劉銀蘭,陸躍樂,嘉曉勤
(浙江工業(yè)大學(xué) 生物工程學(xué)院,浙江 杭州 310014)
手性農(nóng)藥在紅曲菌發(fā)酵過程中的立體選擇性行為研究
劉銀蘭,陸躍樂,嘉曉勤
(浙江工業(yè)大學(xué) 生物工程學(xué)院,浙江 杭州 310014)
采用高效液相色譜-串聯(lián)質(zhì)譜聯(lián)用技術(shù),研究了手性農(nóng)藥腈菌唑、己唑醇在紅曲菌液態(tài)發(fā)酵和紅曲酒釀造過程中的立體選擇性降解情況,以及對(duì)紅曲菌產(chǎn)酶(糖化酶、纖維素酶)和典型代謝產(chǎn)物(紅曲色素、桔霉素)的影響.結(jié)果表明,腈菌唑、己唑醇的對(duì)映異構(gòu)體的降解速率基本一致,無選擇性降解現(xiàn)象發(fā)生.腈菌唑、己唑醇的外消旋體及對(duì)映異構(gòu)體對(duì)紅曲菌產(chǎn)酶和代謝物呈現(xiàn)一定的差異性,其中,在5,0.5 mg/L己唑醇條件下,紅曲菌產(chǎn)酶及代謝物表現(xiàn)出顯著性變化,且(+)-己唑醇顯著性大于(-)-己唑醇,5 mg/L質(zhì)量濃度下顯著性大于0.5 mg/L;在0.05 mg/L己唑醇條件下,紅曲菌產(chǎn)酶及次級(jí)代謝均不存在顯著性差異.此外,不同質(zhì)量濃度的腈菌唑外消旋體及對(duì)映異構(gòu)體對(duì)紅曲菌產(chǎn)酶及次級(jí)代謝也不存在顯著性影響.
紅曲菌;手性農(nóng)藥;立體選擇性降解;酶活
目前,手性農(nóng)藥占中國使用農(nóng)藥的40%以上[1],不同的對(duì)映異構(gòu)體在生物代謝速率、生物活性、降解速率和毒理學(xué)等方面均存在不同程度的差異[2],它們?cè)谥参?、人和環(huán)境中可能會(huì)發(fā)生不同的轉(zhuǎn)化,從而對(duì)人和非靶生物產(chǎn)生不同的毒性[3-8].從食品和環(huán)境安全上來說,在對(duì)映異構(gòu)體水平上研究手性農(nóng)藥對(duì)映異構(gòu)體立體選擇性行為已經(jīng)迫在眉睫.
紅曲酒是一種以大米為主要原料,經(jīng)紅曲菌、酵母菌等微生物發(fā)酵形成的特色飲品,由于含有莫那可林K、紅曲色素等活性成分使其具有一定的保健功效,深受消費(fèi)者喜愛.但大米原料可能會(huì)受到農(nóng)藥污染,導(dǎo)致發(fā)酵產(chǎn)品存在潛在的風(fēng)險(xiǎn).腈菌唑(rac-MYC)和己唑醇(rac-HEX)屬于三唑類殺菌劑,分別有兩種對(duì)映異構(gòu)體.它們作為葉面施用殺菌劑被用于谷物、水果和蔬菜等農(nóng)作物[9],通過抑制細(xì)胞色素P-450介導(dǎo)的氧化脫甲基反應(yīng),阻斷麥角甾醇的生物合成來阻止真菌菌絲的生長[10-12].腈菌唑和己唑醇在土壤、番茄、黃瓜、草莓、藻類、魚、水蚤、鼠和兔子等體內(nèi)具有不同的降解速率[13-17],但其在紅曲菌中的研究尚無報(bào)道,對(duì)映異構(gòu)體對(duì)紅曲菌酶系和次級(jí)代謝物的影響也不清楚.筆者采用液相色譜和質(zhì)譜聯(lián)用技術(shù)分析研究了手性農(nóng)藥腈菌唑和己唑醇在紅曲菌發(fā)酵過程中立體選擇性降解行為,并從對(duì)映體水平研究手性農(nóng)藥對(duì)映異構(gòu)體對(duì)紅曲菌酶活和代謝物的影響差異.
1.1 材料和試劑
外消體腈菌唑和己唑醇標(biāo)準(zhǔn)品(純度>99.0%)由農(nóng)業(yè)部農(nóng)藥檢定所提供;腈菌唑和己唑醇對(duì)映異構(gòu)體(純度>98.0%)由大賽璐藥物手性技術(shù)(上海)有限公司提供;其余試劑均為分析純.
1.2 紅曲米
利用紫色紅曲菌MonascuspurpureusFM-4000固態(tài)發(fā)酵7 d,獲得釀造紅曲酒所用的紅曲米,糖化力為642.5 mg/(g·h),酯化力為2.511 mg/mL,色素含量為2 076.5 U/g.
1.3 紅曲菌液態(tài)發(fā)酵和紅曲酒釀造過程
紅曲菌發(fā)酵液的農(nóng)藥暴露質(zhì)量濃度為700 mg/L,按體積分?jǐn)?shù)為10%的接種量接種于裝液量100 mL/250 mL的三角瓶中,30 ℃,180 r/min培養(yǎng)7 d.
將1 kg糯米沖洗干凈后,浸泡于2 g/L腈菌唑和己唑醇丙酮溶液中,加入1 mL吐溫-80作為乳化劑,每0.5 h攪拌一次,浸泡過夜.第2天瀝干浸泡水,將糯米蒸熟、冷卻后放入5 L酒罐中,加入2.5 L水,1 g安琪黃酒專用酵母和100 g紅曲米封口,避光發(fā)酵35 d.
1.4 樣品分析
取5 mL紅曲菌發(fā)酵液或紅曲酒液樣品轉(zhuǎn)移至50 mL聚丙烯離心管中,于渦旋混合器上渦旋3 min.4 ℃,8 000 r/min離心30 min,0.22 μm濾膜過濾,取100 μL提取物用900 μL乙腈溶解,混合均勻后用于進(jìn)一步液質(zhì)聯(lián)用[18]分析.
1.5 標(biāo)準(zhǔn)曲線和方法驗(yàn)證
用乙腈溶解逐級(jí)稀釋不同質(zhì)量濃度(2.5,5,25,50,100,250,500 mg/L)的標(biāo)準(zhǔn)溶液,繪制質(zhì)量濃度對(duì)峰面積的曲線并進(jìn)行回歸分析,使用Microsoft Excel計(jì)算標(biāo)準(zhǔn)偏差(SD)和相對(duì)標(biāo)準(zhǔn)偏差(RSD)(RSD=(SD/mean)×100%).因發(fā)酵前后發(fā)酵基質(zhì)物質(zhì)種類變化較大,故在不同時(shí)間點(diǎn)進(jìn)行添加回收試驗(yàn)(每個(gè)單體質(zhì)量濃度為0.5,5,50 mg/L).最小檢出限(LOD)為檢測實(shí)際樣本時(shí)儀器3 倍信噪比;最低定量限(LOQ)為檢測實(shí)際樣本時(shí)儀器10 倍信噪比.
1.6 測定不同濃度下的酶活性
在不同時(shí)間點(diǎn)(1,3,5,7 d)進(jìn)行發(fā)酵液取樣.樣品4 ℃,8 000 r/min離心20 min,在上清中緩慢加入不同飽和濃度的硫酸銨分級(jí)沉淀,去上清,沉淀重懸于50 mmol/L PBS緩沖液中,經(jīng)透析袋去鹽后,裝入截留分子量為3 kDa超濾管中濃縮,收集粗酶液,檢測糖化酶和纖維素酶[19]的酶活.糖化酶酶活單位(U)定義:在40 ℃,pH=4.6條件下,每3 min水解淀粉生成1 mg還原糖所需的酶量為1 U;纖維素酶酶活單位(U)定義:在30 ℃,pH=4.6條件下,每3 min水解羧甲基纖維素鈉生成1 mg還原糖所需的酶量為1 U.紅曲菌發(fā)酵液取樣后,8 000 r/min離心20 min,取上清液,測定紅曲色素產(chǎn)量和桔霉素含量[20].
2.1 標(biāo)準(zhǔn)曲線和方法驗(yàn)證
質(zhì)量濃度為2.5~500 mg/L時(shí),腈菌唑和己唑醇的對(duì)映異構(gòu)體呈良好的線性關(guān)系(R2≥0.997).在此色譜條件下,外消旋腈菌唑和己唑醇完全拆分,且出峰位置無雜質(zhì)干擾.
分別在0,3,7 d和0,14,35 d對(duì)空白紅曲菌液態(tài)發(fā)酵、紅曲酒樣本進(jìn)行添加回收試驗(yàn),其回收率分別為(96.8±3.9)%~(99.8±2.2)%,(93.2±3.8)%~(99.8±2.0)%;RSD分別為2.1%~4.2%,2.0%~4.2%(表1).在此過程中,腈菌唑和己唑醇兩個(gè)對(duì)映異構(gòu)體的最小檢出限為0.001 mg/L,最低定量限為0.005 mg/L,滿足該試驗(yàn)要求.本試驗(yàn)方法的回收率為70%~110%,RSD<15%.因此,本方法可適用于此發(fā)酵過程中腈菌唑和己唑醇對(duì)映異構(gòu)體的含量分析.
表1 腈菌唑和己唑醇兩個(gè)對(duì)映異構(gòu)體的添加回收率Table 1 Recoveries of the enantiomers of MYC and HEX in the fermention samples
注:1) 回收率表示平均回收率±SD(n=3).
2.2 腈菌唑和己唑醇的立體選擇性降解研究
隨著時(shí)間的變化,腈菌唑和己唑醇對(duì)映異構(gòu)體的殘留情況如圖1所示,腈菌唑和己唑醇對(duì)映異構(gòu)體的濃度變化及其趨勢基本一致.在紅曲菌液態(tài)發(fā)酵過程中,腈菌唑和己唑醇對(duì)映異構(gòu)體一直有明顯的降解現(xiàn)象,(+)-R-MYC,(-)-S-MYC,(+)-R-HEX與(-)-S-HEX分別降解了23.06%,23.42%,16.00%,15.67%,模擬兩者的降解曲線,并獲得較好的相關(guān)系數(shù)(R2≥0.993),(+)-R-MYC,(-)-S-MYC,(+)-R-HEX和(-)-S-HEX的半衰期分別為3.355,3.455,6.681,6.696 d,可見(+)-R-MYC,(+)-R-HEX的降解速度均稍高于(-)-S-MYC,(-)-S-HEX.在紅曲酒釀造過程中,腈菌唑濃度前5 d一直呈上升趨勢,可能是酒液處于吸收狀態(tài),之后直至35 d,僅有少量腈菌唑和己唑醇被降解,(+)-R-MYC,(-)-S-MYC,(+)-R-HEX與(-)-S-HEX分別降解了13.85%,13.39%,39.24%,37.29%.同時(shí),計(jì)算EF值均接近0.5.可見腈菌唑和己唑醇對(duì)映異構(gòu)體未發(fā)生立體選擇性降解.
圖1 腈菌唑和己唑醇在紅曲菌液態(tài)發(fā)酵和紅曲酒釀造中的質(zhì)量濃度變化趨勢圖Fig.1 Degradation linear of MYC and HEX enantiomers in the submerged fermentation of Monascus and in the Monascus wine
2.3 手性農(nóng)藥對(duì)紅曲菌糖化酶活性影響差異
在紅曲菌液態(tài)發(fā)酵中,對(duì)照空白樣本,3 個(gè)濃度的腈菌唑和己唑醇外消旋體及其對(duì)映異構(gòu)體對(duì)糖化酶有一定影響(圖2).在手性農(nóng)藥質(zhì)量濃度為5 mg/L時(shí),腈菌唑和己唑醇對(duì)糖化酶有抑制作用,其中(+)-R-MYC,(+)-R-HEX及(-)-S-HEX對(duì)糖化酶有較強(qiáng)的抑制作用,采用SPSS軟件進(jìn)行方差分析,己唑醇兩個(gè)對(duì)映異構(gòu)體對(duì)糖化酶的影響有顯著性差異(P<0.05),且(+)-R-HEX顯著性大于(-)-S-HEX;在質(zhì)量濃度為0.5 mg/L時(shí),rac-HEX,rac-MYC,(+)-R-HEX,(-)-S-HEX使得糖化酶酶活升高,說明手性農(nóng)藥對(duì)糖化酶有激活作用,分析表明己唑醇兩個(gè)對(duì)映異構(gòu)體對(duì)糖化酶的影響有顯著性差異(P<0.05),且(+)-R-HEX顯著性大于(-)-S-HEX;在質(zhì)量濃度為0.05 mg/L時(shí),手性農(nóng)藥對(duì)糖化酶酶活性的影響與對(duì)照組基本一致,不受兩個(gè)農(nóng)藥外消旋體及對(duì)映體的影響.
圖2 腈菌唑和己唑醇及其對(duì)映異構(gòu)體在不同質(zhì)量濃度下對(duì)糖化酶酶活的影響Fig.2 The impact of different concentrations of test pesticides and their enantiomers on glucoamylase
2.4 手性農(nóng)藥對(duì)紅曲菌纖維素酶活性影響差異
在紅曲菌液態(tài)發(fā)酵中,從圖3可知:在手性農(nóng)藥質(zhì)量濃度為5 mg/L時(shí),手性農(nóng)藥對(duì)纖維素酶酶活有一定的抑制作用,酶活均小于對(duì)照組,rac-MYC,(+)-R-MYC,(-)-S-MYC,(+)-R-HEX和(+)-R-HEX對(duì)纖維素酶有較強(qiáng)的抑制作用.用SPSS軟件數(shù)據(jù)分析發(fā)現(xiàn),酶活相比對(duì)照組有顯著性差異(P<0.05),且(+)-R-HEX顯著性大于(-)-S-HEX;在質(zhì)量濃度為0.5 mg/L時(shí),酶活有所上升,且都大于對(duì)照組,用軟件分析表明有顯著性差異(P<0.05),且(+)-R-HEX顯著性大于(-)-S-HEX;在0.05 mg/L時(shí),纖維素酶酶活性與對(duì)照組基本一致,不受兩個(gè)農(nóng)藥外消旋體及對(duì)映體的影響.
圖3 腈菌唑和己唑醇及其對(duì)映異構(gòu)體在不同質(zhì)量濃度下對(duì)纖維素酶酶活的影響Fig.3 The impact of different concentrations of test pesticides and their enantiomers on cellulase
2.5 手性農(nóng)藥對(duì)紅曲菌色價(jià)影響差異
在紅曲菌液態(tài)發(fā)酵中,與空白樣本對(duì)照(圖4),3 個(gè)濃度的腈菌唑和己唑醇外消旋體及其對(duì)映異構(gòu)體對(duì)色價(jià)有不同程度的抑制作用.隨著手性農(nóng)藥添加質(zhì)量濃度逐步增大,手性農(nóng)藥對(duì)色價(jià)有強(qiáng)烈的抑制作用,尤其rac-HEX,(+)-R-HEX,(-)-S-HEX及(-)-S-MYC對(duì)色價(jià)影響更為明顯,通過SPSS軟件數(shù)據(jù)分析發(fā)現(xiàn),相比對(duì)照組色價(jià)間均有顯著性差異(P<0.05),且(+)-R-HEX顯著性大于(-)-S-HEX.
圖4 腈菌唑和己唑醇及其對(duì)映異構(gòu)體在不同質(zhì)量濃度下對(duì)色價(jià)的影響Fig.4 The impact of different concentrations of test pesticides and their enantiomers on color value
2.6 手性農(nóng)藥對(duì)紅曲菌桔霉素產(chǎn)量的影響差異
在紅曲菌液態(tài)發(fā)酵中,對(duì)照空白樣本,3 個(gè)濃度的腈菌唑和己唑醇外消旋體及其對(duì)映異構(gòu)體對(duì)桔霉素質(zhì)量濃度有一定影響(圖5).隨著手性農(nóng)藥添加質(zhì)量濃度逐漸升高,桔霉素的質(zhì)量濃度出現(xiàn)不同程度的增加趨勢,其中rac-HEX對(duì)桔霉素質(zhì)量濃度的影響極其明顯,通過SPSS軟件數(shù)據(jù)分析發(fā)現(xiàn)相比對(duì)照組有顯著性差異(P<0.05),且(+)-R-HEX顯著性大于(-)-S-HEX,而導(dǎo)致出現(xiàn)這種現(xiàn)象的原因,可能與rac-HEX對(duì)細(xì)胞的毒副作用較大有關(guān).
圖5 腈菌唑和己唑醇及其對(duì)映異構(gòu)體在不同質(zhì)量濃度下對(duì)桔霉素質(zhì)量濃度的影響Fig.5 The impact of different concentrations of test pesticides and their enantiomers on citrinin
上述試驗(yàn)的研究發(fā)現(xiàn),腈菌唑和己唑醇的對(duì)映異構(gòu)體在紅曲菌發(fā)酵過程中都有一定程度的降解,且降解速率基本一致,均小于50%,可見腈菌唑和己唑醇在發(fā)酵過程中殘留時(shí)間較長,并一直殘留至最終的產(chǎn)品中,可能會(huì)對(duì)消費(fèi)者構(gòu)成潛在的風(fēng)險(xiǎn).而手性農(nóng)藥殘留對(duì)紅曲菌酶活性存在不同程度的影響,對(duì)映異構(gòu)體之間存在不同的差異性,且(+)-己唑醇顯著性大于(-)-己唑醇.筆者研究了手性農(nóng)藥腈菌唑和己唑醇的不同對(duì)映異構(gòu)體立體選擇性降解和生物活性情況,為今后評(píng)估環(huán)境風(fēng)險(xiǎn)和人類健康安全提供一定的參考.
[1] ZHOU Ying, LI Ling, LIN Kunde, et al. Enantiomer separation of triazole fungicides by high-performance liquid chromatography [J]. Chirality, 2009, 21(4): 421-427.
[2] DONG Fenshou, CHENG Li, LIU Xingang, et al. Enantioselective analysis of triazole fungicide myclobutanil in cucumber and soil under different application modes by chiral liquid chromatography/tandem mass spectrometry [J]. Journal of agricultural and food chemistry, 2012, 60(8): 1929-1936.
[3] GARRISON A W. Probing the enantioselectivity of chiral pesticides [J]. Environmental science & technology, 2006, 40(1): 16-23.
[4] SUM Mingjing, LIU Donghui, DANG Ziheng, et al. Enantioselective behavior of malathion enantiomers in toxicity to beneficial organisms and their dissipation in vegetables and crops [J]. Journal of hazardous materials, 2012, 237: 140-146.
[5] LIU Weiping, GAN Jianying, SCHLENK D, et al. Enantioselectivity in environmental safety of current chiral insecticides [J]. Proceedings of the national academy of sciences of the United States of America, 2005, 102(3): 701-706.
[6] DIAO Jinling, XU Peng, LIU Donghui, et al. Enantiomer-specific toxicity and bioaccumulation of alpha-cypermethrin to earthwormEiseniafetida[J]. Journal of hazardous materials, 2011, 192(3): 1072-1078.
[7] BUERGE I J, BACHLI A, DE J P, et al. The chiral herbicide beflubutamid (I): isolation of pure enantiomers by HPLC, herbicidal activity of enantiomers, and analysis by enantioselective GC-MS [J]. Environmental science & technology, 2012, 47(13): 6806-6811.
[8] ZHANG Xiaoxiang, WANG Se, WANG Yu, et al. Differential enantioselectivity of quizalofop ethyl and its acidic metabolite: direct enantiomeric separation and assessment of multiple toxicological endpoints [J]. Journal of hazardous materials, 2011, 186(1): 876-882.
[9] ZHANG Ping, DANG Ziheng, SHEN Zhigang, et al. Enantioselective degradation of hexaconazole in rat hepatic microsomesinvitro[J]. Chirality, 2012, 24(4): 283-288.
[10] WORTHING P A. Synthesis of 1, 2, 4-triazole compounds related to the fungicides flutriafol and hexaconazole [J]. Pesticide science, 1991, 31(4): 457-498.
[11] WANG Xinquan, ZHANG Hu, XU Hao, et al. Enantioselective residue dissipation of hexaconazole in cucumber (CucumissativusL.), head cabbage (Brassicaoleracea L. var.caulorapaDC.), and soils [J]. Journal of agricultural and food chemistry, 2012, 60(9): 2212-2218.
[12] OBLIQUUS S. Enantioselective toxic effects of hexaconazole enantiomers against [J]. Chirality, 2012, 24(8): 610-614.
[13] LI Yuanbo, DONG Fengshou, LIU Xingang, et al. Enantioselectivity in tebuconazole and myclobutanil non-target toxicity and degradation in soils [J]. Chemosphere, 2015, 122: 145-153.
[14] ZHANG Hu, WANG Xinquan, QIAN Mingrong, et al. Residue analysis and degradation studies of fenbuconazole and myclobutanil in strawberry by chiral high-performance liquid chromatography-tandem mass spectrometry [J]. Journal of agricultural and food chemistry, 2011, 59(22): 12012-12017.
[15] LI Yuanbo, DONG Fengshou, LIU Xingang, et al. Studies of enantiomeric degradation of the triazole fungicide hexaconazole in tomato, cucumber, and field soil by chiral liquid chromatography-tandem mass spectrometry [J]. Chirality, 2013, 25(3): 160-169.
[16] 孫明婧. 四種三唑類手性農(nóng)藥的環(huán)境行為研究[D]. 北京: 中國農(nóng)業(yè)大學(xué), 2014.
[17] 李遠(yuǎn)播. 幾種典型手性三唑類殺菌劑對(duì)映體的分析、環(huán)境行為及其生物毒性研究[D]. 北京: 中國農(nóng)業(yè)科學(xué)院, 2013.
[18] QIU Jing, DAI Shouhui, ZHENG Chuangmu, et al. Enantiomeric separation of triazole fungicides with 3-μm and 5-μmL particle chiral columns by reverse-phase high-performance liquid chromatography [J]. Chirality, 2011, 23(6): 479-486.
[19] CHEN Guo, MA Yunhui, SU Pengfei, et al. Direct binding glucoamylase onto carboxyl-functioned magnetic nanoparticles [J]. Biochemical engineering journal, 2012, 67: 120-125.
[20] WANG Changlu, FU Zhiliang, CHEN Mianhua, et al. Blue light effects on pigment and citrinin production inMonascus[C]//Chen Mianhua. Bioinformatics and Biomedical Engineering. Piscataway: IEEE, 2009: 1-4.
(責(zé)任編輯:朱小惠)
Stereoselective behaviors of chiral pesticide in theMonascusfermentation process
LIU Yinlan, LU Yuele,JIA Xiaoqin
(College of Biotechnology and Bioengineering, Zhejiang University of Technology, Hangzhou 310014, China)
The stereoselective degradation of myclobutanil and hexaconazole in the submerged fermentation ofMonascusandMonascuswine brewing process were analyzed by HPLC-MS/MS, and the effects of enantiomers on enzyme (glucoamylase, cellulose) and secondary metabolites (Monascuspigment, citrinin) ofMonascuswere investigated. The results showed that the degradation rate of two enantiomers of myclobutanil and hexaconazole was similar, and no stereoselective degradation was found. The racemates and enantiomers of myclobutanil and hexaconazole showed certainly differences in the enzyme production and metabolism ofMonascus. At a concentration of 5 and 0.5 mg/L of racemates and enantiomers of hexaconazole, respectively, the enzyme production and metabolites changed significantly, with (+)-hexoxazole higher than (-)-hexaconazole. However, at 0.05 mg/L of racemates and enantiomers of hexaconazole, no significant changes occurred. In addition, there was also no significant difference between racemates and enantiomers at different concentrations of myclobutanil.
Monascus; chiral pesticide; stereoselective degradation; enzymatic activity
2017-02-28
國家文物局指南針計(jì)劃項(xiàng)目(20130306)
劉銀蘭(1990—),女,河南開封人,碩士研究生,研究方向?yàn)榘l(fā)酵工程,E-mail:liuyinlan0215@163.com. 通信作者:嘉曉勤副教授,E-mail: monascus@zjut.edu.cn.
Q815
A
1674-2214(2017)02-0092-08