国产日韩欧美一区二区三区三州_亚洲少妇熟女av_久久久久亚洲av国产精品_波多野结衣网站一区二区_亚洲欧美色片在线91_国产亚洲精品精品国产优播av_日本一区二区三区波多野结衣 _久久国产av不卡

?

基于線(xiàn)粒體控制區(qū)的中國(guó)南海海域卵形鯧鲹遺傳多樣性

2017-07-12 16:19:40呂金磊楊喜書(shū)宮亞運(yùn)
海洋漁業(yè) 2017年3期
關(guān)鍵詞:卵形控制區(qū)譜系

呂金磊,章 群,楊喜書(shū),宮亞運(yùn),曹 艷

(暨南大學(xué)水生生物研究中心,教育部熱帶亞熱帶水生態(tài)工程研究中心,廣州 510632)

基于線(xiàn)粒體控制區(qū)的中國(guó)南海海域卵形鯧鲹遺傳多樣性

呂金磊,章 群,楊喜書(shū),宮亞運(yùn),曹 艷

(暨南大學(xué)水生生物研究中心,教育部熱帶亞熱帶水生態(tài)工程研究中心,廣州 510632)

為探討中國(guó)南海重要經(jīng)濟(jì)魚(yú)類(lèi)卵形鯧鲹(Trachinotus ovatus)的遺傳多樣性,測(cè)定了廣東閘坡、烏石、安鋪和廣西東興以及海南新盈等5個(gè)地理群體97 ind樣品的線(xiàn)粒體控制區(qū)5′端359 bp序列,發(fā)現(xiàn)47個(gè)變異位點(diǎn),32個(gè)單倍型,總體呈現(xiàn)高單倍型多樣性(h=0.951)和高核苷酸(π=0.020 9)多樣性的特點(diǎn)。在鄰接樹(shù)和單倍型網(wǎng)絡(luò)圖中出現(xiàn)2個(gè)分化顯著但不存在明顯地理聚群的分支,推測(cè)二者的分化時(shí)間約為60~18萬(wàn)年前(中更新世),可能是中更新世冰期海平面下降形成邊緣海而導(dǎo)致隔離,間冰期海平面上升后出現(xiàn)二次接觸。不同地理群體間的遺傳分化不顯著(Fst=-0.022 4~0.045 3),AMOVA分析也顯示97%以上的遺傳變異來(lái)源于群體內(nèi)個(gè)體間。卵形鯧鲹2個(gè)譜系及總體的核苷酸錯(cuò)配圖呈現(xiàn)多峰,中性檢驗(yàn)均為負(fù)值不顯著(P>0.05),表明都未經(jīng)歷過(guò)大規(guī)模的種群擴(kuò)張,處于相對(duì)穩(wěn)定的狀態(tài)。

卵形鯧鲹;中國(guó)南海;線(xiàn)粒體控制區(qū);遺傳多樣性

卵形鯧鲹(Trachinotus ovatus)隸屬鱸形目(Perciformes)鲹科(Carangidae),俗稱(chēng)金鯧[1];因其體表無(wú)鱗,無(wú)肌間刺且肉質(zhì)細(xì)嫩、味道鮮美,具有較高的食用和營(yíng)養(yǎng)價(jià)值[2],而成為中國(guó)和東南亞等產(chǎn)地廣受消費(fèi)者歡迎的名貴魚(yú)類(lèi),也是中國(guó)華南地區(qū)養(yǎng)殖規(guī)模最大、產(chǎn)量最高的主導(dǎo)品種之一[3-4]。目前養(yǎng)殖群體未經(jīng)選育,就已出現(xiàn)生長(zhǎng)慢、成活率低、品質(zhì)差等種質(zhì)衰退的現(xiàn)象[4]。同時(shí),隨著海洋環(huán)境的惡化和過(guò)度捕撈,南海漁業(yè)資源在不斷的衰減,卵形鯧鲹也不例外[5]。因此,亟待開(kāi)展種質(zhì)資源的保護(hù)和良種選育研究,而了解經(jīng)濟(jì)魚(yú)類(lèi)的遺傳背景,是良種選育和資源保護(hù)的基礎(chǔ)[6]。

目前,國(guó)內(nèi)外卵形鯧鲹的研究報(bào)道多集中在人工養(yǎng)殖育種、胚胎發(fā)育、疾病診斷和治療等方面,種群遺傳方面的研究較少,僅有孫立元等[7]采用微衛(wèi)星標(biāo)記分析海南、廣東2個(gè)育種群體的遺傳多樣性;彭敏等[8]利用AFLP技術(shù)分析比較了北部灣野生群體和養(yǎng)殖群體的遺傳多樣性;趙永貞等[9]采用微衛(wèi)星分子標(biāo)記技術(shù)分析了南海4個(gè)群體的遺傳多樣性;吉磊等[10]分析了海南、廣東、福建3個(gè)養(yǎng)殖群體的微衛(wèi)星多態(tài)性等。與雙親遺傳的核基因組相比,線(xiàn)粒體DNA為母系遺傳,結(jié)構(gòu)簡(jiǎn)單、無(wú)基因重組、進(jìn)化速率快,有效群體大小僅為前者的1/4,是種群遺傳學(xué)研究的首選分子標(biāo)記,也是核基因組遺傳分析的重要補(bǔ)充[11-12]。其中控制區(qū)(control region,CR)是線(xiàn)粒體基因組中進(jìn)化速率最快的區(qū)段,常被用于分析魚(yú)類(lèi)遺傳背景[13]。本研究測(cè)定了廣東陽(yáng)江閘坡、廉江安鋪鎮(zhèn)、雷州烏石鎮(zhèn),海南臨高新盈鎮(zhèn),廣西東興等5個(gè)地區(qū)野生群體的線(xiàn)粒體控制區(qū)序列,以分析遺傳多樣性、種群遺傳結(jié)構(gòu)和動(dòng)態(tài),旨在了解南海卵形鯧鲹的遺傳背景,為種質(zhì)資源的管理保護(hù)和合理開(kāi)發(fā)利用提供科學(xué)依據(jù)。

1 材料與方法

實(shí)驗(yàn)用的野生卵形鯧鲹樣品分別采集于廣東陽(yáng)江閘坡鎮(zhèn)(YZP1~20)、廣東廉江安鋪鎮(zhèn)(YAP1~18)、廣東烏石鎮(zhèn)(YWS1~19)、海南臨高新盈鎮(zhèn)(QXY1~20)和廣西東興(GDX1~20)(圖1),保存于95%乙醇備用。DNA提取和PCR擴(kuò)增條件參照樂(lè)小亮等[15]的方法,PCR擴(kuò)增引物為本實(shí)驗(yàn)室自行設(shè)計(jì)的L:5′-tggcttgaaaaaccaccgttg,R:5′-cctgaartaggaaccaaatgccag,將電泳檢測(cè)為條帶清晰明亮的擴(kuò)增產(chǎn)物送至華大基因切膠純化,通過(guò)ABI-3730 DNA自動(dòng)測(cè)序儀測(cè)序。

圖1 卵形鯧鲹采樣分布圖(引自孫湘平[14]。A:中國(guó)沿岸流,B:南海暖流)Fig.1 Sam p ling sites for T.Ovatus(cited from SUN Xiang-ping[14].A:the coastal current of China;B:Nanhaiwarm current)

利用MEGA 6.0[16]對(duì)測(cè)定序列進(jìn)行校對(duì)與對(duì)位排列,計(jì)算堿基組成、多態(tài)位點(diǎn)、簡(jiǎn)約信息位點(diǎn)、轉(zhuǎn)換與顛換比以及基于Kimura 2-Parameter模型的遺傳距離,構(gòu)建鄰接樹(shù)。利用Network 5.0[17]構(gòu)建單倍型網(wǎng)絡(luò)分布圖。通過(guò)DnaSP 5.1[18]計(jì)算單倍型數(shù)、單倍型多樣性(h)、核苷酸多樣性(π),以及遺傳分化系數(shù)(Fst)和基因流(Nm)值。通過(guò)Arlequin 3.5[19]進(jìn)行AMOVA分析(analysis ofmolecular variance),評(píng)估遺傳變異在群體內(nèi)、群體間與組群間的分布;計(jì)算Tajima’s D和Fu’s Fs值與核苷酸不配對(duì)分析,分析種群歷史動(dòng)態(tài)[20]。使用SAMOVA 2.0[21]進(jìn)行空間分子變異分析(spatial analysis ofmolecular variance,SAMOVA),通過(guò)群體的地理位置及序列差異分析群體間的分化。

2 結(jié)果與分析

2.1 序列特征及遺傳多樣性

在5個(gè)群體97個(gè)樣本的線(xiàn)粒體控制區(qū)5′端高變區(qū)359 bp序列中,沒(méi)有堿基的插入與缺失;T、C、A、G平均含量分別是30.6%、15.2%、37.4%、16.8%,表現(xiàn)出典型的反G偏倚,吻合脊椎動(dòng)物線(xiàn)粒體DNA特征[22]。轉(zhuǎn)換與顛換比為14.15,表明序列變異未飽合,可用于種群遺傳分析[23]。47個(gè)變異位點(diǎn)(13.9%)中39個(gè)為簡(jiǎn)約信息位點(diǎn),定義32個(gè)單倍型,其中16個(gè)為多個(gè)群體共享。卵形鯧鲹整體呈現(xiàn)出高單倍型多樣性(h=0.951)與高核苷酸多樣性(π=0.020 9)的特點(diǎn),其中新盈(h=0.953,π=0.021 8)和安鋪群體(h=0.961,π=0.021 9)的遺傳多樣性最高;烏石群體最低(h=0.895,π=0.018 4),詳見(jiàn)表1。

表1 各采樣點(diǎn)的采樣數(shù)量及遺傳多樣性情況Tab.1 Samp le sizes and genetic diversity indices of T.ovatus in each sampling site

2.2 卵形鯧鲹的遺傳分化

鄰接樹(shù)與單倍型網(wǎng)絡(luò)圖拓?fù)浣Y(jié)構(gòu)大體一致,都出現(xiàn)由不同地理來(lái)源個(gè)體混雜分布的2個(gè)譜系:Lineage A和Lineage B(單倍型網(wǎng)絡(luò)圖見(jiàn)圖2)。譜系間分化顯著(Fst=0.569,P<0.01),以控制區(qū)變異速率為3%~10%/百萬(wàn)年[24]推算的分化時(shí)間約為60~18萬(wàn)年前(中更新世)。5個(gè)地理群體的群體間和群體內(nèi)遺傳距離相近(0.019~0.023)(表2),遺傳分化系數(shù)Fst較?。?0.022 4~0.045 3,P>0.05)。將5個(gè)地理群體按照瓊州海峽東/西兩側(cè),大陸沿海/海南島,以及根據(jù)SAMOVA結(jié)果(新盈、烏石、安鋪/閘坡、東興)分組進(jìn)行分子方差(AMOVA)分析,發(fā)現(xiàn)群體內(nèi)的變異比例均達(dá)到97%以上(表3),表明群體間遺傳分化不明顯,遺傳變異主要源于個(gè)體之間,地理分布的影響相對(duì)較小。

圖2 基于線(xiàn)粒體控制區(qū)基因序列構(gòu)建的卵形鯧鲹單倍型網(wǎng)絡(luò)圖Fig.2 Parsimony network of hap lotypes of T.ovatus based on m tDNA control region sequences

表3 不同分組的分子方差分析Tab.3 AMOVA analysis of various groups of different geographic populatons

表2 群體內(nèi)遺傳距離(對(duì)角線(xiàn))、群體間遺傳距離(對(duì)角線(xiàn)下)及群體間遺傳分化程度(Fst,對(duì)角線(xiàn)上)Tab.2 Genetic distancesw ithin(along diagonal)and among(below diagonal)populations and fixation index(Fst,above diagonal)among populations of T.ovatus

2.3 卵形鯧鲹種群動(dòng)態(tài)分析

中性檢驗(yàn)及吻合度檢驗(yàn)結(jié)果顯示,Lineage A的Tajima’s D值和Fu’s Fs的值都為負(fù)值(-01.041,-3.824)不顯著(P>0.05);Lineage B的Tajima’s D值為正值(0.172)不顯著(P>0.05)、Fu’s Fs為負(fù)值(-1.739)不顯著(P>0.05);兩譜系的SSD值(0.014,0.038)和Rg值(0.029,0.072)小且不顯著(P>0.05)(表4);核苷酸不配對(duì)分析圖均為多峰(圖3)。卵形鯧鲹總體的Tajima’s D值(-0.616)和Fu’s Fs值(-6.562)都為負(fù)值且不顯著(P>0.05),SSD值(0.010)和Rg值(0.015)小且不顯著(P>0.05)。表明南海卵形鯧鲹總體及2個(gè)譜系都沒(méi)有出現(xiàn)種群擴(kuò)張的情況。

表4 南海卵形鯧鲹群體的中性檢驗(yàn)及吻合度檢驗(yàn)Tab.4 Neutrality test and goodness of fit test among T.ovatus populations in the South China Sea

圖3 南海卵形鯧鲹不同譜系的核苷酸不配對(duì)分布圖Fig.3 M ismatch-distribution analysis of different lineage of T.ovatus in the South China Sea

3 討論

3.1 卵形鯧鲹的遺傳多樣性

就線(xiàn)粒體序列分析而言,一般常用單倍型多樣性(h)和核苷酸多樣性(π)來(lái)表示遺傳多樣性的高低程度[25]。南海卵形鯧鲹線(xiàn)粒體控制區(qū)總體呈現(xiàn)出高單倍型多樣性和高核苷酸多樣性的特點(diǎn)(h=0.951,π=0.020 9),單倍型多樣性與同海域的真鯛(Pagrusmajor)(h=0.994)、黑鯛(Acanthopagrus schlegeli)(h=0.994)[26]以及多齒蛇鯔(Saurida tumbil)(h=0.957)[27]等相近;核苷酸多樣性與同海域的真鯛(π=0.022)相近,高于黑鯛(π=0.007 5)和多齒蛇鯔(π=0.007 4),表明目前南海卵形鯧鲹線(xiàn)粒體序列多樣性相對(duì)較高。一般認(rèn)為海洋魚(yú)類(lèi)出現(xiàn)高單倍型多樣性和高核苷酸多樣性是因?yàn)榉N群處于持續(xù)穩(wěn)定增長(zhǎng)狀態(tài)或者2個(gè)出現(xiàn)相對(duì)分化的群體(或亞種)發(fā)生二次接觸[28]。由于南海海區(qū)卵形鯧鲹存在2個(gè)譜系,歷史上種群數(shù)量總體穩(wěn)定,推測(cè)較高的遺傳多樣性是譜系間二次接觸所導(dǎo)致。

就南海海區(qū)卵形鯧鲹微衛(wèi)星分析而言,孫立元等[7]、吉磊等[10]認(rèn)為育種、養(yǎng)殖群體的遺傳多樣性較高,而趙永貞等[9]則認(rèn)為野生群體多樣性較低;彭敏等[8]利用AFLP分析,認(rèn)為北部灣養(yǎng)殖群體和野生群體的多樣性都較低。本研究結(jié)果與已報(bào)道的不完全一致,可能原因有:1)遺傳標(biāo)記的不同:線(xiàn)粒體控制區(qū)為母系遺傳;微衛(wèi)星和AFLP是核基因標(biāo)記,雙親遺傳;二者進(jìn)化速率不同[29],受趨同進(jìn)化、選擇作用等的影響不同[30];同時(shí),由于不同報(bào)道分析使用的核基因標(biāo)記位點(diǎn)也不盡相同,難以直接比較。2)采樣群體與采樣點(diǎn)不同:已報(bào)道的研究樣品大多為養(yǎng)殖群體,部分來(lái)源或親本不明確。

3.2 卵形鯧鲹的遺傳分化和種群動(dòng)態(tài)分析

南海卵形鯧鲹中存在2個(gè)分化時(shí)間約在60~18萬(wàn)年前(中更新世)的譜系。歷史資料顯示,更新世冰期與間冰期旋回,對(duì)生物種群的數(shù)量和分布有著巨大的影響[31]。冰期海平面下降使得中國(guó)近海出現(xiàn)多個(gè)封閉的內(nèi)陸海[32],導(dǎo)致群體間基因交流中斷而出現(xiàn)分化。盡管如此,群體間Fst=-0.022 4~0.045 3(P>0.05);97%以上的變異來(lái)源于群體內(nèi)部,表明群體間無(wú)明顯分化,推測(cè)原因如下:1)間冰期海平面上升,不同海域得以連通。2)南海存在復(fù)雜洋流(季風(fēng)漂流、黑潮分支、南海暖流等)及中國(guó)沿岸流,瓊州海峽的出現(xiàn)也為東西兩側(cè)的群體交流提供了通道,卵形鯧鲹的受精卵及剛孵化的仔稚魚(yú)不具備游泳能力,易被海流攜帶而擴(kuò)散。3)成魚(yú)游動(dòng)性強(qiáng),有聚群索餌和產(chǎn)卵習(xí)性[33]。

單倍型網(wǎng)絡(luò)圖呈現(xiàn)不規(guī)則圖形,沒(méi)有中心單倍型;中性檢驗(yàn)和核苷酸不配對(duì)分析表明2個(gè)譜系及總體都沒(méi)有出現(xiàn)擴(kuò)張的情況,與同一海域分布的鯔(Mugil cephalus)和梭魚(yú)(Chelon haematocheilus)情況相似[34-35],可能原因是南海地處冰期氣溫變化相對(duì)溫和的低緯度地區(qū),受冰期的影響相對(duì)較小。

3.3 卵形鯧鲹種質(zhì)資源的保護(hù)和利用

物種遺傳多樣性越高,對(duì)環(huán)境變化的適應(yīng)能力就越強(qiáng),也可為遺傳育種提供更豐富的材料[6]。南海卵形鯧鲹雖較同海域的部分魚(yú)類(lèi)表現(xiàn)出較高的線(xiàn)粒體遺傳多樣性,但作為南海重要的經(jīng)濟(jì)魚(yú)類(lèi),受過(guò)度捕撈、環(huán)境污染等因素影響,捕獲量日漸稀少[8];隨著卵形鯧鲹人工種苗生產(chǎn)的規(guī)模化,相關(guān)研究的開(kāi)展[36-37],養(yǎng)殖業(yè)快速興起,但養(yǎng)殖苗種已出現(xiàn)種質(zhì)衰退跡象[4],養(yǎng)殖逃逸也可能?chē)?yán)重影響野生群體的多樣性[38]。因此,在充分利用其資源的同時(shí)不應(yīng)忽視卵形鯧鲹的保護(hù)工作。本文僅研究了5個(gè)地理群體,沒(méi)有涉及福建沿海等地理群體,采樣點(diǎn)的局限可能沒(méi)有完全反映出卵形鯧鲹的遺傳多樣性現(xiàn)狀;另外因群體中存在2個(gè)譜系,使得隨機(jī)采集得到的每個(gè)譜系的樣品數(shù)量不足。在今后的工作中,將增加樣品采集的地理范圍和每個(gè)地理群體的樣本量,綜合運(yùn)用線(xiàn)粒體序列分析與核基因指紋技術(shù),以期全面了解南海卵形鯧鲹的遺傳背景,為種質(zhì)資源的保護(hù)和開(kāi)發(fā)提供更為準(zhǔn)確的科學(xué)依據(jù)。

[1] 朱元鼎,張春霖,張有為,等.南海魚(yú)類(lèi)志[M].北京:北京科學(xué)出版社,1962:392-394.ZHU Y D,ZHANG C L,ZHANG Y W,et al.Fishes in the South China Sea[M].Beijing:Beijing Science Press,1962:392-394.

[2] 楊欣怡.網(wǎng)箱海養(yǎng)卵形鯧鲹肌肉營(yíng)養(yǎng)品質(zhì)評(píng)價(jià)和風(fēng)味物質(zhì)研究[D].上海:上海海洋大學(xué),2016:1 -13.YANG X Y.Study on nutritional composition and flavor compounds of sea-cage cultured Trachinotus ovatu muscles[D].Shanghai:Shanghai Ocean University,2016:1-13.

[3] 陳偉洲,徐鼎盛,王德強(qiáng),等.卵形鯧鲹人工繁殖及育苗技術(shù)研究[J].臺(tái)灣海峽,2007,26(3):435-441.CHENW Z,XU D S,WANG D Q,et al.Study on the spawning and hatching technique for Trachinotus ovatus[J].Journal of Oceanography in Taiwan Strait,2007,26(3):435-441.

[4] 區(qū)又君,吉 磊,李加兒,等.卵形鯧不同月齡選育群體主要形態(tài)性狀與體質(zhì)量的相關(guān)性分析[J].水產(chǎn)學(xué)報(bào),2013,37(7):961-969.OU Y J,JIL,LIJE,et al.Correlation analysis of major morphometric traits and body weight of selective group at differentmonth ages of Trachinotus ovatus[J].Journal of Fisheries of China,2013,37(7):961-969.

[5] 鞠海龍.南海漁業(yè)資源衰減相關(guān)問(wèn)題研究[J].東南亞研究,2012(6):51-55.JU H L.Studies on the decrementof fishery resource in the South China Sea[J].Southeast Asian Studies,2012(6):51-55.

[6] WARD R D.Genetics in fisheriesmanagement[J].Hydrobiologia,2000,420(1):191-201.

[7] 孫立元,郭華陽(yáng),朱彩艷,等.卵形鯧鲹育種群體遺傳多樣性分析[J].南方水產(chǎn)科學(xué),2014,10(2):67-71.SUN L Y,GUO H Y,ZHU C Y,et al.Genetic polymorphism of breeding populations of golden pompano(Trachinotus ovatus)[J].South China Fisheries Science,2014,10(2):67-71.

[8] 彭 敏,陳曉漢,陳秀荔,等.卵形鯧鲹養(yǎng)殖群體與野生群體遺傳多樣性的AFLP分析[J].西南農(nóng)業(yè)學(xué)報(bào),2011,24(5):1987-1991.PENG M,CHEN X H,CHEN X L,et al.Genetic diversity of wild and cultured Trachinotus ovatus populations by AFLP markers[J].Southwest ChinaJournal of Agricultural Sciences,2011,24(5):1987 -1991.

[9] 趙永貞,陳秀荔,李詠梅,等.南海區(qū)卵形鯧鲹遺傳多樣性的研究[J].西南農(nóng)業(yè)學(xué)報(bào),2014,27(4):1786-1790.ZHAO Y Z,CHEN X L,LI Y M,et al.Genetic polymorphism of Trachinotusovatus in Nanhaidistrict[J].Southwest China Journal of Agricultural Sciences,2014,27(4):1786-1790.

[10] 吉 磊,區(qū)又君,李加兒.卵形鯧鲹3個(gè)養(yǎng)殖群體的微衛(wèi)星多態(tài)性分析[J].熱帶海洋學(xué)報(bào),2011,30(3):62-68.JI L,OU Y J,LI J E.Genetic polymorphism of three cultured populations of golden pompano Trachinotus ovatus as revealed bymicrosatellites[J].Journal of Tropical Oceanography,2011,30(3):62 -68.

[11] AVISE JC.Phylogeography:The history and formation of species[M].London Harvard University Press.2000:9-32.

[12] CANINO M F,SPIES I B,LOWE S A,et al.Highly discordant nuclear and mitochondrial DNA diversity in Atka Mackerel[J].Marine and Coastal Fisheries:Dynamics,Management,and Ecosystem Science,2010(2):375-387.

[13] RAVAOARIMANANA I B,TIEDEMANN R,MONTAGNON D,et al.Molecular and cytogenetic evidence for cryptic speciation within a rare endemic Malagasy lemur,the Northern sportive lemur(Lepilemur septentrionalis)[J].Molecular Phylogenetics&Evolution,2004,31(2):440-448.

[14] 孫湘平.中國(guó)近海區(qū)域海洋[M].北京:海洋出版社,2006:97-98.SUN X P.China offshore area[M].Beijing:Ocean Press,2006:97-98.

[15] 樂(lè)小亮,章 群,趙 爽,等.一種高效快速的魚(yú)類(lèi)標(biāo)本基因組DNA提取方法[J].生物技術(shù)通報(bào),2010(2):202-204.YUE X L,ZHANG Q,ZHAO S,et al.A fast and efficientmethod for isolation of genomic DNA from fish specimens[J].Biotechnology Bulletin,2010(2):202-204.

[16] TAMURA K,STECHER G,PETERSON D,et al.MEGA6:Molecular evolutionary genetics analysis version 6.0[J].Molecular Biology and Evolution,2013,30(12):2725-2729.

[17] BANDELT H J,F(xiàn)ORSTER P,ROHL A.Medianjoining networks for inferring intraspecific phylogenies[J].Molecular Biology and Evolution,1999,16(1):37-48.

[18] LIBRADO P,ROZAS J.DnaSP v5:A software for comprehensive analysis of DNA polymorphism data[J].Bioinformatics,2009,25(11):1451-1452.

[19] EXCOFFIER L,LISCHER H E L.Arlequin v 3.5:A new series of programs to perform population genetics analyses under Linux and Windows[J].Molecular Ecology Resources,2010,10(3):564-567.

[20] NEIM,TAJIMA F.DNA polymorphism detectable by restriction endonucleases[J].Genetics,1981,97(1):145-163.

[21] DUPANLOUP I,SCHNEIDER S,EXCOFFIER L.A simulated annealing approach to define the genetic structure of populations[J].Molecular Ecology,2002,11(12):2571-2581.

[22] KNIGHT A,MINDELL D P.Substations bias,weighting of DNA sequence evolution,and the phylogenetic positions of fea′s viper[J].Systematic Biology,1993,42(1):18-31.

[23] KOICHIRO T,GLEN S,DANIEL P,etal.MEGA6:Molecular evolutionary genetics analysis version 6.0[J].Molecular Biology and Evolution,2013(30):2725-2729.

[24] HOCHACHKA PW,MOMMSEN T.Biochemistry and molecular biology of fishes:Environmental and ecological biochemistry[J].Science,1993(2):1 -38.

[25] BONIN A,NICOLE F,POMPANON F,et al.Population adaptive index:A new method to help measure intraspecific genetic diversity and prioritize populations for conservation[J].Conservation Biology 2007,21(3):697-708.

[26] 曹 艷.基于線(xiàn)粒體控制區(qū)序列的中國(guó)沿海3種鯛科魚(yú)類(lèi)遺傳多樣性分析[D].廣州:暨南大學(xué),2016:22-60.CAO Y.Genetic diversity of 3 sparid species in coastal waters of China based on mitochondrial control region sequences[D].Guangzhou:Jinan University,2016:22-60.

[27] 孫冬芳,董麗娜,李永振,等.南海北部灣海域多齒蛇鯔的種群分析[J].水產(chǎn)學(xué)報(bào),2010,34(9):1389 -1393.SUN D F,DONG L N,LI Y Z,et al.Population analysis of Saurida tumbil in the Northern South China Sea[J].Journalof Fisheries of China,2010,34(9):1389-1393.

[28] GRANT W S,BOWEN B W.Shallow population histories in deep evolutionary linages of marine fishes:Insights from sardines and anchovies and lessons for conservation[J].Journal of Heredity,1998,89(5):415-426.

[29] UPHOLTW B,DAUID IB.Mapping ofmitochondrial DNA of individual sheep and goat:Rapid evolution in the D-loop region[J].Cell,1997(11):57-583.

[30] LARMUSEAU M H,RAEYMAEKERS J A,HELLEMANSB,et al.Mito-nuclear discordance in the degree of population differentiation in a marine goby[J].Heredity,2010(105):532-542.

[31] DYNESIUSM,JANSSON R.Evolutionary consequences of changes in species'geographical distributions driven by Milankovitch climate oscillations.[J].Proceedings of the National Academy of Sciences,2000,97(16):9115-9120.

[32] WANG P.Response of western pacificmarginal seas to glacial cycles:Paleoceanographic and sedimentological features 1[J].Marine Geology,1999,156(1-4):5-39.

[33] 陳傅曉,唐賢明,譚 圖,等.卵形鯧鲹深水網(wǎng)箱養(yǎng)殖風(fēng)險(xiǎn)對(duì)策分析[J].中國(guó)漁業(yè)經(jīng)濟(jì),2011,29(4):145-150.CHEN F X,TANG X M,TAN T,et al.The waveresisted deep-water net-cage breeding of Trachinotus ovatus for risk prevention countermeasures and economic benefit analysis[J].Chinese Fisheries Economics,2011,29(4):145-150.

[34] JAMANDRE B W,DURAND JD,TZENG W N. Phylogeography of the flathead mullet Mugil cephalus in the north-west Pacific as inferred from themtDNA control region.[J].Journal of Fish Biology,2009,75(2):393-407.

[35] LIU J X,GAO T X,WU S F,et al.Pleistocene isolation in the North-Western Pacific marginal seas and limited dispersal in a marine fish,Chelon haematocheilus(Temminck&Schlegel,1845)[J].Molecular Ecology,2007(16):275-288.

[36] 區(qū)又君,李加兒,蔡文超.卵形鯧鲹腎臟的顯微鏡和超顯微結(jié)構(gòu)的觀察[J].海洋漁業(yè),2015,37(5):434-441.OU Y J,LI J E,CAI W C.Observation on microstructure and ultrastructure of kidney in Trachinotus ovatus[J].Marine Fisheries,2015,37(5):434-441.

[37] 程大川,郭華陽(yáng),馬振華,等.3月齡卵形鯧鲹形態(tài)性狀對(duì)體質(zhì)量的影響分析[J].海洋漁業(yè),2016,38(1):26-34.CHENG D C,GUO H Y,MA Z H,et al.Mathematical analysis of morphometric attribute effects on body weight for three-month-old Trachinotus ovatus[J].Marine Fisheries,2016,38(1):26-34.

[38] 張全啟,徐曉斐,齊 潔,等.牙鲆野生群體與養(yǎng)殖群體的遺傳多樣性分析[J].中國(guó)海洋大學(xué)學(xué)報(bào)(自然科學(xué)報(bào)),2004,34(5):816-820.ZHANG Q Q,XU X F,QI J,et al.The genetic diversity of wild and farmed Japanese flounder populations[J].Periodical of Ocean University of China,2004,34(5):816-820.

Genetic diversity of Trachinotus ovatus in the South China Sea inferred from M itochondrial DNA control region sequences

LV Jin-lei,ZHANG Qun,YANG Xi-shu,GONG Ya-yun,CAO Yan
(Institute of Hydrobiology,Jinan University;Engineering Research Center of Tropical and Subtropical Aquatic Engineering,Ministry of Education,Guangzhou 510632,China)

Due to the delicious taste,high nutritional value and increasingmarket demand,Trachinotusovatus has become one of the most economically important maricultured fish in the South China Sea.With the dwindling wild resources,the development of large-scale cultivation and the degraded germplasm of cultivars etc.,the accurate definition of population structure should be assessed for bettermanagement and sustainable exploitation of T.Ovatus resource in the South China Sea.In present study,359 bp mtDNA control region sequences of 97 individuals of T.Ovatus from Zhapo,Anpu and Wushi in Guangdong Province,Xinying in Hainan Province and Dongxing in Guangxi Provincewere analyzed to study the genetic diversity of this species in the South China Sea.A total of 47 polymorphic loci were found,of which 39 sites were parsimonyinformative and 32 haplotypes were defined.The resultant haplotype diversity(h)and nucleotide diversity(π)were 0.951±0.008 and 0.020 9±0.000 8 respectively,indicating the high level of haplotype diversity and nucleotide diversity of T.Ovatus populations in north of the South China Sea.In Neighborjoining tree and TCS network,two lineages were detected,and individuals from various geographical sites scattered in both lineages,thus no geographical cluster was found.The deduced differentiation time was approximately 600~180 ka BP.Despite the presence of two co-existing lineages,the absence of genetic heterogeneity among the 5 sampling siteswas noted,as the genetic fixation was low and not significant(Fst=-0.022 4~0.045 3,P>0.05),and the genetic distances were small(0.020-0.023).The analysis of molecular variance(AMOVA)also revealed that most of genetic variation resided within populations(>97%).This pattern of harboring obvious lineage structure but no geographic structure might have been shaped by glaciation cycles in Pleistocene.During the ice age,the closure ofmarginal seas caused by deeply lowered sea levelmighthave prevented gene flow among seperate seas,resulting in lineages differentiation.In interglacial stage,the rising of sea level might have reconnected marginal seas,promoting the secondary contact of once-isolated lineages,as the warm current of the South China Sea and the China Coastal current might have carried away fish eggs and larvae of T.Ovatus,and the formation of feeding and spawning schools also promoted the gene flow.Both nucleotide mismatch distribution and neutrality tests revealed that the lineage A,lineage B,and all populations as a whole in the South China Sea hadn’t experienced population expansion.In conclusion,although the genetic diversity of T.Ovatus in the South China Sea is relatively high yet,in the contextof over exploitation ofwild resources,degraded the germplastof cultivars,and the potential negative effects of breeding escape on their genetic diversity,propermanagement and sustainable exploitation of this species are urgently deserved.In further study,more populations across the species’range should be analyzed to determine the potential population genetic structure and demographic history with both mitochondrial and nuclear information.

Trachinotus ovatus;South China Sea;mtDNA control region;genetic diversity

Q 349

A

1004-2490(2017)03-0241-08

2017-03-28

國(guó)家自然科學(xué)基金項(xiàng)目(41071034);中央高?;究蒲袠I(yè)務(wù)費(fèi)專(zhuān)項(xiàng)資金項(xiàng)目(21613105)

呂金磊(1990-),男,碩士研究生,研究方向?yàn)榉肿由鷳B(tài)學(xué)及生物多樣性保護(hù)。

章 群(1968-),副研究員。E-mail:tqzhang@jnu.edu.cn

猜你喜歡
卵形控制區(qū)譜系
卵形的變化
——奇妙的蛋
神族譜系
百年大黨精神譜系的賡續(xù)與文化自信
王錫良陶瓷世家譜系
基于OMI的船舶排放控制區(qū)SO2減排效益分析
管好高速建筑控制區(qū)
再論東周時(shí)期銅簠的譜系和源流
東方考古(2017年0期)2017-07-11 01:37:50
阿什河流域非點(diǎn)源污染優(yōu)先控制區(qū)識(shí)別
山東日照劃定大氣污染物排放控制區(qū)
卵形鯧鲹P(yáng)PARα基因cDNA序列的克隆、組織表達(dá)及生物信息學(xué)分析
固安县| 保德县| 高阳县| 海安县| 岐山县| 宜州市| 枣强县| 邵阳县| 日喀则市| 崇义县| 古丈县| 吴堡县| 霸州市| 玉环县| 惠东县| 宜良县| 双江| 晋中市| 鄱阳县| 梓潼县| 溆浦县| 瑞金市| 休宁县| 芷江| 什邡市| 饶阳县| 普宁市| 万载县| 东光县| 吉首市| 汉沽区| 莱阳市| 和静县| 镇江市| 彭泽县| 丹巴县| 神池县| 福建省| 莱西市| 宿松县| 灯塔市|