James NOLEN Jean-Michel ROQUEJOFFRE Lenya RYZHIK
(Dedicated to Haim Brezis,with admiration and respect)
We consider the Fisher-KPP equation
with an initial condition u(0,x)=u0(x)which is a compact perturbation of a step function,in the sense that there exist x1and x2,so that u0(x)=1 for all x≤x1,and u0(x)=0 for all x≥x2.
思同之侍講也,國(guó)子博士遼西衛(wèi)冀隆為服氏之學(xué),上書(shū)難《杜氏春秋》六十三事。思同復(fù)駁冀隆乖錯(cuò)者十一條?;ハ嗍欠?,積成十卷。詔下國(guó)學(xué)集諸儒考之,事未竟而思同卒。卒后,魏郡姚文安、樂(lè)陵秦道靜復(fù)述思同意。冀隆亦尋物故,浮陽(yáng)劉休和又持冀隆說(shuō)。至今未能裁正焉。
Each solution φ(ξ)of(1.2)is a shift of a fixed profile φ?(ξ): φ(ξ)= φ?(ξ+s),with some fixed s ∈ R.The profile φ?(ξ)satisfies the asymptotics
with two universal constantsω0>0,k∈ R.
The large time behaviour of the solutions of this problem has a long history,starting with a striking paper of Fisher[10],which identifies the spreading velocity c?=2 via numerical computations and other arguments.In the same year,the pioneering KPP paper[15]proved that the solution of(1.1),starting from a step function:u0(x)=1 for x≤0,u0(x)=0 for x>0,converges toφ?in the following sense:There is a function
such that
Theorem 1.1(see[5–6])There is a constant x∞,depending on u0,such that
Models with temporal variation in the branching process have also been considered.In[9],Fang and Zeitouni studied the extremal particle of such a spatially homogeneous BBM where the branching particles satisfy
A natural question is to prove Theorem 1.1 with purely PDE arguments.In that spirit,a weaker version,precise up to the O(1)term(but valid also for a much more difficult case of the periodic in space coefficients),is the main result of[11–12],
Here,we will give a simple and robust proof of Theorem 1.1.These ideas are further developed to study the refined asymptotics of the solutions in[21].
We regard(3.3)as a perturbation of this equation,and expect that v(t,x)→ exφ(x?x∞)as t→ ∞ for some x∞∈R.
Lemma 4.2There exists a constantα∞>0 with the following property.For anyγ>0 and allε>0,we can find Tε,so that for all t>Tεwe have
with the initial dataTherefore,Theorem 1.1 is about the median location of the maximal particle XNt.Building on the work of Lalley and Sellke[16],recent probabilistic analyses(see[1–3,7–8])of this particle system have identified a decorated Poissontype point process which is the limit of the particle distribution “seen from the tip”:There is a random variable Z>0,such that the point process defined by the shifted particleswith
has a well-defined limit process as t→∞.Furthermore,Z is the limit of the martingale
and
As we have mentioned,the logarithmic term in Theorem 1.1 arises also in inhomogeneous variants of this model.For example,consider the Fisher-KPP equation in a periodic medium
(5)在智能電網(wǎng)的繼電保護(hù)系統(tǒng)當(dāng)中,其中的自適應(yīng)控制技術(shù)主要就是根據(jù)電力系統(tǒng)的電力故障狀態(tài)和運(yùn)行方式的變化來(lái)對(duì)定值、性能以及保護(hù)特性進(jìn)行相應(yīng)的改變的技術(shù)。自適應(yīng)繼電保護(hù)是一種比較新型的繼電保護(hù)技術(shù),它能夠讓繼電保護(hù)技術(shù)對(duì)于電力系統(tǒng)的多種變化,在很短的時(shí)間內(nèi)就能夠完全適應(yīng),不僅讓智能電網(wǎng)繼電保護(hù)的可靠性得到了加強(qiáng),讓系統(tǒng)的保護(hù)作用得到了明顯的改善,讓能夠顯著讓經(jīng)濟(jì)效益得到提高。
where λ?>0 is the rate of exponential decay(as x → ∞)of the minimal front Uc?,which depends on μ(x)but not on s or on u0.This implies the convergence of u(t,x? σs(t))to a closed subset of the family of minimal fronts.It is an open problem to determine whether convergence to a single front holds,not to mention the rate of this convergence.Whenμ(x)>0 everywhere,the solution u of the related model may be interpreted in terms of the extremal particle in a BBM with a spatially-varying branching rate(see[12]).
TrustSVD協(xié)同過(guò)濾算法對(duì)于冷啟動(dòng)問(wèn)題做了較大改善[6,7],本文的DPTrustSVD算法也不會(huì)因?yàn)橐肓瞬罘蛛[私保護(hù)而明顯破壞算法對(duì)冷啟動(dòng)問(wèn)題的改善程度.圖5~圖8給出了從冷啟動(dòng)角度,本文的DPTrustSVD與無(wú)隱私保護(hù)的TrustSVD和無(wú)社會(huì)化關(guān)系的DPSVD在兩個(gè)數(shù)據(jù)集上的預(yù)測(cè)準(zhǔn)確率的比較情況.
Theorem 1.1 was proved through elaborate probabilistic arguments.Bramson also gave necessary and sufficient conditions on the decay of the initial data to zero(as x→ +∞)in order that the solution converges to φ?(x)in some moving frame.Lau[17]also proved those necessary and sufficient conditions(for a more general nonlinear term)using a PDE approach based on the decrease in the number of the intersection points for a pair of solutions of the parabolic Cauchy problem.The asymptotics ofσ∞(t)were not identified by that approach.
Although it is established that low educational level is associated with low participation rates in CRC screening programs, the results of this study indicate that those with high educational level exhibited less compliance as compared to those of low-intermediate one.
They proved that ifκis increasing,and f is of the Fisher-KPP type,the shift is algebraic and not logarithmic in time:There exists C>0,such that
In[20],we proved the asymptotics
Here,β<0 is the first zero of the Airy function.Maillard and Zeitouni[18]refined the asymptotics further,proving a logarithmic correction to(2.3),and convergence of u(T)to a traveling wave.
We first provide an informal argument for the convergence of the solution of the initial value problem to a traveling wave.Consider the Cauchy problem(1.1),starting at t=1 for the convenience of the notation
納入標(biāo)準(zhǔn):①在本院已被確診為壺腹周圍癌;②患者的PS評(píng)分≤2(若評(píng)分>2,則表示患者不能自由走動(dòng)及生活不能完全自理);③患者知情并同意參與本研究。
and proceed with a standard sequence of changes of variables.We first go into the moving frame
leading to
Next,we take out the exponential factor:Set
so that v satisfies
We postpone the proof of this lemma for the moment,and show how it is used.A consequence of Lemma 4.2 is that the problem for the moment is to understand,for a givenα>0,the behavior of the solutions of
Observe that for any shift x∞∈ R,the function V(x)=exφ(x?x∞)is a steady solution of
followed by a change of the unknown
We note that for x→ +∞,the term e?xv2in(3.3)is negligible,while for x→ ?∞ the same term will create a large absorption and force the solution to be close to zero.For this reason,the linear Dirichlet problem
This transformation strengthens the reason why the Dirichlet problem(3.4)appears naturally:For
the last term in the left-hand side of(3.6)becomes exponentially large,which forces w to be almost 0 in this region.On the other hand,for
this term is very small,so it should not play any role in the dynamics of w in that region.The transition region has width of the order
Also,through this change of variables,we can see how a particular translation of the wave will be chosen.Considering(3.4)in the self-similar variables,one can show(see[11,14])that,asτ→+∞,we have
with someα∞>0.Therefore,taking(3.4)as an approximation to(3.3),we should expect that
Comparing this with(3.8),we infer that
范警官和霍鐵一起來(lái)到工作室,這里一直保持著剛才霍鐵他們?nèi)齻€(gè)人離開(kāi)時(shí)的樣子。正如霍鐵所說(shuō),這間工作室里不要說(shuō)六七米長(zhǎng)的木板,就是寬度足夠兩只腳在上面行走的一米長(zhǎng)的木板也沒(méi)有。
(2)噴淋水量、噴淋設(shè)備結(jié)構(gòu)、設(shè)備的傳熱傳質(zhì)效率等影響因素。其中關(guān)鍵的因素是水氣比,即噴淋水量與氣體流量的比值[9]。水氣比小,水與氣之間的接觸少,傳質(zhì)傳熱條件變差。水氣比大,氮?dú)夂涂諝饬恳欢ǎ^(guò)多既造成浪費(fèi)又容易發(fā)生氣體帶水事故[10]。
We conclude this section with some remarks about the generality of the argument.Although we assume,for simplicity,that the reaction term in(1.1)is quadratic,our proof also works for a more general reaction term.Specifically,the function u?u2in(1.1)may be replaced by a C2function f:[0,1]→R satisfying f(0)=0=f(1),f?(0)>0,f?(1)<0,and f?(s)≤ f?(0)for all s∈[0,1].In particular,these assumptions imply that there is C>0,such that 0≤f?(0)s?f(s)≤Cs2for all s∈[0,1].Without loss of generality,we may suppose that f?(0)=1.Then,if g(u)=u?f(u),the equation(3.3)for v becomes
and the equation(3.6)for w becomes
where 0≤g(s)≤Cs2and g?(s)≥0.Then all of the arguments below(and in[11])work in this more general setting.Finally,the arguments also apply to fronts arising from compactly supported initial data u0≥0(not just perturbations of the step-function).In that case,one obtains two fronts propagating in opposite directions.Combined with[11],our arguments here imply that Theorem 1.1 holds for both fronts.That is,the fronts moving to±∞are at positionswith
where the shiftsandmay diff er and depend on the initial data.
Recall thatφ?(x)is the traveling wave profile.We look for a function ζ(t)in(4.5)such that
Lemma 4.1The solution of(3.2)with u(1,x)=u0(x)satisfies
both uniformly in t>1.
Proposition 4.1Forwe have
The main new step is to establish the following.
satisfies the Fisher-KPP equation
with xγ=tγ.
between branching events,rather than following a standard Brownian motion.In terms of PDE,their study corresponds to the model
for t>Tε,with the initial conditionIn particular,we will show thatconverge,as t→ +∞,to a pair of steady solutions,separated only by an order O(ε)-translation.Note that the function v(t,x)=exuα(t,x)solves
微生物物種資源極為豐富,是地球生物多樣性的重要組成部分〔1〕。微生物的空間分布格局受到眾多驅(qū)動(dòng)因子的影響,主要包括當(dāng)代環(huán)境條件(溫度、降水、光照、土壤養(yǎng)分、pH)和歷史因素(地理阻隔、物理屏障、擴(kuò)散限制等)〔2-3〕,而溫度、降水等環(huán)境因子與山地微生物物種豐富度有著密不可分的聯(lián)系。研究人員發(fā)現(xiàn)坡向?qū)ν寥赖臏囟?、含水量等理化性質(zhì)均有影響〔4〕。不同坡向上的水分和光照強(qiáng)度存在差異,從而影響土壤微生物的生長(zhǎng)和分布格局〔5〕?,F(xiàn)階段有關(guān)坡向?qū)ν寥牢⑸锓植几窬钟绊懙难芯窟€較少。
In view of the expansion(1.3),we should have,with someω0>0,
which implies,for
*通信作者:林嵐 (1971— ),女,福建漳州人,教授,博士,主要從事休閑及旅游地理研究,(E-mail)linlancn@163.com。
and thus
The equation for the functionψis
有24件作品配有外框,其中9件作品帶玻璃鏡片。另有22件作品僅有內(nèi)框。其余9件作品無(wú)框,其中有2件作品畫(huà)心剝落嚴(yán)重,由兩片玻璃夾住保存(圖2)。
ProofThe issue is whether the Dirichlet boundary conditions would be stronger than the force in the right side of(4.7).Since the principal Dirichlet eigenvalue for the Laplacian in,investigating(4.7)is,heuristically,equivalent to solving the ODE
The coefficient(1?2γ)is chosen simply for convenience and can bereplaced by another constant.
The solution of(4.9)is
Note that f(t)tends to 0 as t→ +∞ a little faster than t3γ?1as soon as,so the analog of(4.8)holds for the solutions of(4.9).With this idea in mind,we are going to look for a super-solution of(4.7),in the form
and
Gathering(4.11)and(4.12),we infer the existence of q>0,such that,for t large enough,
as soon asεandλare small enough,sinceBecause the right-hand side of(4.7)does not depend on s,the inequality extends to all t≥1 by replacing s by As,with A large enough,and(4.8)follows.
Let us note that the term e?x(v+ ψ)in(4.7),which results from the quadratic structure of the nonlinearity,is positive.For a more general nonlinearity f(u)replacing u?u2,the monotonicity of g(u)=uf?(0)?f(u)may be used in an analogous way.
for all x ≤ tγ.From Proposition 4.1,we have
uniformly in x ∈ (?tγ,tγ)with
Becauseε>0 is arbitrary,we have
with x∞=?logα∞,uniformly on compact sets.Together with Lemma 4.1,this concludes the proof of Theorem 1.1.
Our analysis starts with(3.6),which we write as
Here,the operator L is defined as
Its principal eigenfunction on the half-lineη>0 with the Dirichlet boundary condition atη=0 is
as Lφ0=0.The operator L has a discrete spectrum inweighted by,its non-zero eigenvalues areλk=k≥1,and the corresponding eigenfunctions are related via
The principal eigenfunction of the adjoint operator
isThus,the solution of the unperturbed version of(5.1)on a half-line
satisfies
and our task is to generalize this asymptotics to the full problem(5.1)on the whole line.The weightin(5.4)is,of course,by no means optimal.We will prove the following.
Lemma 5.1Let w(τ,η)be the solution of(3.6)on R,with the initial condition w(0,η)=w0(η)such that w0(η)=0 for allη >M,with some M>0,and w0(η)=O(eη)for η<0.Thereand a function h(τ)such thatand such that we have,for any
with
where η+=max(0,η).
Once again,the weightis not optimal.Lemma 4.2 is an immediate consequence of this result.Indeed,
hence Lemma 5.1 implies,with xγ=tγ,
We now take Tεso thatfor all t>Tε.For the second term in the right-hand side of(5.6),we write
for t>Tεsufficiently large,as soon asγ?< γ.This proves(4.2).Thus,the proof of Lemma 4.2 reduces to proving Lemma 5.1.We will prove the latter by a construction of an upper and lower barrier for w with the correct behaviors.
Let us come back to why the solution of(5.1)must approximately satisfy the Dirichlet boundary condition atη=0.Recall that w is related to the solution of the original KPP problem via
The trivial a priori bound 0
and,in particular,we have
We also have
so that
forγ>0 sufficiently small.Thus,the solution of(5.1)satisfies
which we will use as an approximate Dirichlet boundary condition atη=0.
Consider the solution of
with a compactly supported initial conditionchosen so thatHere,??should be thought of as a small parameter.
It follows from(5.11)that w(τ,η)is an upper barrier for w(τ,η).That is,we have
It is convenient to make a change of variables
where g(η)is a smooth monotonic function such that g(η)=1 for 0 ≤ η<1 and g(η)=0 for η>2.The functionsatisfies
forτ>0,with a smooth function G(τ,η)supported in 0≤ η ≤ 2,and the initial condition
which also is compactly supported.
We will allow(5.14)to run for a large time T,after which time we can treat the right-hand side and the last term in the left-hand side of(5.14)as a small perturbation.A variant of Lemma 2.2 from[11]implies thatfor all T>0,as well as the following estimate.
Lemma 5.2Considerand G(τ,η)smooth,bounded,and compactly supported in R+.Let p(τ,η)solve
with the initial condition p0(η)such thatThere existsε0>0 and C>0(depending on p0),such that,for all 0< ε< ε0,we have
wherefor allτ>0.
For anyε>0,we may choose T sufficiently large,andso that
This follows from(5.14).Then,applying Lemma 5.2 forτ>T,we have
We claim that with a suitable choice ofthe integral term in(5.18)is bounded from below:
Indeed,multiplying(5.14)byηand integrating gives
The function G(τ,η)need not have a sign,hence we do not know thatis positive everywhere.However,it follows from(5.14)that the negative part ofis bounded as
for all τ>0,with the constant C0which does not depend on w0(η)on the interval[2,∞).Thus,we deduce from(5.20)that for allτ>0,we have
with,onceagain,independent ofTherefore,after possibly increasingwe may ensure that(5.19)holds.
It follows from(5.18)–(5.19)that there exists a sequenceand a functionsuch that
and
uniformly in η on the half-line η ≥ 0.The same bound for the function w(τ,η)itself follows
also uniformly inηon the half-lineη≥0.
A lower barrier for w(τ,η)is devised as follows.First,note that the upper barrier for w(τ,η)we have constructed above implies that
as soon as
withand Cγ>0 is chosen sufficiently large.Thus,a lower barriercan be defined as the solution of
with an initial conditionThis time it is convenient to make the change of variables
so that
We could now try to use an abstract stable manifold theorem to prove that
That is,remains uniformly bounded away from 0.However,to keep this paper self contained,we give a direct proof of(5.27).We look for a sub-solution to(5.26)in the form
where
with the functions ζ(τ)and q(τ)satisfying
In other words,we wish to deviseas in(5.28)–(5.29),such that
and
with
Notice that the choice of F(τ)in(5.28)has eliminated a low order term involvingFor convenience,let us define
which appears in(5.26).Because Lφ0=0 and
we find that
Let us write this as
Our goal is to choose ζ(τ)and q(τ),such that(5.29)holds and the right-hand side of(5.32)is non-positive after a certain timeτ0,possibly quite large.However,and this is an important point,this time τ0will not depend on the initial condition w0(η).
for allτ≥ τ0,η ≥ 0.
Therefore,on the intervalη ∈ [η1,∞)and for τ≥ τ0,(5.32)is bounded by
assuming q(τ)>0 andHence,if q(τ)andζ(τ)are chosen to satisfy the differential inequality
then we will have
provided thatas presumed in(5.29).Still assuminga sufficient condition for(5.34)to be satisfied is
Hence,we choose
Note that q(τ)satisfies the assumptions on q in(5.29).
Let us now deal with the range η∈ [0,η1].The functionis bounded on R and it is bounded away from 0 on[0,η1].Define
As h(τ)<0 for τ≥ τ0,on the interval[0,η1],we can bound(5.32)by
Forη ∈ [1,η1],whereη?1<1,we have
To make this non-positive,we chooseζto satisfy
where the last equalilty comes from(5.36).Assumingwe have ζ(τ)<ζ(τ0),so a sufficient condition for(5.39)to hold when τ≥τ0is simply
For η near 0,the dominant term in(5.37)isDefine
Therefore,if we can arrange that,then for η∈ [0,1],we have,so
In this case,
which is non-positive forτ≥ τ0,due to(5.39).In summary,we will have L(τ)p ≤ 0 in the intervalη ∈ [0,η1]and τ≥ τ0ifζsatisfies(5.40)andfor τ≥ τ0.In view of this,we let ζ(τ)have the form
Thus,(5.40)holds if
Hence it suffices that
holds;this may be achieved with a2,a3>0 ifτ0is large enough.Then we may take a2large enough,so thatholds forτ≥ τ0;this condition translates to
This also is attainable withand a3>0 if τ0is chosen large enough.This completes the construction of the subsolutionin(5.28).
Let us come back to our subsolutionFrom the strong maximum principle,we know thatandHence,there is λ0>0,such that
where p is given by(5.28)withζand q defined above,and we have forτ≥τ0,
This,by(5.29),bounds the quantity I(τ)uniformly from below,so that(5.29)holds with a constant c0>0 that depends on the initial condition w0.
Therefore,just as in the study of the upper barrier,we obtain the uniform convergence of(possibly a subsequence of)on the half-lineto a functionwhich satisfies
and such that
Let X be the space of bounded uniformly continuous functions u(η),such thatis bounded and uniformly continuous on R+.We deduce from the convergence of the upper and lower barriers for w(τ,η)(and ensuing uniform bounds for w)that there exists a sequencesuch that w(τn,·)itself converges to a limit W∞∈ X,such that W∞≡ 0 on R?,and W∞(η)>0 for allη>0.Our next step is to bootstrap the convergence along a sub-sequence,and show that the limit of w(τ,η)asτ→ +∞ exists in the space X.First,observe that the above convergence implies that the shifted functions wn(τ,η)=w(τ+ τn,η)converge in X,uniformly on compact time intervals,as n → +∞ to the solution w∞(τ,η)of the linear problem
In addition,there exists α∞>0,such that w∞(τ,η)converges toin the topology of X asτ→+∞.Thus,for anyε>0,we may choose Tεlarge enough,so that
Given Tε,we can find Nεsufficiently large so that
In particular,we have
We may now construct the upper and lower barriers for the function w(τ+ τNε+Tε,η +exactly as we have done before.It follows,once again from Lemma 5.2 applied to these barriers that any limit pointφ∞of w(τ,·)in X asτ→ +∞ satisfies
Asε>0 is arbitrary,we conclude that w(τ,η)convergesin X asTaking into account Lemma 5.2 once again,applied to the upper and lower barriers for w(τ,η)constructed starting from any timeτ>0,we have proved Lemma 5.1,which implies Lemma 4.2.
AcknowledgementsLenya Ryzhik and Jean-Michel Roquejoffre thank the Labex CIMI for a PDE-probability quarter in Toulouse,in Winter 2014,out of which the idea of this paper grew and which provided a stimulating scientific environment for this project.
[1]A?dékon,E.,Berestycki,J.,Brunet,é.and Shi,Z.,Branching Brownian motion seen from its tip,Probab.Theory Relat.Fields,157,2013,405–451.
[2]Arguin,L.-P.,Bovier,A.and Kistler,N.,Poissonian statistics in the extremal process of branching Brownian motion,Ann.Appl.Probab.,22,2012,1693–1711.
[3]Arguin,L.-P.,Bovier,A.and Kistler,N.,The extremal process of branching Brownian motion,Probab.Theory Relat.Fields,157,2013,535–574.
[4]Berestycki,H.and Hamel,F.,Front propagation in periodic excitable media,Comm.Pure Appl.Math.,55,2002,949–1032.
[5]Bramson,M.D.,Maximal displacement of branching Brownian motion,Comm.Pure Appl.Math.,31,1978,531–581.
[6]Bramson,M.D.,Convergence of solutions of the Kolmogorov equation to travelling waves,Mem.Amer.Math.Soc.,44,1983.
[7]Brunet,E.and Derrida,B.,A branching random walk seen from the tip,Journal of Statistical Physics,143,2011,420–446.
[8]Brunet,E.and Derrida,B.,Statistics at the tip of a branching random walk and the delay of traveling waves,Eur.Phys.Lett.,87,60010,2009.
[9]Fang,M.and Zeitouni,O.,Slowdown for time inhomogeneous branching Brownian motion,J.Stat.Phys.,149,2012,1–9.
[10]Fisher,R.A.,The wave of advance of advantageous genes,Ann.Eugenics,7,1937,353–369.
[11]Hamel,F.,Nolen,J.,Roquejoffre,J.-M.and Ryzhik,L.,A short proof of the logarithmic Bramson correction in Fisher-KPP equations,Netw.Het.Media,8,2013,275–289.
[12]Hamel,F.,Nolen,J.,Roquejoffre,J.-M.,and Ryzhik,L.,The logarithmic time delay of KPP fronts in a periodic medium,J.Europ.Math.Soc.,18,2016,465–505.
[13]Hamel,F.and Roques,L.,Uniqueness and stability properties of monostable pulsating fronts,J.Europ.Math.Soc.,13,2011,345–390.
[14]Henderson,C.,Population stabilization in branching Brownian motion with absorption and drift,Comm.Math.Sci.,14,2016,973–985.
[15]Kolmogorov,A.N.,Petrovskii,I.G.and Piskunov,N.S.,étude de l’équation de la diffusion avec croissance de la quantité de matière et son applicationà un problème biologique,Bull.Univ.état Moscou,Sér.Inter.A,1,1937,1–26.
[16]Lalley,S.P.and Sellke,T.,A conditional limit theorem for the frontier of a branching Brownian motion,Annals of Probability,15,1987,1052–1061.
[17]Lau,K.-S.,On the nonlinear diffusion equation of Kolmogorov,Petrovskii and Piskunov,J.Diff.Eqs.,59,1985,44–70.
[18]Maillard,P.and Zeitouni,O.,Slowdown in branching Brownian motion with inhomogeneous variance,Ann.IHP Prob.Stat.,to appear.
[19]McKean,H.P.,Application of Brownian motion to the equation of Kolmogorov-Petrovskii-Piskunov,Comm.Pure Appl.Math.,28,1975,323–331.
[20]Nolen,J.,Roquejoffre,J.-M.and Ryzhik,L.,Power-like delay in time inhomogeneous Fisher-KPP equations,Comm.Partial Diff.Equations,40,2015,475–505.
[21]Nolen,J.,Roquejoffre,J.-M.and Ryzhik,L.,Refined large-time asymptotics for the Fisher-KPP equation,2016,preprint.ar Xiv:1607.08802
[22]Roberts,M.,A simple path to asymptotics for the frontier of a branching Brownian motion,Ann.Prob.,41,2013,3518–3541.
[23]Roquejoffre,J.-M.,Eventual monotonicity and convergence to travelling fronts for the solutions of parabolic equations in cylinders,Ann.Inst.H.Poincaré Anal.Non Linéaire,14,1997,499–552.
Chinese Annals of Mathematics,Series B2017年2期