王宇壇,李圣法,楊林林,袁興偉,姜亞洲,林 楠
(1.中國水產科學研究院東海水產研究所;農業(yè)部東海與遠洋漁業(yè)資源開發(fā)利用重點實驗室,上海 200090;2.上海海洋大學海洋科學學院,上海 201306)
象山港春、夏季仔稚魚種類組成結構特征
王宇壇1,2,李圣法1,楊林林1,袁興偉1,姜亞洲1,林 楠1
(1.中國水產科學研究院東海水產研究所;農業(yè)部東海與遠洋漁業(yè)資源開發(fā)利用重點實驗室,上海 200090;2.上海海洋大學海洋科學學院,上海 201306)
為研究象山港仔稚魚的時空分布特征及其與環(huán)境因子的相關關系,在象山港港灣內設置14個站,于2015年4月3日~6月10日期間按周采樣,共調查10個航次(Ⅰ~Ⅹ),用方形網(網口為1 m×2 m,網目1.0 mm)采集仔稚魚,同時采集溫度、鹽度和浮游動物等數據。調查期間采集仔稚魚180 254 ind共45種,隸屬25科39屬,主要優(yōu)勢種為斑鰶(Konosirus punctatus)、矛尾鰕虎魚(Chaeturichthys stigmatias)、鮻(Chelon haematocheilus)、斑尾刺鰕虎魚(Acanthogobius ommaturus)、普氏韁鰕虎魚(Amoya pflaumi)、擬矛尾鰕虎魚(Parachaeturichthyspolynema)、黑棘鯛(Acanthopagrus schlegelii)、舌鰕虎魚(Glossogobiusgiuris)等。仔稚魚密度呈先升后降的趨勢,第Ⅲ航次密度最高(平均密度為587.9 ind·100 m-3),第Ⅷ航次最低(8.2 ind·100 m-3)。前彎曲期仔魚最多,占63.6%,彎曲期仔魚占26.4%。基于層級聚類(Bray-Curtis相似性指數,Ward法聚類)分析表明,可將10航次仔稚魚分為4個類型,各類型間存在明顯差異:類型1(Ⅰ和Ⅱ航次)主要為矛尾鰕虎魚和斑尾刺鰕虎魚,類型2(Ⅲ~Ⅵ航次)為斑鰶、鮻、矛尾鰕虎魚和黑棘鯛,類型3(Ⅶ和Ⅷ航次)為斑鰶、日本鳀(Engraulis japonicus)、擬矛尾鰕虎魚,類型4(Ⅸ和Ⅹ航次)為普氏韁鰕虎魚、擬矛尾鰕虎魚、美肩鰓鳚(Omobranchus elegans)。Spearman相關分析表明,仔稚魚分布與溫度極顯著相關(P<0.01),與浮游動物密度呈顯著相關(P<0.05),與鹽度無明顯相關關系(P>0.05)。
象山港;仔稚魚;種類組成;環(huán)境因子
仔稚魚作為魚類早期生活史的重要階段,對漁業(yè)種群資源的補充至關重要[1-3]。仔稚魚游泳能力差,逃避不利環(huán)境條件的能力差,營隨波逐流生活,極易受海洋環(huán)境條件影響[4]。非生物因子(溫度、鹽度等)和生物因子(餌料生物)等對仔稚魚分布有著重要影響[5-6]。同時,仔稚魚時空分布特征是研究漁業(yè)資源可持續(xù)利用的重要基礎,有利于提高對魚類早期生命階段的了解,推測親體產卵的模式和繁殖策略[7]。因此,仔稚魚分布以及其棲息環(huán)境的調查研究是至關重要的生態(tài)學研究。
象山港位于浙江省中部,是沿東北西南走向的狹長型半封閉海灣,是優(yōu)良的魚類產卵和育幼場所[8],亦是藍點馬鮫(Scomberomorus niphonius)種質資源保護區(qū)(中華人民共和國農業(yè)部第1491號公告),港灣內藍點馬鮫早期個體主要出現時間為4月中旬至6月初[9-10]。研究表明藍點馬鮫仔稚魚主要攝食其它魚類的早期個體[11],但至今尚未有關其餌料背景研究報告,一定程度上影響了保護區(qū)工作的開展。為此,通過2015年4~6月象山港仔稚魚調查,分析仔稚魚種類組成和分布特征及其環(huán)境因子的影響,為種質資源保護、漁業(yè)資源合理利用提供科學依據。
1.1 調查方法與樣品采集
2015年4月3日~6月10日,用方形網(網口為1 m×2 m,網目1.0 mm)[9]按周對布設于象山港灣內的14個站點進行10個航次(Ⅰ~Ⅹ)的仔稚魚調查(圖1)。采樣時,網口系有浮球和流量計(Hydro-Bios 438115型),拖繩長30~50 m,船速為1~2節(jié),水平拖拽10 min。分別記錄放網和起網時流量計數字以計算濾水體積,用無水乙醇溶液固定樣品,帶回實驗室進行分析。為研究仔稚魚與浮游動物密度的相關性,在仔稚魚采樣同時,以浮游生物Ⅱ網[12]同步采集浮游動物,樣品以5%福爾馬林溶液固定。各站點溫度和鹽度采用SEB-37 CTD測量。
在室內對樣品進行分揀、鑒定,并按KENDALL等[13]的仔稚魚發(fā)育分期標準劃分仔稚魚發(fā)育階段,劃分為:卵黃囊期仔魚(yolk-sac larva)、前彎曲期仔魚(preflexion larva)、彎曲期仔魚(flexion larva)、后彎曲期仔魚(postflexion larva)和稚魚(juvenile)。其種名按照伍漢霖等[14]進行排列。浮游動物樣品按《海洋調查規(guī)范》(GB 12763.6—1991)方法進行計數。
1.2 數據分析
采用Margalef豐富度指數(D),Shannon-Wiener多樣性指數(H′)和Pielou均勻度指數(J′)進行多樣性研究[15]。使用斯皮爾曼秩相關系數(Spearman’s rank correlation)分析仔稚魚密度與環(huán)境因子之間的關系[16],環(huán)境因子主要包括海水溫度、鹽度以及浮游動物密度。
利用多元分析方法分析象山港仔稚魚種類組成的時間變化,計算各航次間的Bray-Curtis相似性系數,應用未加權的組平均方法(UPGMA)進行級聚類分析和非度量多維標度(NMDS)的排序方法分析仔稚魚組成特征[17-18]。采用單因子相似性分析(ANOSIM)對不同類型的仔稚魚結構差異進行顯著性檢驗,檢驗各類型分類的合理性[18]。以分類結果為依據,計算各類型相似性百分比(SIMPER)[19],分析造成各類型組成結構相似的典型種和各類型間組成差異的主要種類,以及魚種對各類型的相似性和類型間的相異性貢獻率。
2.1 仔稚魚種類組成
2015年4~6月象山港水域仔稚魚調查,共出現仔、稚魚45種。其中鑒定到種34種,鑒定到屬8種,鑒定到科2種,未鑒定種1種。在已鑒定的34種仔稚魚中,鱸形目18種,鯡形目5種,鰈形目4種,鲉形目3種,鯔形目和刺魚目各2種,其中鰕虎魚科所占比例最高(共11種),占總種數的24.4%。優(yōu)勢種類為斑鰶(Konosirus punctatus),占總尾數的25.8%,其后依次為矛尾鰕虎魚(Chaeturichthys stigmatias)(23.9%)、鮻(Chelon haematocheilus)(19.2%)、斑尾刺鰕虎魚(Acanthogobius ommaturus)(9.9%)、普氏韁鰕虎魚(Amoya pflaumi)(8.5%)、擬矛尾鰕虎魚(Parachaeturichthys polynema)(4.5%)、黑棘鯛(Acanthopagrus schlegelii)(2.5%)、舌鰕虎魚(Glossogobius giuris)(1.2%)。此外還出現了寬體舌鰨(Cynoglossus robustus)、褐菖鲉(Sebastiscus marmoratus)、藍點馬鮫、日本鳀(Engraulis japonicus)、焦氏舌鰨(Cynoglossus joyneri)、鯔(Mugil cephalus)、黃鯽(Setipinna tenuifilis)、黃姑魚(Nibea albiflora)、中國花鱸(Lateolabrax maculatus)、小黃魚(Larimichthys polyactis)等眾多經濟種類。從生態(tài)類型上說,主要為近岸定居種鰕虎魚科、斑鰶、鮻等;巖礁性種類黑棘鯛、褐菖鲉等;海洋洄游性種類藍點馬鮫等;近海性種類日本鳀、中國花鱸等;偶入種小黃魚、鲀科魚類等(表1)。
表1 象山港水域春、夏季仔稚魚種類與生態(tài)類型Tab.1 Species composition and ecological type in the Xiangshan Bay in spring and summer
·續(xù)上表·
2.2 仔稚魚多樣性
象山港仔稚魚調查,航次Ⅰ和航次Ⅱ仔稚魚種類數(S)相對較少,隨后各航次種類數有所增加。Shannon-Wiener多樣性指數(H′)呈緩慢上升的趨勢,最大值出現在航次Ⅶ(H′=2.14)。Margalef種類豐富度指數(D)和Pielou均勻度指數(J′)變化幅度較小,其中二者在航次Ⅲ至航次Ⅵ均較低(圖2),這可能與少數種類的大量出現有關,如斑鰶、鮻、矛尾鰕虎魚等。
2.3 仔稚魚密度變化
仔稚魚密度呈先增后減的趨勢,其中平均密度最大和最小值分別出現在第Ⅲ和第Ⅷ航次,分別為587.9 ind·100 m-3和8.2 ind·100 m-3。
前彎曲期仔魚個體數占總漁獲量的63.6%,遠高于其它發(fā)育階段仔魚所占比例,其次是彎曲期仔魚(26.4%),而卵黃囊期、后彎曲期、稚魚期個體相對較少,分別占總個體數的0.8%、8.0%、1.2%。前彎曲期仔魚主要集中在Ⅰ~Ⅵ航次,其中航次Ⅳ前彎曲期仔魚所占比例最大(96.3%)。每個航次都有一定量彎曲期仔魚分布,其中航次Ⅹ占比最大(66.1%),航次Ⅲ最?。?.5%)(圖3)。
圖2 象山港仔稚魚多樣性指數的航次間變化Fig.2 Variations of larvae and juveniles fish biodiversity induces in different cruises in the Xiangshan Bay
圖3 象山港仔稚魚各發(fā)育階段密度Fig.3 Densities of individuals in different development stages in Xiangshan Bay
2.4 仔稚魚種類組成時間變化
象山港各航次仔稚魚組成聚類分析和NMDS分析顯示,象山港仔稚魚種類群聚可分為4個類型(圖4)。通過單因子相似性分析(ANOSIM),顯示這4個類型呈極顯著性差異(R=0.951、P<0.01),隨著時間的變化,各類型仔稚魚的種類組成和密度大小都有所不同。4月上旬(航次Ⅰ、Ⅱ)為類型1,其組內相似性達75%的仔稚魚2種,分別是矛尾鰕虎魚(61.1%)和斑尾刺鰕虎魚(21.4%);4月中旬~5月中旬(航次Ⅲ~Ⅵ)為類型2,其相似性達75%的仔稚魚共4種,分別是斑鰶(36.6%)、鮻(23.1%)、矛尾鰕虎魚(12.0%)和黑棘鯛(5.3%);5月下旬(航次Ⅶ、Ⅷ)為類型3,使其相似性達75%的仔稚魚共5種,分別是斑鰶(35.3%)、日本鳀(15.2%)、擬矛尾鰕虎魚(10.7%)、黑棘鯛(9.4%)和側帶小公魚屬(未定種)(6.7%);6月上旬(航次Ⅸ、Ⅹ)為類型4,使其相似性達75%的仔稚魚共4種,分別是普氏韁鰕虎魚(44.7%)、擬矛尾鰕虎魚(19.5%)、美肩鰓鳚(O.elegans)(7.4%)和尖海龍(Syngnathus acus)(7.0%)。
相似性百分比分析(SIMPER)顯示,4個類型中相鄰階段之間的相異性分別為68.9%(類型1、2)、70.2%(類型2、3)、71.7%(類型3、4)。類型1、2和類型2、3相異的主要貢獻種有斑鰶、鮻、矛尾鰕虎魚等。引起類型3、4相異的主要貢獻種為普氏韁鰕虎魚、斑鰶(表2)。斑鰶、鮻、矛尾鰕虎魚等仔稚魚的密度隨時間的變化引起前3個類型的相異,第4類型中普氏韁鰕虎魚出現,且密度較大,是引起類型3、4的相異性的主要原因。
2.5 環(huán)境因子對仔稚魚分布的影響
調查期間象山港水域的表層溫度為14.3~22.7℃,自4月份至6月份水溫呈逐漸升高趨勢,同一航次中各站位溫度差異不大(圖5),相關分析表明仔稚魚密度與溫度呈極顯著相關(R=-0.346,P<0.01)(表3)。各航次平均鹽度變化不大,各站位平均鹽度范圍為24.7~26.0,從港口至港底呈遞減趨勢(圖5)。相關分析表明仔稚魚密度與鹽度無明顯相關關系(P>0.05)(表3)。4月至6月象山港灣內浮游動物密度變化波動較大(圖6),其中第Ⅸ航次密度最大(755.2 ind·100 m-3),第Ⅰ航次最小(34.9 ind·100 m-3),相關分析表明浮游動物密度與仔稚魚密度呈顯著相關(R=0.189,P<0.05)(表3)。
圖4 象山港仔稚魚航次組成聚類分析圖(左)和MDS排序圖(右)Fig.4 Hierarchical cluster dendrogram(left)and MDS ordination diagram(right)from catch in different cruises
表2 象山港仔稚魚組成各類型相異性主要貢獻種類Tab.2 Dissim ilarity percentages of the prim ary species between types in the Xiangshan Bay
表3 仔稚魚與環(huán)境因子間的斯皮爾曼秩相關系數Tab.3 Spearman’s rank correlation coefficients between larvae and juvenile fish density and environmental variables
圖5 春、夏季象山港表層水溫、表層鹽度變化Fig.5 Variation of the temperature and the salinity in the Xiangshan Bay in spring and summer
圖6 象山港浮游動物各航次平均密度分布Fig.6 Average zoop lankton densities in different cruises in the Xiangshan Bay
3.1 仔稚魚種類組成
港灣作為魚類重要的產卵和育幼場所,通常是以小型魚類利用為主,如在萊州灣[20]、羅源灣[21]和東山灣[22]仔稚魚的主要優(yōu)勢種為鳀科種類,泉州灣[23]的為鱚科、三沙灣[24]的鰕虎魚類等,國外的一些港灣也有類似情況,如在加利福尼亞灣[25]以鳀科和燈籠魚科的仔稚魚為優(yōu)勢種、墨西哥灣[26]的為鯡科和鳀科以及波斯灣[27]的鯡科、沙鮻科和鳚科等。象山港的仔稚魚的調查研究結果亦呈現出以鰕虎魚科和鯡科等小型魚類為優(yōu)勢種的這一特征,這可能與港灣內成魚的種類組成有關。有研究[28]表明在象山港的小型桁桿拖網中漁獲物的主要優(yōu)勢種為鰕虎魚類,而流網中以斑鰶為第一優(yōu)勢種。
根據生態(tài)類型,可將象山港魚類分為3個類型:1)將港灣作為其產卵場和育幼場,如定居性種類鰕虎魚類、斑鰶、鮻等,仔稚魚的各發(fā)育階段個體均有出現,亦有大量的成魚長期生活在港灣內,這一類型還包括了主要增殖品種黑棘鯛和褐菖鲉等巖礁性魚類。此外,長距離洄游種類藍點馬鮫亦將該水域作為產卵場和育幼場,其產卵群體于每年清明節(jié)前后進入港灣內產卵,但發(fā)育至稚魚期之后離開象山港。2)將港灣僅作為其育幼場,如近海種日本鳀,其主要在高鹽水域產卵,早期個體隨流遷徙,進入港灣等較淺水域生長[29];中國花鱸亦為如此,其主要在較深水域產卵,發(fā)育至后期個體進入港灣育幼[30]。3)為偶入種,鄰近水域產卵場的種類,其早期個體在海流作用下,零星進入港灣,本研究中很大一部分種類為這一類型,如小黃魚、頜針魚屬、紅娘魚屬、蛇鰻科和鲀科魚類等。
3.2 仔稚魚與環(huán)境之間的關系
海洋環(huán)境因子的變化對仔稚魚的密度分布影響較為明顯,如,水溫、鹽度、潮汐[31]、餌料生物豐富度等。其中水溫和鹽度的變動會直接影響仔稚魚的形態(tài)發(fā)育、生長及數量分布等[32]。本研究表明溫度影響仔稚魚密度分布,相關性分析結果為仔稚魚密度與溫度的變化極顯著負相關(P<0.01)。水溫影響卵的孵化和仔稚魚生長發(fā)育,孵化率的高低決定仔稚魚的密度大小,4月下旬至5月上旬港內溫度適宜,親魚集中產卵,卵孵化率高,仔稚魚密度較大。相關性分析結果表明仔稚魚密度與海水鹽度無顯著相關關系,這可能與調查時間、范圍有關,此次調查區(qū)域相對較小,且象山港為半封閉港灣,與外界海水交換較慢,海水鹽度變化不大,這些原因可能對分析結果產生一定的影響。
一般研究認為魚類早期發(fā)育階段主要攝食浮游動物[33],仔稚魚分布受餌料生物的影響,通常表現為兩者變化趨勢較為一致,如王建茹等[34]通過對福建三沙灣中浮游動物與魚卵和仔稚魚分布的研究,發(fā)現兩者密度的變化趨勢一致。闕江龍等[35]對北部灣西北部浮游動物季節(jié)變化及其與魚卵、仔稚魚的關系的研究表明兩者具有較強的正相關關系。象山港仔稚魚和浮游動物兩者間亦呈現出顯著相關,與上述結果一致。豐富的餌料生物是魚類選擇產卵場和育幼場的條件之一[36],仔稚魚出現時間與餌料生物出現時間的匹配性直接影響仔稚魚的存活率[37],本研究中兩者的變化趨勢一致,從側面反映了該水域之所以成為眾多魚類產卵場和育幼場的原因,而豐富的仔稚魚資源也為藍點馬鮫在該水域產卵和育幼提供了有利條件。
[1] HJORT J.Fluctuations in the great fisheries of northern Europe viewed in the lightof biological research[J].Rapports et Proies-Verbaux des Réunions,1914(4):1-228.
[2] 萬瑞景,孫 珊.黃、東海生態(tài)系統(tǒng)中魚卵、仔稚幼魚種類組成與數量分布[J].動物學報,2006,52(1):28-45.WAN R J,SUN S.The category composition and abundance of ichyoplankton in the ecosysterm of Yellow Sea and the East China Sea[J].Acta Zoologica Sinica,2006,52(1):28-45.
[3] 黃鳳鵬,黃景洲,楊玉玲,等.膠州灣魚卵、仔魚和稚魚的分布[J].海洋科學進展,2007,25(4):468-473.HUANG F P,HUANG J Z,YANG Y L,et al.Distributions of fish eggs and larval fish in the Jiaozhou Bay[J].Advances in Marine Science,2007,25(4):468-473.
[4] ROBERTS C M.Connectivity and management of Caribbean coral reefs[J].Science,1997,278(5342):1454-1457.
[5] AOKIA I,MIYASHITAB K.Dispersal of larvae and juveniles of Japanese anchovy Engraulis japonicus in the Kuroshio Extension and Kuroshio-Oyashio transition regions,western North Pacific Ocean[J].Fisheries Research,2000(2):155-164.
[6] KIM J Y,KANG Y S,OH H J,et al.Spatial distribution of early life stages of anchovy(Engraulis japonicus)and hairtail(Trichiurus lepturus)and their relationship with oceanographic features of the East China Sea during the 1997-1998 El Ni?o Event[J].Estuarine Coastal and Shelf Science,2005,63(1-2):13-21.
[7] NONAKA RH,YASUNOBUM,SUZUKIK.Seasonal variation in larval fish assemblages in relation to oceanographic conditions in the Abrolhos Bank region off eastern Brazil[J].Fishery Bulletin,2000,98(4):767-784.
[8] 唐峰華,李 磊,廖 勇,等.象山港海洋牧場示范區(qū)漁業(yè)資源的時空分布[J].浙江大學學報(理學版),2012,39(6):696-702.TANG F H,LI L,LIAO Y,et al.Spatial and temporal distribution on fishery resources of marine pasture demonstration area in Xiangshan Harbor[J].Journal of Zhejiang University(Science Edition),2012,39(6):696-702.
[9] 宋 超,王宇壇,劉尊雷,等.象山港藍點馬鮫魚卵、仔稚魚的時空分布特征及其與環(huán)境因子關系[J].中國水產科學,2016,23(5):1197-1204.SONG C,WANG Y T,LIU Z L,et al.Relationship between environmental factors and distribution of Scomberomorus niphonius eggs,larvae,and juveniles in Xiangshan Bay[J].Journal of Fishery Sciences of China,2016,23(5):1197-1204.
[10] 樓 丹,施慧雄,焦海峰,等.象山港藍點馬鮫漁獲情況初步研究[J].河北漁業(yè),2010(10):38-39.LOU D,SHIH X,JIAO H F,et al.Fishing output for spawningstock of Scomberomorus niphonius in Xiangshan Bay[J].Hebei Fishery,2010(10):38 -39.
[11] SHOJI J,KISHIDA T,TANAKA M.Piscivorous habits of Spanish mackerel larvae in the Seto Inland Sea[J].FISHERIESSCIENCE,1997,63(3):388 -392.
[12] 朱藝峰,王 銀,林 霞,等.象山港兩種網目網采浮游動物群落比較[J].應用生態(tài)學報,2012,23(8):2277-2286.ZHU Y F,WANG Y,LIN X,et al.A comparison of zooplankton communities collected by two types of nets with different mesh sizes in Xiangshan Bay of Zhejiang,East China[J].Chinese Journal of Applied Ecology,2012,23(8):2277-2286.
[13] KENDALL A W J,AHLSTROM E H,MOSER H G.Early life history stages of fishes and their characters[M]//Ontogeny and systematics of fishes.Lawrence:The American Society of Ichthyologists Herpetologists,1984.
[14] 伍漢霖,邵廣昭,賴春福,等.拉漢世界魚類系統(tǒng)名典[M].基?。核a出版社,2012.WU H L,SHAO G Z,LAI C F,et al.Latin-Chinese dictionary of fishes names by classification[M].Keelung:The Sueichan Press,2012.
[15] 馬克平,劉玉明.生物群落多樣性測度方法Ⅰα多樣性的測度方法(下)[J].生物多樣性雜志,1994,2(4):231-239.MA K P,LIU Y M.Measurement of species diversity,Ⅰαdiversity(second part)[J].Biodiversity Science,1994,2(4):231-239.
[16] RODRIGUEZ JM,GONZALEZN G,GONZALEZP C,et al.The ichthyoplankton assemblage and the environmental variables off the NW and N Iberian Peninsula coasts,in early spring[J].Continental Shelf Research,2009,29(8):1145-1156.
[17] FIELD JG,CLARKE K R,WARWICK R M.A practical strategy for analyzing multispecies distribution patterns[J].Marine Ecology Progress Series,1982,8(1):37-52.
[18] CLARKE K R,WARWICK R M.Change in marine communities:An approach to statistical analysis and Interpretation[M].Plymouth:Natural Environment Research Council,1994.
[19] CLARKE K R,AINSWORTH M.A method of linking multivariate community structure to environmental variables[J].Marine Ecology Progress Series,1993,92(3):205-219.
[20] 高彥潔,呂振波,楊艷艷,等.萊州灣春季魚卵仔稚魚群落結構和物種多樣性[J].生態(tài)學報,2016,36(20):6565-6573.GAO Y J,LV ZB,YANG Y Y,etal.Structure and species diversity of ichthyoplankton in spring in Laizhou Bay[J].Acta Ecologica Sinica,2016,36(20):6565-6573.
[21] 劉 勇,沈長春.羅源灣夏季魚卵和仔稚魚種類組成與數量分布[J].福建水產,2012,34(4):309-315.LIU Y,SHEN C C.Species composition and quantity distribution of ichthyoplankton in Luoyuan bay in summer[J].Journal of Fujian Fisheries,2012,34(4):309-315.
[22] 鄭惠東.福建東山灣春、夏季魚卵和仔稚魚豐度分布特征及其與環(huán)境因子的關系[J].應用海洋學學報,2016,35(1):87-97.ZHENG H D.Abundance distribution of fish eggs and larvae and its relation with environmental factors in spring and summer in Dongshan Bay,Fujian[J].Journal of Applied Oceanography,2016,35(1):87 -97.
[23] 戴燕玉.泉州灣浮性魚卵和仔、稚魚的種類和數量分布[J].福建水產,2005,6(2):15-19.DAIY Y.Distribution of ichthyoplankton larva and juvenile of fish in Quanzhou Bay[J].Journal of Fujian Fisheries,2005,6(2):15-19.
[24] 沈長春.福建三沙灣魚卵、仔稚魚種類組成及其豐度時空分布[J].海洋漁業(yè),2011,33(4):361 -367.SHEN C C.Species composition and abundance trmporal-spatial distribution of fish egg,larvae and juveniles in Sansha Bay of Fujian[J].Marine Fisheries,2011,33(4):361-367.
[25] PEGUERO IM,SANCHEZ V L,LAVIN M F,et al.Larval fish assemblages,environment and circulation in a semienclosed sea(Gulf of California,Mexico)[J].Estuarine,Coastal and Shelf Science,2008,79(2):277-288.
[26] ROSS S T,MCMICHAEL R H JR,RUPLE D L.Seasonal and diel variation in the standing crop of fishes and macroinvertebrates from a Gulf of Mexico surf zone[J].Estuarine,Coastal and Shelf Science,1987,25(4):391-412.
[27] RABBANIHA M,MOLINERO JC,LOPEZ L L,et al.Habitat association of larval fish assemblages in the northern Persian Gulf[J].Marine Pollution Bulletin,2015,97(1-2):105-110.
[28] YUAN X W,JIANG Y Z,LIN N,et al.Using bioacoustics and conventional netting methods to assess the initial effectiveness of a newly deployed artificial reef on fish assemblages in Xiangshan Bay near Ningbo,Zhejiang Province,China[J].Journal of Applied Ichthyology,2013,29(6):1430 -1435.
[29] 陳淵戈,鐘俊生,徐兆禮,等.春季東海有害藻華高發(fā)區(qū)仔稚魚時空分布[J].海洋學報,2015,37(2):44-54.CHEN Y G,ZHONG J S,XU Z L,et al.Spatiotemporal distribution of larval and juvenile fishes at frequent harm ful algal blooms(HABs)areas of the East china sea in spring[J].Haiyang Xuebao,2015,37(2):44-54.
[30] HIBINO M,OHTA T,ISODA T,et al.Distribution of Japanese temperate bass,Lateolabrax japonicus,eggs and pelagic larvae in Ariake Bay[J].Ichthyology Research,2007,54(4):367-373.
[31] 劉媛媛,宋 超,趙 峰,等.長江口及其鄰近水域仔稚魚種類組成及分布特征[J].海洋漁業(yè),2016,38(6):597-608.LIU Y Y,SONG C,ZHAO F,et al.Category composition and distributional patterns of fish larvae and juveniles in Yangtze Estuary and adjacent waters[J].Marine Fisheries,2016,38(6):597-608.
[32] ABOOKIRE A A,PIATT J F,ROBARDS M D.Nearshore fish distribution in an Alaskan Estuary in relation to stratification,temperature and salinity[J].Estuarine,Costal and Shelf Science,2000,51(1):45-59.
[33] NUNN A D,TEWSON L H,COWX I G.The foraging ecology of larval and juvenile fishes[J].Reviews in Fish Biology and Fisheries,2012,22(2):377-408.
[34] 王建茹,林元燒,周美玉,等.福建三沙灣魚卵和仔稚魚的生態(tài)分布[J].廈門大學學報(自然科學版),2010,49(1):116-121.WANG J R,LIN Y S,ZHOU M Y,et al.The ecological distribution of fish eggs and larvae in Sansha Bay,Fujian[J].Journal of Xiamen University(Natural Science),2010,49(1):116-121.
[35] 闕江龍,徐兆禮,孫魯峰.北部灣西北部餌料浮游動物季節(jié)變化及其與魚卵、仔稚魚的關系[J].中國水產科學,2015,22(5):1027-1035.QUE JL,XU Z L,SUN L F.Seasonal variation in zooplankton characteristics and their relationship with fish eggs and larvae in the Northwest Beibu Gulf[J].Journal of Fishery Sciences of China,2015,22(5):1027-1035.
[36] ALAN K W,PAULA P.Habitat type and nursery function for coastal marine fish species,with emphasis on the Eastern Cape region,South Africa[J].Estuarine,Coastal and Shelf Science,2015,160(2):49-59.
[37] MERTZG,MYERSR A.Match/mismatch predictions of spawning duration versus recruitment variability[J].Fisheries Oceanography,1994,3(4):236-245.
Species com position of larval and juvenile fish in the Xiangshan Bay in spring and summer
WANG Yu-tan1,2,LISheng-fa1,YANG Lin-lin1,YUAN Xing-wei1,JIANG Ya-zhou1,LIN Nan1
(1.Key Laboratory of East China Sea and Oceanic Fishery Resources Exploitation&Utilization,Ministry of Agriculture,East China Sea Fisheries Research Institute,Chinese Academy of Fishery Science,Shanghai 200090,China;2.College of Marine Science and Technology,ShanghaiOcean University,Shanghai 201306,China)
The larvae and juvenile fish assemblage was investigated in Xiangshan Bay to analyze their composition and distribution aswell as the relationships between the fish larva amount and the environmental factors.Fourteen sampling stationswere established,and larval and juvenile fish were weekly collected by the frame trawls(1 m×2 m,1.0 mm mesh size)from April 3 to June 10 in 2015.The water temperature,salinity and zooplankton at each sampling site were also measured at each sampling time.In total,180 254 larval and juvenile fisheswere collected belonging to 25 families and 45 species.The dominant fish species were Konosirus punctatus(25.8%),Chaeturichthys stigmatias(23.9%),Chelon haematocheilus(19.2%),Acanthogobius ommaturus(9.9%),Amoya pflaumi(8.5%),Parachaeturichthys polynema(4.5%),Acanthopagrus schlegelii(2.5%)and Glossogobius giuris(1.2%).The density of larval and juvenile fishes varied significantly among cruises(P<0.05).The highestmean density of larval and juvenile fishes was recorded in the third cruise(587.9 ind·100 m-3),while the lowestmean density(8.2ind·100 m-3)occurred in the eighth cruise.The number of species increased gradually from the first cruise to the last one.Fish larvae in preflexion stage accounted for 63.6%of the total catch.The flexion stage of larvaemade 26.4%contribution to the total catch.There were temporal variation in the dominant species in Xiangshan Bay.According to the Bray-Curtis similarity measure on the relative abundance of each taxonomic type,four principal typeswere identified,including Type 1(cruisesⅠandⅡ),Type 2(cruisesⅢtoⅥ),Type 3(cruisesⅦandⅧ)and Type 4(cruisesⅨandⅩ).Variations of some larval and juvenile fish density,such as Konosirus punctatus,Chelon haematocheilus,Chaeturichthys stigmatias,Acanthogobius ommaturus,Amoya pflaumi and Parachaeturichthys polynema were thought to account for the type variation in the larval and juvenile fish assemblage structure.The environmental factors can have important implications for the distribution,growth,and survival of larval and juvenile fish.Furthermore,wemeasured environmental factors and determined the responses of the larval and juvenile fish communities to the factors,including the temperature,the salinity and the zooplankton density.The results of the Spearman Correlation between the amount of fish and the simultaneous environmental factors showed that the fish larva amount had the distinct correlation with water temperature and zooplankton density,but the salinity had no remarkable relationship with the fish larva density.Zooplankton is the vital food source for most larval and juvenile fish specie.Variations in zooplankton distribution and quantity can directly or indirectly affect the larval and juvenile fish.High quantities of zooplankton provide the sufficient food to support the larval and juvenile fish populations and therefore provide a valuable condition for fish reproduction and growth.
Xiangshan Bay;larvae and juveniles fish;species composition;environment factors
S 931
A
1004-2490(2017)03-0286-11
2016-11-03
國家公益性行業(yè)(農業(yè))科研專項(201303047)
王宇壇(1990-),男,碩士研究生,主要從事漁業(yè)資源和生態(tài)學研究。E-mail:1129529886@qq.com
林 楠,助理研究員。E-mail:linn@eastfishery.ac.cn