組比較,GDF11(50、100 μg·L-1)聯(lián)合棕櫚酸干預(yù)組PGC-1α mRNA及蛋白的表達(dá)無(wú)明顯變化。見(jiàn)Fig 3。
Fig 2 Effect of GDF11 on insulin resistance induced by palmitate in C2C12 ±s,n=3)
A:Cell viability was measured after different concentrations of GDF11 intervention; B:Glucose uptake in each group; C:The mRNA level of GLUT4 in each group; D:The mRNA level of IRS-1 in each group.**P<0.01vsControl group
Fig 3 Effect of GDF11 on expression of PGC-1α in
A:The mRNA level of PGC-1α in each group;B:The protein level of PGC-1α in each group.**P<0.01vsControl group
骨骼肌是胰島素刺激后攝取葡萄糖的主要部位,占全身葡萄糖攝取的80%以上[12]。既往研究發(fā)現(xiàn)棕櫚酸可誘導(dǎo)胰島素抵抗[13],本實(shí)驗(yàn)采用棕櫚酸干預(yù)C2C12肌管細(xì)胞,使胰島素介導(dǎo)的葡萄糖攝取明顯減少,成功構(gòu)建骨骼肌細(xì)胞胰島素抵抗模型。過(guò)多的游離脂肪酸進(jìn)入肌細(xì)胞,線粒體氧化脂肪酸能力降低,致骨骼肌內(nèi)脂質(zhì)沉積[4]。骨骼肌內(nèi)脂質(zhì)沉積與骨骼肌胰島素抵抗密切相關(guān)[14]。本研究發(fā)現(xiàn)棕櫚酸同時(shí)可降低PGC-1α的表達(dá),這與Coll等[15]的研究結(jié)果一致。PGC-1α主要通過(guò)調(diào)節(jié)線粒體的數(shù)量和功能來(lái)調(diào)節(jié)細(xì)胞能量代謝[16,17]。特異性過(guò)表達(dá)骨骼肌中PGC-1α不僅可增加線粒體生物合成,還可增強(qiáng)胰島素敏感性,促進(jìn)葡萄糖的吸收[11]。而在胰島素抵抗患者的骨骼肌中PGC-1α的表達(dá)明顯下降[3]。
GDF11是一種分泌型生長(zhǎng)分化因子,屬于TGF-β超家族一員,在骨骼肌、胰腺、腎臟、心臟等組織廣泛表達(dá)[18]。近年GDF11逆轉(zhuǎn)衰老的作用備受矚目,Loffredo等[7]報(bào)道恢復(fù)老年小鼠血液中GDF11到年輕小鼠的水平可逆轉(zhuǎn)年齡相關(guān)的心肌肥厚。Sinha等[6]發(fā)現(xiàn)血液中GDF11隨著小鼠年齡增長(zhǎng)而降低,補(bǔ)充GDF11可改善衰老骨骼肌結(jié)構(gòu)和功能,促進(jìn)PGC-1α的表達(dá),增加線粒體生物合成。本研究旨在探索GDF11是否可改善骨骼肌胰島素抵抗。結(jié)果發(fā)現(xiàn)GDF11未明顯改善棕櫚酸誘導(dǎo)骨骼肌細(xì)胞胰島素抵抗。GDF11對(duì)棕櫚酸誘導(dǎo)后下調(diào)的PGC-1α表達(dá)也沒(méi)有明顯改善作用,這與Sinha等[6]研究顯示GDF11可促進(jìn)PGC-1α表達(dá)的結(jié)果不一致。其原因可能是模型不一樣,Sinha等的研究模型是老年小鼠模型,體內(nèi)是一個(gè)相對(duì)較復(fù)雜的整體環(huán)境,而本研究是體外構(gòu)建的骨骼肌細(xì)胞胰島素抵抗模型,環(huán)境較單一。目前的研究對(duì)GDF11逆轉(zhuǎn)衰老的作用存在爭(zhēng)議。與Sinha的研究結(jié)果相反,Egerman等[19]發(fā)現(xiàn)大鼠血液和骨骼肌中的GDF11蛋白隨著年齡增長(zhǎng)而升高,并且補(bǔ)充GDF11抑制老齡化骨骼肌的再生能力和骨骼肌細(xì)胞的分化;Egerman等提出Sinha對(duì)GDF11蛋白的檢測(cè)方法難以將GDF11蛋白與Myostatin蛋白區(qū)分開(kāi)來(lái),而后者具有抑制肌肉生成的作用。Smith等[20]研究發(fā)現(xiàn)GDF11對(duì)老年小鼠心臟結(jié)構(gòu)和功能沒(méi)有改善作用,也沒(méi)有減少心肌細(xì)胞肥大,而是誘導(dǎo)心肌細(xì)胞肥大。
綜上所述,本研究在體外成功構(gòu)建了骨骼肌胰島素抵抗模型,棕櫚酸干預(yù)使骨骼肌細(xì)胞葡萄糖攝取減少及GLUT4和IRS-1的表達(dá)下降,而加用GDF11干預(yù)后,骨骼肌細(xì)胞葡萄糖攝取及GLUT4和IRS-1的表達(dá)無(wú)明顯改善。本研究首次探討GDF11對(duì)骨骼肌細(xì)胞胰島素抵抗的影響??蔀槟壳癎DF11的作用提供參考。
(致謝:感謝重慶醫(yī)科大學(xué)附屬第一醫(yī)院脂糖代謝實(shí)驗(yàn)室提供的實(shí)驗(yàn)條件和技術(shù)支持。)
[1] Cooper S A, Whaley-Connell A, Habibi J, et al. Renin-angiotensin-aldosterone system and oxidative stress in cardiovascular insulin resistance[J].AmJPhysiolHeartCircPhysiol,2007,293(4):H2009-23.
[2] Reaven G M, Chen Y D. Insulin resistance, its consequences, and coronary heart disease. Must we choose one culprit[J]?Circulation,1996,93(10):1780-3.
[3] Patti M E, Butte A J, Crunkhorn S, et al. Coordinated reduction of genes of oxidative metabolism in humans with insulin resistance and diabetes: Potential role of PGC1 and NRF1[J].ProcNatlAcadSciUSA,2003,100(14):8466-71.
[4] Lowell B B, Shulman G I. Mitochondrial dysfunction and type 2 diabetes[J].Science,2005,307(5708):384-7.
[5] Kelley D E, He J, Menshikova E V, et al. Dysfunction of mitochondria in human skeletal muscle in type 2 diabetes[J].Diabetes,2002,51(10):2944-50.
[6] Sinha M, Jang Y C, Oh J, et al. Restoring systemic GDF11 levels reverses age-related dysfunction in mouse skeletal muscle[J].Science,2014,344(6184):649-52.
[7] Loffredo F S,Steinhauser M L,Jay S M, et al. Growth differentiation factor 11 is a circulating factor that reverses age-related cardiac hypertrophy[J].Cell,2013,153(4):828-39.
[8] Olson K A, Beatty A L, Heidecker B, et al. Association of growth differentiation factor 11/8, putative anti-ageing factor, with cardiovascular outcomes and overall mortality in humans: analysis of the Heart and Soul and HUNT3 cohorts[J].EurHeartJ, 2015,36(48):3426-34.
[9] Katsimpardi L, Litterman N K, Schein P A, et al. Vascular and neurogenic rejuvenation of the aging mouse brain by young systemic factors[J].Science,2014,344(6184):630-4.
[10]Wu Z, Puigserver P, Andersson U, et al. Mechanisms controlling nitochondrial biogenesis and respiration through the Thermogenic coactivator PGC-1[J].Cell, 1999,98(1):115-24.
[11]Summermatter S, Shui G, Maag D, et al. PGC-1alpha improves glucose homeostasis in skeletal muscle in an activity-dependent manner[J].Diabetes, 2013,62(1):85-95.
[12]Abdul-Ghani M A, DeFronzo R A. Pathogenesis of insulin resistance in skeletal muscle[J].JBiomedBiotechnol, 2010,2010:476279.
[13]吳文君,湯孫寅炎,時(shí)俊鋒,等. 二甲雙胍抑制SREBP-1c改善高脂誘導(dǎo)的骨骼肌胰島素抵抗[J].中國(guó)藥理學(xué)通報(bào),2016,32(1):55-9.
[13]Wu W J, Tang S Y Y, Shi J F, et al. Metformin ameliorates PA-induced skeletal muscle insulin resistance by suppressing SREBP-1c[J].ChinPharmacolBull,2016,32(1):55-9.
[14]Krssak M, Falk Petersen K, Dresner A, et al. Intramyocellular lipid concentrations are correlated with insulin sensitivity in humans: a 1H NMR spectroscopy study[J].Diabetologia, 1999,42(1):113-6.
[15]Coll T, Jove M, Rodriguez-Calvo R, et al. Palmitate-mediated downregulation of peroxisome proliferator-activated receptor-gamma coactivator 1alpha in skeletal muscle cells involves MEK1/2 and nuclear factor-kappaB activation[J].Diabetes, 2006,55(10):2779-87.
[16]Arany Z. PGC-1 coactivators and skeletal muscle adaptations in health and disease[J].CurrOpinGenetDev, 2008,18(5):426-34.
[17]Buler M, Aatsinki S M, Izzi V, et al.SIRT5 is under the control of PGC-1alpha and AMPK and is involved in regulation of mitochondrial energy metabolism[J].FASEBJ, 2014,28(7):3225-37.
[18]McPherron A C. Metabolic functions of myostatin and Gdf11[J].ImmunolEndocrMetabAgentsMedChem, 2010,10(4):217-31.
[19]Egerman Marc A, Cadena Samuel M, et al. GDF11 increases with age and inhibits skeletal muscle regeneration[J].CellMetabolism,2015,22(1):164-74.
[20]Smith S C,Zhang X, Zhang X, et al. GDF11 does not rescue aging-related pathological hypertrophy[J].CircRes,2015,117(11):926-32.
Role of GDF11 in skeletal muscle cell insulin resistance induced by palmitate
JING Yuan-yuan, WU Fan, LI Rong
(DeptofEndocrinology,theFirstAffiliatedHospitalofChongqingMedicalUniversity,Chongqing400016,China)
Aim To investigate the role of GDF11 in palmitate induced skeletal muscle insulin resistance.Methods The C2C12 cells were sorted into control group, GDF11 intervention group, palmitate group and GDF11 combined with palmitate group. Cell viability was measured by CCK-8, and the glucose uptake was determined by 2NBDG. The mRNA level of myotube marker genes(desmin,myogenin), insulin mediate glucose uptake related genes(GLUT-4,IRS-1) and PGC-1α were tested by RT-PCR. The protein expression of PGC-1α was detected by western blot.Results GDF11 had little effect on cell viability of skeletal muscle cells. Compared with control group, the glucose uptake and the expression of GLUT-4,IRS-1,PGC-1α were significantly decreased by palmitate intervention. Compared with palmitate group, the glucose uptake and the expression of GLUT-4,IRS-1,PGC-1α were not significantly changed by GDF11.Conclusion Palmitate can induce skeletal muscle cell insulin resistance, but GDF11 may not significantly improve the skeletal muscle cell insulin resistance.
GDF11;skeletal muscle cell;insulin resistance;PGC-1α;palmitate;glucose uptake
時(shí)間:2017-5-25 17:44 網(wǎng)絡(luò)出版地址:http://kns.cnki.net/kcms/detail/34.1086.R.20170525.1744.014.html
2017-01-18,
2017-03-16
國(guó)家自然科學(xué)基金資助項(xiàng)目(No 81200588);國(guó)家臨床重點(diǎn)專(zhuān)科建設(shè)項(xiàng)目(No 2011-170)
敬媛媛(1991-),女,碩士生,研究方向:內(nèi)分泌及代謝,E-mail:776839843@qq.com; 李 蓉(1972-),女,博士,教授,主任醫(yī)師,碩士生導(dǎo)師,研究方向:內(nèi)分泌及代謝,通訊作者,E-mail:rongli232006@163.com
10.3969/j.issn.1001-1978.2017.06.007
A
1001-1978(2017)06-0767-05
R322.74;R329.24; R347.8;R458.5;R977.6摘要:目的 探討GDF11對(duì)棕櫚酸誘導(dǎo)骨骼肌細(xì)胞胰島素抵抗的影響。方法 用棕櫚酸構(gòu)建骨骼肌細(xì)胞胰島素抵抗模型,分為對(duì)照組、GDF11干預(yù)組、棕櫚酸干預(yù)組和GDF11聯(lián)合棕櫚酸干預(yù)組。CCK-8檢測(cè)細(xì)胞活力,2NBDG檢測(cè)細(xì)胞葡萄糖攝取。實(shí)時(shí)熒光定量PCR檢測(cè)肌管標(biāo)志基因(desmin、myogenin),胰島素介導(dǎo)葡萄糖攝取相關(guān)基因(GLUT-4、IRS-1)及PGC-1α的表達(dá)。Western blot檢測(cè)PGC-1α蛋白水平的表達(dá)。結(jié)果 不同濃度GDF11對(duì)骨骼肌細(xì)胞活力無(wú)明顯影響。與對(duì)照組相比,棕櫚酸干預(yù)組葡萄糖攝取及GLUT-4、IRS-1、PGC-1α的表達(dá)明顯降低(P<0.05)。與棕櫚酸干預(yù)組相比,GDF11聯(lián)合棕櫚酸干預(yù)組葡萄糖攝取及GLUT-4、IRS-1、PGC-1α的表達(dá)無(wú)明顯變化。結(jié)論 棕櫚酸可成功誘導(dǎo)骨骼肌細(xì)胞胰島素抵抗,而GDF11對(duì)骨骼肌細(xì)胞胰島素抵抗沒(méi)有明顯改善作用。