宋香育,張克強(qiáng),房 芳,孔德望,3,梁軍鋒,杜連柱※
(1. 農(nóng)業(yè)部環(huán)境保護(hù)科研監(jiān)測(cè)所,天津 300191;2. 天津環(huán)科源環(huán)保科技有限公司,天津 300191;3. 沈陽(yáng)農(nóng)業(yè)大學(xué)土地與環(huán)境學(xué)院,沈陽(yáng) 110866)
工藝措施對(duì)豬糞秸稈混合厭氧干發(fā)酵產(chǎn)氣性能的影響
宋香育1,張克強(qiáng)1,房 芳2,孔德望1,3,梁軍鋒1,杜連柱1※
(1. 農(nóng)業(yè)部環(huán)境保護(hù)科研監(jiān)測(cè)所,天津 300191;2. 天津環(huán)科源環(huán)??萍加邢薰?,天津 300191;3. 沈陽(yáng)農(nóng)業(yè)大學(xué)土地與環(huán)境學(xué)院,沈陽(yáng) 110866)
為避免揮發(fā)性脂肪酸積累、提高產(chǎn)氣效率,研究豬糞單獨(dú)發(fā)酵、豬糞秸稈混合發(fā)酵、豬糞秸稈混合原料分層接種和豬糞秸稈混合原料滲濾液回流等工藝措施下,中溫(37 ℃)厭氧干發(fā)酵(總固體含量為20%)的產(chǎn)酸及產(chǎn)氣性能。結(jié)果表明:豬糞秸稈混合原料分層接種厭氧發(fā)酵啟動(dòng)快,產(chǎn)氣效果最佳,累積揮發(fā)性固體含量VS產(chǎn)甲烷量可達(dá)139.2 mL/g;混合發(fā)酵滲濾液回流可有效降低總揮發(fā)性脂肪酸(total volatile fatty acids,TVFAs)質(zhì)量濃度(維持在0.66 mg/g),累積VS產(chǎn)甲烷量比分層接種低16.7%;豬糞秸稈混合發(fā)酵與豬糞單獨(dú)發(fā)酵的反應(yīng)器中TVFAs質(zhì)量濃度分別達(dá)到19.08和19.83 mg/g,前15 d日產(chǎn)甲烷量為0.1 mL/(g·d),基本不產(chǎn)氣。通過(guò)不同工藝措施對(duì)比,獲得產(chǎn)氣量最高和啟動(dòng)期最快的發(fā)酵方式,提高豬糞厭氧干發(fā)酵產(chǎn)氣效率,為豬糞等高固體含量有機(jī)廢棄物的資源化處理利用提供參考。
糞;秸稈;發(fā)酵;揮發(fā)性脂肪酸;滲濾液回流;分層接種
中國(guó)生豬養(yǎng)殖業(yè)產(chǎn)值占畜牧業(yè)總產(chǎn)值的比例達(dá)47%[1],由于無(wú)害化和資源化處理率低,豬糞大量排放成為主要的農(nóng)業(yè)污染源之一,導(dǎo)致空氣、水和土壤污染嚴(yán)重[2]。豬糞中富含有機(jī)成分,通過(guò)厭氧發(fā)酵能高效地轉(zhuǎn)變?yōu)檎託鈁3-5],與傳統(tǒng)的濕式發(fā)酵相比,厭氧干發(fā)酵技術(shù)不僅具有節(jié)約用水、管理方便、冬季耗能低等優(yōu)點(diǎn),而且發(fā)酵殘余物含水率低、方便處理利用、基本達(dá)到零排放,在水資源緊缺、環(huán)境保護(hù)挑戰(zhàn)日益嚴(yán)峻的情況下,該技術(shù)符合廢棄物資源化利用、節(jié)約用水和保護(hù)環(huán)境的要求[6-9]。
在厭氧干發(fā)酵過(guò)程中,傳質(zhì)效率低會(huì)引起揮發(fā)性脂肪酸的大量積累[10],從而導(dǎo)致厭氧消化反應(yīng)不能正常進(jìn)行甚至停止[11-12]。由于豬糞主要由蛋白質(zhì)、糖類(lèi)和脂肪[13]等易降解的組分組成,因此以豬糞為底物的厭氧干發(fā)酵更易發(fā)生揮發(fā)性脂肪酸積累。目前關(guān)于厭氧干發(fā)酵揮發(fā)性脂肪酸積累、快速啟動(dòng)發(fā)酵的研究主要采用滲濾液回流的方式[14-16]。杜靜等[17]的研究表明,沼液回流比不加沼液回流的總固體產(chǎn)氣量高29.17%;Veeken等[18]研究發(fā)現(xiàn),將滲濾液回流率從每立方米廢棄物回流1 m3增加到100 m3,可使甲烷產(chǎn)量提高200%。不同接種方式對(duì)產(chǎn)氣量也有明顯影響[19]。袁巧霞等[20]研究了滲濾液回流條件下多層床反應(yīng)器層間厚度對(duì)豬糞厭氧干發(fā)酵性能的影響,發(fā)現(xiàn)將床層厚度從250 mm降為150 mm,滲濾液中pH值和化學(xué)需氧量在發(fā)酵過(guò)程中的變動(dòng)明顯變小,同時(shí)累積產(chǎn)氣量增加了26.8%。
盡管?chē)?guó)內(nèi)外對(duì)避免厭氧干發(fā)酵酸抑制、提高產(chǎn)氣效率進(jìn)行了相關(guān)研究,但多集中于沼氣回流,缺乏深入研究。本研究以豬糞為主要原料,通過(guò)中溫批式試驗(yàn)對(duì)比了豬糞、豬糞秸稈混合原料、豬糞秸稈混合原料滲濾液回流以及豬糞秸稈混合原料分層接種等4種方式對(duì)厭氧干發(fā)酵過(guò)程揮發(fā)性脂肪酸積累和產(chǎn)氣效果影響,并通過(guò)修正的Gompertz動(dòng)力學(xué)模型模擬產(chǎn)氣過(guò)程,確定最佳工藝措施,為豬糞等農(nóng)業(yè)固體廢棄物的厭氧干發(fā)酵提供技術(shù)支持。
1.1 底物與接種物
豬糞和秸稈均取自天津市西青區(qū)益利來(lái)養(yǎng)殖有限公司,豬糞為養(yǎng)殖場(chǎng)日產(chǎn)鮮豬糞,取回后儲(chǔ)存于(4±1)℃的冰箱,秸稈風(fēng)干后粉碎至0.5~1.0 mm,并存放于干燥陰涼處。
接種物取自實(shí)驗(yàn)室正常運(yùn)行的中溫混合厭氧反應(yīng)器(continuous stirred tank reactor,CSTR)?;钚晕勰嗳〕龊?0 000 r/min離心20 min,上清液與沉淀物(接種物)儲(chǔ)存在(4±1)℃的冰箱內(nèi)。試驗(yàn)開(kāi)始前,取出接種物并置于室溫下活化微生物3 d。上清液用于調(diào)節(jié)發(fā)酵體系的總固體含量(TS)到20%。底物與接種物的理化指標(biāo)見(jiàn)表1。
表1 底物和接種物的化學(xué)組分Table 1 Characteristics of substrates and inoculum sludge used in experiment
1.2 試驗(yàn)設(shè)計(jì)
試驗(yàn)方案設(shè)計(jì)見(jiàn)表2。4種發(fā)酵方式的總進(jìn)料量均為600 g(TS為20%),接種率為30%(W接種物/W發(fā)酵體系=0.3,以TS計(jì)),每種發(fā)酵方式3個(gè)平行。P-C為對(duì)照組,以豬糞為發(fā)酵底物。P-M、P-MR和P-ML的底物均為豬糞與秸稈混合物(VS比為1:2)。在P-MR中,滲濾液收集于反應(yīng)器底部,每3 d回流1次。在P-ML中,接種物與底物分別調(diào)節(jié)TS到20%,采用接種物位于底物下層的方式分3層進(jìn)料。進(jìn)料結(jié)束后將各反應(yīng)器充入氮?dú)鈩?chuàng)造厭氧環(huán)境,置于(37±1)℃的恒溫培養(yǎng)室內(nèi)開(kāi)始發(fā)酵。
表2 試驗(yàn)設(shè)計(jì)Table 2 Experimental design
發(fā)酵過(guò)程中產(chǎn)生的沼氣收集于5 L集氣袋中,根據(jù)產(chǎn)氣情況,每1~3 d用濕式氣體流量計(jì)測(cè)量沼氣產(chǎn)量,并取樣分析氣體成分。每3 d從發(fā)酵罐側(cè)面取樣口采集固態(tài)發(fā)酵樣品,測(cè)量pH值、揮發(fā)性脂肪酸(VFAs)和氨氮等指標(biāo)。取樣時(shí),采用柔性材料覆蓋取樣器與取樣口間的空隙,然后快速取出2~3 g樣品,盡量避免空氣進(jìn)入反應(yīng)器;在分層接種發(fā)酵的反應(yīng)器(P-ML)中,為避免取樣破壞分層結(jié)構(gòu),只取反應(yīng)器底部的少量滲濾液,用于測(cè)定pH值,其余滲濾液仍留存于發(fā)酵罐中。
1.3 試驗(yàn)裝置
試驗(yàn)使用有機(jī)玻璃材質(zhì)的立式反應(yīng)器(見(jiàn)圖1),有效容積為1 L,距反應(yīng)器底部5 cm處設(shè)置可拆除的多孔滲濾板,用于滲濾液的收集。其中,P-C和P-M的反應(yīng)器中不放置多孔滲濾板。
1.4 分析方法
總固體含量(TS)、揮發(fā)性固體含量(VS)、有機(jī)碳含量(TOC)、氨氮采用標(biāo)準(zhǔn)方法測(cè)定[21];pH值:將所取發(fā)酵樣品用蒸餾水稀釋10倍測(cè)量pH值;VFAs:用5%的硫酸溶液將測(cè)量pH值后的樣品調(diào)節(jié)至pH值<3.0, 10 000 r/min離心10 min,上清液經(jīng)0.45 μm硝酸纖維素膜過(guò)濾后用丙酮稀釋5倍,氣相色譜儀(Thermo-trace-1300,F(xiàn)ID)檢測(cè)VFAs質(zhì)量濃度(乙酸、丙酸、丁酸和戊酸),進(jìn)樣口、檢測(cè)器溫度均為200 ℃,載氣流量8.00 mL/min,M12毛細(xì)管柱(30 m×0.53 mm×1 μm,Thermo)。
圖1 發(fā)酵裝置結(jié)構(gòu)簡(jiǎn)圖Fig.1 Structural diagram of digestion equipment
沼氣中甲烷和二氧化碳體積分?jǐn)?shù)采用氣相色譜儀(Thermo-trace-1300,TCD)測(cè)定,PP-Q色譜柱(2 m×φ2 mm),氦氣為載氣(75 kPa恒壓),爐溫40 ℃,進(jìn)樣口和檢測(cè)器溫度均為200 ℃。
1.5 動(dòng)力學(xué)模型
采用修正的Gompertz模型模擬試驗(yàn)過(guò)程中的累積VS產(chǎn)甲烷量,該模型可計(jì)算厭氧干發(fā)酵的遲滯期(λ)并預(yù)測(cè)最大產(chǎn)甲烷量[22-25]。模型方程見(jiàn)式(1)
式中P為累積VS產(chǎn)甲烷量,mL/g;Pmax為最大產(chǎn)氣潛力,mL/g;Rmax為最大產(chǎn)甲烷率,mL/(g·d);λ為遲滯期,d;t為時(shí)間,d。
2.1 厭氧干發(fā)酵過(guò)程揮發(fā)性脂肪酸(VFAs)變化情況
在厭氧發(fā)酵過(guò)程中,大部分的揮發(fā)性脂肪酸被產(chǎn)乙酸菌氧化為乙酸,再被產(chǎn)甲烷菌分解產(chǎn)生甲烷,因此厭氧發(fā)酵過(guò)程中含量最高的揮發(fā)性脂肪酸為乙酸[26];從圖2可以看出,厭氧發(fā)酵過(guò)程中乙酸占總揮發(fā)性脂肪酸(TVFAs)的60%以上。由于30%的接種率為發(fā)酵體系提供了充足的產(chǎn)甲烷菌,因此前9 d的TVFAs和乙酸的質(zhì)量濃度較低,沒(méi)有發(fā)生積累現(xiàn)象。隨著發(fā)酵的進(jìn)行,水解細(xì)菌的生長(zhǎng)速度超過(guò)產(chǎn)甲烷菌[27],P-C和P-M中TVFAs和乙酸的質(zhì)量濃度不斷增加,其中,P-C在第15 天達(dá)到產(chǎn)酸高峰;發(fā)酵進(jìn)行22 d后,此2組發(fā)酵的TVFAs和乙酸的質(zhì)量濃度均快速下降。
圖2 總揮發(fā)性脂肪酸、乙酸和丙酸質(zhì)量濃度變化Fig.2 Variations of concentrations of TVFAs, acetic acid and propionic acid during SS-AD
由豬糞單獨(dú)發(fā)酵(P-C)的TVFAs變化可以看出,乙酸和丙酸的質(zhì)量分?jǐn)?shù)均高于其他發(fā)酵組。TVFAs和乙酸質(zhì)量分?jǐn)?shù)峰值分別為19.8和14.4 mg/g,并分別在高質(zhì)量分?jǐn)?shù)范圍內(nèi)(乙酸:12.1~14.4 mg/g;TVFAs:15.2~19.8 mg/g)維持13 d(從第12天到第25天)后逐漸降低;丙酸是最難被降解的一種脂肪酸[27],其質(zhì)量分?jǐn)?shù)并未隨TVFAs質(zhì)量分?jǐn)?shù)的降低而降低,而是在4.3~6.8 mg/g范圍內(nèi)維持了32 d(從第12 天到第44 天),相對(duì)于其他發(fā)酵處理,豬糞單獨(dú)發(fā)酵的丙酸在高質(zhì)量分?jǐn)?shù)范圍內(nèi)持續(xù)的時(shí)間最長(zhǎng)。
在豬糞秸稈混合發(fā)酵(P-M)中,前12 d的TVFAs質(zhì)量分?jǐn)?shù)與豬糞單獨(dú)發(fā)酵(P-C)相似。由于在第10天后揮發(fā)性脂肪酸濃度迅速升高,且產(chǎn)甲烷量迅速下降,基本不產(chǎn)氣,因此,在第15 天時(shí)將150 mL離心后的沼液(pH值為8.11)加入P-M的發(fā)酵體系中,觀(guān)察揮發(fā)性脂肪酸的變化情況,發(fā)現(xiàn)第16天的TVFAs和乙酸質(zhì)量分?jǐn)?shù)分別由第12天時(shí)的19.1和16.1 mg/g陡降至5.4和4.8 mg/g,但在第19天,TVFAs和乙酸質(zhì)量分?jǐn)?shù)分別回升到14.1和11.7 mg/g,至第22 天后開(kāi)始下降。丙酸的質(zhì)量分?jǐn)?shù)并未發(fā)生明顯變化,在3.3~4.5 mg/g的濃度范圍內(nèi)持續(xù)了24 d,并在第35天后開(kāi)始下降。
滲濾液回流厭氧發(fā)酵中(P-MR),乙酸和丙酸的質(zhì)量分?jǐn)?shù)分別低于0.7和0.2 mg/g,TVFAs質(zhì)量分?jǐn)?shù)低于1.0 mg/g,整個(gè)厭氧干發(fā)酵過(guò)程中沒(méi)有明顯的揮發(fā)性脂肪酸積累,滲濾液回流可以有效增加傳質(zhì)速率[17],促進(jìn)揮發(fā)性脂肪酸向甲烷轉(zhuǎn)化。
表3是發(fā)酵過(guò)程中產(chǎn)生的TVFAs、乙酸和丙酸的總量的差異顯著性分析。可以看出,對(duì)照組、豬糞和秸稈混合發(fā)酵組和滲濾液回流處理在56 d的發(fā)酵過(guò)程中產(chǎn)生的TVFAs、乙酸和丙酸的總量都具有顯著性差異,因此,處理方式的不同對(duì)揮發(fā)性脂肪酸的積累有顯著的影響。
表3 發(fā)酵過(guò)程中累積產(chǎn)生的總揮發(fā)性脂肪酸、乙酸和丙酸的差異顯著性分析Table 3 Significant analysis of differences of cumulative TVFA, acetic acid and propionic acid during fermentation
2.2 厭氧干發(fā)酵過(guò)程pH變化
圖3為試驗(yàn)過(guò)程中各個(gè)處理的pH值變化情況。豬糞單獨(dú)發(fā)酵(P-C)和豬糞秸稈混合發(fā)酵(P-M)的試驗(yàn)過(guò)程中,在第12 天,pH值達(dá)到最低值,此時(shí)P-C和P-M中TVFAs質(zhì)量分?jǐn)?shù)達(dá)到高峰(見(jiàn)圖2)。隨后P-C處理的pH值在低水平下維持了13 d,隨后開(kāi)始上升,此時(shí)TVFAs和乙酸濃度也在高水平下維持了13 d(見(jiàn)圖2)。在P-M 處理中,由于在第15 天向發(fā)酵體系加入了pH值為8.1的接種物上清液,pH值在16 d時(shí)升高了0.8;隨后在第16 天到第22 天的時(shí)間段內(nèi)pH值維持穩(wěn)定,此時(shí)TVFAs和乙酸濃度的變化也表現(xiàn)出相同的趨勢(shì)。這2個(gè)處理中,隨著乙酸濃度在發(fā)酵進(jìn)行22 d后快速下降,pH值也隨之升高,隨后維持穩(wěn)定。
圖3 試驗(yàn)過(guò)程中pH值變化情況Fig.3 Variation of pH value during SS-AD
滲濾液回流厭氧發(fā)酵(P-MR)的pH值一直穩(wěn)定在8.4~8.8的范圍內(nèi)。豬糞秸稈混合原料分層接種發(fā)酵(P-ML)處理的pH值變化(8.4~8.7)與滲濾液回流發(fā)酵的pH值處于同一水平,整個(gè)發(fā)酵過(guò)程沒(méi)有大幅度變化,由此可以推測(cè)該發(fā)酵過(guò)程未發(fā)生VFAs積累,運(yùn)行穩(wěn)定。
從以上分析可以看出,不同工藝處理的pH值變化均與乙酸的變化相對(duì),因此pH值的變化情況可以有效反應(yīng)發(fā)酵體系中乙酸的積累和利用情況。
2.3 厭氧干發(fā)酵產(chǎn)甲烷性能
圖4為沼氣中甲烷體積分?jǐn)?shù)、日VS產(chǎn)甲烷量和累積VS產(chǎn)甲烷變化曲線(xiàn)。由圖4可知,豬糞單獨(dú)發(fā)酵(P-C)的累積VS產(chǎn)甲烷量最低(112.0 mL/(g·d))。在豬糞單獨(dú)干發(fā)酵過(guò)程中,由于傳質(zhì)效率低,揮發(fā)性脂肪酸不能從高質(zhì)量濃度區(qū)域轉(zhuǎn)移至低質(zhì)量濃度區(qū)域,導(dǎo)致VFAs積累從而使產(chǎn)甲烷菌活性受到嚴(yán)重抑制。在發(fā)酵的第4天,豬糞單獨(dú)發(fā)酵的甲烷體積分?jǐn)?shù)達(dá)到53.9%,在第10天下降到13.6%,之后在20%左右維持了12 d,在此期間VFAs質(zhì)量濃度處于高峰期(圖2),推測(cè)VFAs的積累可能對(duì)發(fā)酵過(guò)程產(chǎn)生了明顯的抑制。在第22天后,TVFAs和乙酸質(zhì)量濃度均呈下降趨勢(shì),此時(shí)甲烷體積分?jǐn)?shù)和日VS 產(chǎn)甲烷量均開(kāi)始升高,第35天后,丙酸的質(zhì)量濃度開(kāi)始明顯下降,第41天后,甲烷體積分?jǐn)?shù)升高到50%以上??梢钥闯觯哔|(zhì)量分?jǐn)?shù)的乙酸和丙酸(分別達(dá)到14.4和6.8 mg/g)對(duì)產(chǎn)甲烷菌活性的抑制是可逆的,當(dāng)VFAs質(zhì)量濃度降低后,產(chǎn)甲烷菌活性逐漸恢復(fù),產(chǎn)甲烷過(guò)程得以順利進(jìn)行,但與乙酸相比,丙酸抑制作用更持久,需要更長(zhǎng)的恢復(fù)時(shí)間。
圖4 甲烷體積分?jǐn)?shù)、日VS產(chǎn)甲烷量和累積VS產(chǎn)甲烷量的變化曲線(xiàn)Fig.4 Percentage of CH4, daily methane yield and cumulative methane yield during SS-AD experiment
秸稈富含纖維素和木質(zhì)素等難降解物質(zhì)[28],雖然在厭氧發(fā)酵中水解效率低,但從理論上和已報(bào)道的研究結(jié)果看,添加秸稈對(duì)厭氧干發(fā)酵有促進(jìn)作用[29]。在豬糞秸稈混合發(fā)酵(P-M)中,在第4天至第22天的日VS產(chǎn)甲烷量均低于2.0 mL/g,日產(chǎn)甲烷量與P-C處理沒(méi)有顯著性差異(見(jiàn)表4),TVFAs和乙酸質(zhì)量濃度均處于很高的水平,因此添加秸稈并未對(duì)緩解酸化起到積極作用。甲烷體積分?jǐn)?shù)和日VS產(chǎn)甲烷量在第15天開(kāi)始升高,并分別在第28天以后增加到50%和5.0 mL/(g·d)以上(圖4)。從第38天的日VS產(chǎn)甲烷量和累積VS產(chǎn)甲烷量的差異性分析可以看出,在加入離心后的沼液后,P-M處理的產(chǎn)甲烷量迅速升高,與P-C處理的日VS產(chǎn)甲烷量和累積VS產(chǎn)甲烷量有顯著性差異(見(jiàn)表4)。但整個(gè)發(fā)酵過(guò)程累積VS產(chǎn)甲烷量為119.3 mL/g,僅比豬糞單獨(dú)發(fā)酵高6.5%,因此,豬糞中添加秸稈進(jìn)行混合干發(fā)酵并不能有效避免VFAs積累,但添加沼液可以有效解決VFAs積累。
表4 甲烷體積分?jǐn)?shù)、日VS產(chǎn)甲烷量和累積VS產(chǎn)甲烷量的差異顯著性分析Table 4 Significant analysis of differences of percentage of CH4, daily methane yield and cumulative methane yield
在滲濾液回流發(fā)酵(P-MR)中,累積VS產(chǎn)甲烷量在第27 天已達(dá)到總產(chǎn)氣量的89.6%(106.8 mL/g),在前22 d,日VS產(chǎn)甲烷量維持在3.2 mL/(g·d)左右,甲烷體積分?jǐn)?shù)最高可達(dá)61%。在第27天后,日VS產(chǎn)甲烷量低于1.1 mL/(g·d)。由此可以看出,滲濾液回流可以有效提高產(chǎn)甲烷效率,縮短產(chǎn)氣周期。
豬糞秸稈混合原料分層接種發(fā)酵(P-ML)的平均日VS產(chǎn)甲烷量可達(dá)5.1 mL/(g·d),累積VS產(chǎn)甲烷量在第27天達(dá)到了總產(chǎn)氣量的90.6%,56 d累積VS產(chǎn)甲烷量(139.2 mL/g)比滲濾液回流發(fā)酵高16.7%,甲烷體積分?jǐn)?shù)最高為60%。在分層接種厭氧發(fā)酵中,由于接種物(種子體)外層依次由分解徹底的廢物、產(chǎn)甲烷區(qū)、緩沖區(qū)、產(chǎn)乙酸區(qū)和酸化區(qū)所包圍[17],因此產(chǎn)甲烷作用可在遠(yuǎn)離VFAs積累的區(qū)域順利進(jìn)行,隨著發(fā)酵的不斷深入,種子體不斷擴(kuò)大,試驗(yàn)結(jié)束后可以觀(guān)察到發(fā)酵體系已近混合均勻,沒(méi)有層狀結(jié)構(gòu),因此分層接種可以在較短的時(shí)間內(nèi)達(dá)到最大產(chǎn)氣量。
2.4 產(chǎn)氣動(dòng)力學(xué)模型
試驗(yàn)采用修正的Gompertz模型模擬累積VS產(chǎn)甲烷量,表5為不同發(fā)酵方式的模型參數(shù),其中豬糞單獨(dú)發(fā)酵(P-C)不適合用該模型模擬,因此未被列入。從表5可以看出,分層接種發(fā)酵(P-ML)產(chǎn)氣效果最佳,預(yù)測(cè)最大日VS產(chǎn)甲烷量和累積VS產(chǎn)甲烷量分別可達(dá)6.1和136.7 mL/g。分層接種發(fā)酵(P-ML)的遲滯期(λ=?0.3)最短,混合發(fā)酵(P-M)的遲滯期最長(zhǎng)(λ=14.5),其次是滲濾液回流發(fā)酵(P-MR),表明分層接種可以促進(jìn)厭氧干發(fā)酵的快速啟動(dòng)。在分層接種發(fā)酵(P-ML)中,達(dá)到90%最大累積VS產(chǎn)甲烷量需要的時(shí)間(T90)為26.6 d,相對(duì)于其他發(fā)酵處理用時(shí)最短。由此可見(jiàn),分層接種可以提高發(fā)酵產(chǎn)氣量,快速啟動(dòng)并縮短發(fā)酵周期;滲濾液回流也能促使發(fā)酵快速啟動(dòng),但產(chǎn)氣量略低于分層接種;直接的豬糞秸稈混合發(fā)酵在前15 d不能正常運(yùn)行。
表5 修正的Gompertz模型模擬結(jié)果Table 5 Kinetics results from modif i ed Gompertz model
2.5 氨氮質(zhì)量濃度變化情況
總氨氮是厭氧發(fā)酵要關(guān)注的重要指標(biāo)之一,氨氮質(zhì)量濃度過(guò)高會(huì)抑制微生物的產(chǎn)甲烷活性。從圖5可知,秸稈豬糞混合發(fā)酵(P-M和P-MR)的氨氮質(zhì)量濃度低于豬糞單獨(dú)發(fā)酵(P-C),添加秸稈能夠有效降低氨氮質(zhì)量濃度。在滲濾液回流(P-MR)的發(fā)酵過(guò)程中,滲濾液回流提高了傳質(zhì)效率,促進(jìn)厭氧消化反應(yīng),加快蛋白質(zhì)和尿素的水解和氨的釋放,從而使其氨氮質(zhì)量濃度高于P-M發(fā)酵,但由于回流每3 d進(jìn)行1次,導(dǎo)致氨氮質(zhì)量濃度表現(xiàn)出大幅波動(dòng)。
圖5 厭氧干發(fā)酵過(guò)程中氨氮質(zhì)量濃度變化Fig.5 Variation of ammonia nitrogen in solid-state anaerobic digestion
在濕式厭氧發(fā)酵中,氨氮質(zhì)量濃度高于4 200 g/mL時(shí)產(chǎn)甲烷菌失去活性,豬糞厭氧發(fā)酵產(chǎn)甲烷菌的最適氨氮質(zhì)量濃度為2 600 g/mL[30-31],陳闖等[6]的研究結(jié)果表明,當(dāng)氨氮質(zhì)量濃度從2 250 g/mL升高到3 800 g/mL時(shí),產(chǎn)氣速率降低74.1%。目前,對(duì)豬糞厭氧干發(fā)酵過(guò)程中的氨抑制相關(guān)研究尚未深入。本試驗(yàn)中,對(duì)比各厭氧發(fā)酵產(chǎn)氣性能與氨氮質(zhì)量濃度變化曲線(xiàn)可知,厭氧干發(fā)酵產(chǎn)氣量與氨氮的質(zhì)量濃度不存在線(xiàn)性關(guān)系,影響產(chǎn)氣性能的主要原因可能是揮發(fā)性脂肪酸的積累而非高質(zhì)量濃度的氨氮的抑制作用。
在總固體含量TS為20%的中溫厭氧干發(fā)酵試驗(yàn)中,豬糞秸稈混合發(fā)酵(VS豬糞/VS秸稈為1:2)及分層接種、滲濾液回流等工藝措施在調(diào)控?fù)]發(fā)性脂肪酸積累及提高VS產(chǎn)甲烷量等方面均具有明顯的作用,其中:
1)豬糞秸稈混合原料分層接種(接種物鋪于底物下層且各鋪設(shè)3層)的厭氧發(fā)酵方式,能夠快速啟動(dòng)厭氧干發(fā)酵,沒(méi)有遲滯期,達(dá)到總產(chǎn)氣量的90%的發(fā)酵時(shí)間為26.6 d,時(shí)間最短,且實(shí)際累積VS產(chǎn)甲烷量最高(139.2 mL/g,56 d);
2)豬糞秸稈與接種物均勻混合并將滲濾液回流(發(fā)酵罐底部的滲濾液每3 d回流1次)的發(fā)酵方式,能夠明顯降低揮發(fā)性脂肪酸的質(zhì)量濃度,乙酸和總揮發(fā)性脂肪酸TVFAs的質(zhì)量濃度均低于0.7 mg/g,達(dá)到總產(chǎn)氣量的90%的發(fā)酵時(shí)間為29.5 d,發(fā)酵時(shí)間長(zhǎng)于分層接種的發(fā)酵方式,且該處理56 d的累積VS產(chǎn)甲烷量比分層接種厭氧發(fā)酵低16.7%;
3)豬糞秸稈與接種物混合均勻發(fā)酵,從第9天到第15天,乙酸和TVFAs的質(zhì)量濃度最高分別可達(dá)到16.1和19.1 mg/g,處于嚴(yán)重抑制的狀態(tài),且基本不產(chǎn)氣,加入沼液有助于緩解酸化,TVFAs質(zhì)量分?jǐn)?shù)從19.1 mg/g迅速降低至5.4 mg/g,日VS產(chǎn)甲烷量也逐漸從0 mL/(g·d)升高到5.0 mL/(g·d)以上。該組處理的56 d累積VS產(chǎn)甲烷量與滲濾液回流處理一致,為119.3 mL/g。秸稈與豬糞混合,明顯降低了發(fā)酵過(guò)程中的氨氮含量;
4)純豬糞單獨(dú)發(fā)酵的TVFAs、乙酸、丙酸和氨氮的質(zhì)量濃度最高,其中,丙酸的降解速度最慢,其質(zhì)量濃度在4.3~6.8 mg/g范圍內(nèi)維持了32 d。該組發(fā)酵的日VS產(chǎn)甲烷量在第10天到第22天基本不產(chǎn)氣,56 d的累積產(chǎn)氣量最低,為112.0 mL/g。
[1] 秦志偉. 2015年我國(guó)規(guī)?;i場(chǎng)生豬出欄占比44% [EB/OL].(2016-01-20)[2016-10-21].http://www.feedtrade.co m.cn/livestock/pigs/2016-01-20/2177693.html.
[2] Windisch W. Pollutants in animal manure: Factors of emission and strategies for reduction[R]. Germany: Workshop 4 on Sustainable Animal Production, 2001: 23-25.
[3] Yin D X, Liu W, Zhai N N, et al. Anaerobic digestion of pig and dairy manure under photo-dark fermentation condition[J]. Bioresource Technology, 2014, 166: 373-380.
[4] Li Y Y, Li Y, Zhang D F, et al. Solid state anaerobic co-digestion of tomato residues with dairy manure and corn stover for biogas production[J]. Bioresource Technology, 2016, 217: 50-55.
[5] Hansen K H, Angelidaki I, Ahring B K. Anaerobic digestion of swine manure: Inhibition of ammonia[J]. Water Resource, 1998, 32: 5-12.
[6] 陳闖,鄧良偉,信欣,等. 上推流厭氧反應(yīng)器連續(xù)干發(fā)酵豬糞產(chǎn)沼氣試驗(yàn)研究[J]. 環(huán)境科學(xué),2012,33(3):1033-1040. Chen Chuang, Deng Liangwei, Xin Xin, et al. Continuous dry fermentation of pig manure using up plug-flow type anaerobic reactor[J]. Environmental Science, 2012, 33(3): 1033-1040. (in Chinese with English abstract)
[7] Pandey A. Solid-state fermentation[J]. Biochemical Engineering Journal, 2003, 13: 81-84.
[8] Ge X M, Xu F Q, Li Y B. Solid-state anaerobic digestion of lignocellulosic biomass: Recent progress and perspectives[J]. Bioresource Technology, 2016, 205: 239-249.
[9] Kalyuzhnyi S, Veeken A, Hamelers B. Two-particle model of anaerobic solid state fermentation[J]. Water Science Technology, 2000, 41: 43-50.
[10] 馬旭光,李傳友,袁旭峰,等. 高含固率秸稈和牛糞混合物料發(fā)酵產(chǎn)甲烷工藝[J]. 農(nóng)業(yè)工程學(xué)報(bào),2014,30(14):227-235. Ma Xuguang, Li Chuanyou, Yuan Xufeng, et al. Fermentation technology for methane production using high solid content materials with straw and dairy manure[J]. Transactions of the Chinese Society of Agricultural Engineering (Transactions of the CSAE), 2014, 30(14): 227-235. (in Chinese with English abstract)
[11] Vavilin V A, Shchelkanov M Y, Rytov S V. Effect of mass transfer on concentration wave propagation during anaerobic digestion of solid waste[J]. Water Research, 2002, 36: 2405-2409.
[12] Huang W W, Huang W L, Yuan T, et al. Volatile fatty acids (VFAs) production from swine manure through short-term dry anaerobic digestion and its separation from nitrogen and phosphorus resources in the digestate[J]. Water Reseach, 2016, 90: 344-353.
[13] Astals S, Nolla-Ardèvol V, Mata-Alvarez J. Anaerobic co-digestion of pig manure and crude glycerol at mesophilic conditions: Biogas and digestate[J]. Bioresource Technology, 2012, 110: 63-70.
[14] Alvarez J M, Mace S, Llabres P. Anaerobic digestion of organic solid wastes: An overview of research achievements and perspectives[J]. Bioresource Technology, 2000, 74: 3-16.
[15] Jiang Y, Yin A Q, Cai C, et al. Effects of recycle times of leachate to straw dry-anaerobic fermentation[J]. Shandong Chemical Industry, 2016, 45 (16): 217-220.
[16] 黑昆侖,常志州,陳廣銀,等. 秸稈高固厭氧發(fā)酵回流液剖面滲濾特性[J]. 農(nóng)業(yè)工程學(xué)報(bào),2017,33(7):220-226. Hei Kunlun, Chang Zhizhou, Chen Guangyin, et al. Characteristic of leachate distribution at profile in straw anaerobic digestion with high solid content[J]. Transactions of the Chinese Society of Agricultural Engineering (Transactions of the CSAE), 2017, 33(7): 220-226. (in Chinese with English abstract)
[17] 杜靜,朱德文,錢(qián)玉婷,等. 導(dǎo)氣措施與滲濾液回流方式對(duì)干發(fā)酵產(chǎn)沼氣影響中試[J]. 農(nóng)業(yè)機(jī)械學(xué)報(bào),2013,44(2):143-148. Du Jing, Zhu Dewen, Qian Yuting, et al. Effect of gas guide measurement and leachate-recircculation on gas production from dry fermentation[J]. Transactions of the Chinese Society for Agricultural Machinery, 2013, 44(2): 143-148. (in Chinese with English abstract)
[18] Veeken A H M, Hamelers B V W. Effect of substrate-seed mixing and leachate recirculation on solid state digestion of biowaste[J]. Water Science Technology, 2000, 41: 255-262.
[19] Martin D J, Potts L G A, Heslop V A. Reaction mechanisms in solid-state anaerobic digestion. I. The reaction front hypothesis[J]. Process Safety and Environmental Protection, 2003, 81: 171-179.
[20] 袁巧霞,程長(zhǎng)菊,華朝輝,等. 滲濾液回流條件下多層床厭氧干發(fā)酵產(chǎn)氣特性[J]. 農(nóng)業(yè)機(jī)械學(xué)報(bào),2014,45(2):182-187. Yuan Qiaoxia, Cheng Changju, Hua Chaohui, et al. Characteristic of biogas production in multi-layer anaerobic dry fermentation reactor under leachate recirculation conditions[J]. Transactions of the Chinese Society for Agricultural Machinery, 2014, 45(2): 182-187. (in Chinese with English abstract)
[21] 國(guó)家保護(hù)總局.水和廢水監(jiān)測(cè)分析方法[M]. 第4版. 北京:中國(guó)環(huán)境科學(xué)出版社,2002:211-281.
[22] Vavilina V A, Lokshinaa L Y, Jokelab J P Y. Modeling solid waste decomposition[J]. Bioresource Technology, 2004, 94: 69-81.
[23] Zhang W Q, Lang Q Q, Wu S B. Anaerobic digestion characteristics of pig manures depending on various growth stages and initial substrate concentrations in a scaled pig farm in Southern China[J]. Bioresource Technology, 2014, 156: 63-69.
[24] Zhang W Q, Wei Q Y, Wu S B. Batch anaerobic co-digestion of pig manure with dewatered sewage sludge under mesophilic conditions[J]. Applied Energy, 2014, 128: 175-183.
[25] Zhang S, Guo H G, Du L Z. Influence of Na OH and thermal pretreatment on dewatered activated sludge solubilisation and subsequent anaerobic digestion: Focused on high-solid state[J]. Bioresource Technology, 2015, 185: 171-177.
[26] Wang Y Y, Zhang W L, Wang J B. Effects of volatile fatty acid concentrations on methane yield and methanogenic bacteria[J]. Biomass and Bioenergy, 2009, 33: 848-853.
[27] Li D W, Zhou T, Chen L. Using porphyritic andesite as a new additive for improving hydrolysis and acidogenesis of solid organic wastes[J]. Bioresource Technology, 2009, 100: 5594-5599.
[28] Jin W Y, Xu X C, Gao Y. Anaerobic fermentation of biogas liquid pretreated maize straw by rumen microorganisms in vitro[J]. Bioresource Technology, 2014, 153: 8-14.
[29] Martin D J. Mass transfer limitations in solid-state digestion[J]. Biothchnol Lett, 1999, 21: 809-814.
[30] Procházka J, Dolej? P, Máca J, et al. Stability and inhibition of anaerobic processes caused by insufficiency or excess of ammonia nitrogen[J]. Applied Microbiology and Biotechnology, 2012, 93: 439-447.
[31] Chen Y, Cheng J J, Creamer K S. Inhibition of anaerobic digestion process: A review[J]. Bioresource Technology, 2008, 99: 4044-4064.
Influences of different technological strategies on performance of anaerobic co-digestion of pig manure with straw in solid-state
Song Xiangyu1, Zhang Keqiang1, Fang Fang2, Kong Dewang1,3, Liang Junfeng1, Du Lianzhu1※
(1. Agro-environmental Protection Institute, Ministry of Agriculture, Tianjin 300191, China; 2. Tianjin Huankeyuan Environmental Science and Technology Ltd, Tianjin 300191, China; 3. College of Land and Environment, Shenyang Agricultural University, Shenyang 110866, China)
Solid-state anaerobic digestion has advantages of water conversation, convenient management and low energy consumption in winter. After the digestion, substrate contains low water and can be easily treated, thereby achieving zero emission. Under the condition of increasingly scarce water resource in the world, this technology conforms to the demand of resource utilization and water conversation. However, the process of solid-state anaerobic digestion was very complex and the solid-state anaerobic digestion of pig manure could easily lead to serious accumulation of volatile fatty acids (VFAs), which was the main inhibiting factor in solid-state anaerobic digestion of pig manure. Due to the low water content, the reaction of solid-state anaerobic digestion could not proceed normally, or even be ceased. Several measures could be used to minimize the accumulation of VFAs. Leachate recycling was one way to accelerate mass transfer rate, and proper recirculation rate could optimize the digestion process and improve the quantity and quality of biogas. Stratified inoculation was an alternative method for solid-state anaerobic digestion, in which inoculum was separated with substrate layer by layer. The reaction hypothesis suggests that stratified inoculation could be used to decrease accumulation of VFAs, however, only a few studies had investigated its effect to decrease VFAs accumulation. This study was mesophilic batch fermentation under the same temperature (37 ℃) and water content (80%) condition. To investigate the most efficient treatment of starting the fermentation and the variations of methane production and VFAs, co-digestions of pig manure with maize straw, leachate recycling and stratified inoculation were carried out with the solid-state anaerobic digestion of pig manure as control. Ammonia nitrogen content and soluble chemistry oxygen demand were analyzed. The performances of VFAs production and methane production in the treatments of co-digestion with dried maize straw, leachate recycling, and stratified inoculation in solid-state anaerobic digestion of pig manure were compared. The results were as follows: The performances in stratified inoculation reactors were the best, characterized by no lag time, the highest methane yield of 9.4 mL/(g·d) and the highest cumulative methane yield of 139.2 mL/g; leachate recycling could retain TVFAs at a low level of around 0.66 mg/g, and its cumulative methane yield was 16.7% lower than the stratified inoculation treatment; the concentration of TVFAs in the co-digestion and mono pig manure digestion reactors reached 19.08 and 19.83 mg/g, respectively, and methane yield was less than 0.1 mL/(g·d) in the first 15 days in both reactors. The most efficient treatment with the highest methane production and the quickest initiating can be obtained by contrasting different treatments, which thereby provides the reference for environmental disposal and utilization of the wastes with high solid and high organic matter content.
manures; straw; fermentation; VFAs; leachate recycling; layered seeding
10.11975/j.issn.1002-6819.2017.11.030
X705
A
1002-6819(2017)-11-0233-07
宋香育,張克強(qiáng),房 芳,孔德望,梁軍鋒,杜連柱. 工藝措施對(duì)豬糞秸稈混合厭氧干發(fā)酵產(chǎn)氣性能的影響[J]. 農(nóng)業(yè)工程學(xué)報(bào),2017,33(11):233-239.
10.11975/j.issn.1002-6819.2017.11.030 http://www.tcsae.org
Song Xiangyu, Zhang Keqiang, Fang Fang, Kong Dewang, Liang Junfeng, Du Lianzhu. Influences of different technological strategies on performance of anaerobic co-digestion of pig manure with straw in solid-state[J]. Transactions of the Chinese Society of Agricultural Engineering (Transactions of the CSAE), 2017, 33(11): 233-239. (in Chinese with English abstract) doi:10.11975/j.issn.1002-6819.2017.11.030 http://www.tcsae.org
2016-11-03
2017-05-14
天津市自然科學(xué)基金面上項(xiàng)目(16JCYBJC29600),天津市農(nóng)業(yè)科技成果轉(zhuǎn)化項(xiàng)目(201601290)。
宋香育,女,山西太原人,研究方向?yàn)檗r(nóng)業(yè)廢棄物資源化處理與利用。天津 農(nóng)業(yè)部環(huán)境保護(hù)科研監(jiān)測(cè)所,300191。Email:sarahsung@163.com※通信作者:杜連柱,男,遼寧鐵嶺人,副研究員,博士,研究方向?yàn)檗r(nóng)業(yè)廢棄物資源化處理與利用。天津 農(nóng)業(yè)部環(huán)境保護(hù)科研監(jiān)測(cè)所,300191。Email:dulianzhu99@163.com