袁銀男,顧 萌,戴鵬飛,梅德清※
(1. 江蘇大學(xué)汽車與交通工程學(xué)院,鎮(zhèn)江 212013;2. 蘇州大學(xué)能源學(xué)院,蘇州 215006)
生物柴油催化轉(zhuǎn)移加氫改善其燃燒特性
袁銀男1,2,顧 萌1,戴鵬飛1,梅德清1※
(1. 江蘇大學(xué)汽車與交通工程學(xué)院,鎮(zhèn)江 212013;2. 蘇州大學(xué)能源學(xué)院,蘇州 215006)
采用催化轉(zhuǎn)移加氫法對大豆油生物柴油(SME,soybean methyl ester)進行適度加氫制備部分加氫大豆油生物柴油(PHSME,partially hydrogenated soybean methyl ester),分析比較生物柴油加氫前后的組分、過氧化值、碘值、十六烷值與運動黏度等燃料特性參數(shù),并基于熱重-差示掃描量熱法(TG-DSC,thermogravimetry-differential scanning calorimeter)研究加氫提質(zhì)生物柴油的著火燃燒性能。結(jié)果表明:以異丙醇為供氫體、水為反應(yīng)介質(zhì)和Raney-Ni為催化劑,在溫度85℃和常壓下對SME進行催化轉(zhuǎn)移加氫反應(yīng),經(jīng)GC-MS(gas chromatography-mass spectrometry)檢測發(fā)現(xiàn)高不飽和組分選擇性轉(zhuǎn)化為低不飽和或飽和組分,不飽和程度降低了46.2%。盡管PHSME的運動黏度略有增加,但其氧化安定性得到明顯改善,且十六烷值也升高至合理的范圍。在空氣氛圍下,由于PHSME相比于SME的分子結(jié)構(gòu)變化及運動黏度增加,其在初始階段不易揮發(fā),但在高溫階段平均氧化速率更高,其終了失質(zhì)量溫度比SME提前7.2 ℃。由于PHSME的適度的高十六烷值屬性,在DSC曲線可見其放熱始點溫度比SME提前10.7 ℃,說明提質(zhì)生物柴油具有優(yōu)越的著火性能。
燃燒;生物柴油;氫化;氧化;熱重;差示掃描量熱法
生物柴油作為一種清潔的可再生能源,已成為傳統(tǒng)柴油的替代品[1-2]。但生物柴油含有不飽和碳鏈,特別是其中的高不飽和組分,在長期儲放條件下易發(fā)生腐敗,氧化安定性較差[3-7]。對生物柴油進行適度加氫是解決這一問題的有效手段[8-11]。按照供氫方式不同,催化加氫方法可分為兩類,一是以氫氣為氫源的氫氣還原法[8-9];二是用含氫多原子分子(如醇、芳烴氫化物、甲酸及其鹽等)作氫源的轉(zhuǎn)移加氫法[10,12-14]。與氫氣還原法相比,催化轉(zhuǎn)移加氫反應(yīng)可在較低的溫度和壓力下進行,反應(yīng)條件較為溫和。Basu等[15]研究發(fā)現(xiàn)以甲酸鹽為氫源,Pd(OAc)2為催化劑時,可以較好地選擇性催化加氫含有碳碳雙鍵的化合物;Tike等[16]用甲酸銨為氫源,固載鈀和銠為催化劑時,對大豆油進行催化轉(zhuǎn)移氫化,發(fā)現(xiàn)催化選擇性較好,硬脂酸生成速率也較低??梢缘弥?,催化轉(zhuǎn)移加氫法對反應(yīng)物的選擇性較高,能維持反應(yīng)物中一定的雙鍵數(shù)目。
近年來,適度加氫提質(zhì)生物柴油的應(yīng)用研究還較少報道。Wadumesthrige等[17]研究發(fā)現(xiàn)通過部分氫化來改變生物柴油的分子結(jié)構(gòu),有助于增加氧化安定性及改善著火性能。夏燕[18]比較了加氫前后生物柴油的氧化安定性和運動黏度等燃料特性的變化。由于生物柴油原料來源的多樣化使得其所含脂肪酸酯組分差異較大[19-20],因而燃油品質(zhì)參差不齊,也為其在發(fā)動機上優(yōu)化燃燒應(yīng)用設(shè)置了障礙。適度加氫后的生物柴油其碘值可控降低在一定數(shù)值范圍,同時十六烷值得以提升,這既能收獲高品質(zhì)的燃油,又能使生物柴油油品品質(zhì)更易于統(tǒng)一與標準化[9,20-21]。現(xiàn)有文獻中,主要是采用氫氣直接加氫法對生物柴油進行適度加氫提質(zhì)的試驗研究,而采用催化轉(zhuǎn)移加氫法的報道較少。同時,對加氫后生物柴油燃料特性的研究還較少開展。
本文采用催化轉(zhuǎn)移加氫法對大豆油生物柴油(soybean methyl ester,SME)進行適度加氫來制備部分加氫大豆油生物柴油(partially hydrogenated soybean methyl ester,PHSME),該部分氫化工藝同樣可適用其他原料如餐飲廢油制備的生物柴油。依據(jù)測量或計算出SME和PHSME的組分、過氧化值、碘值、十六烷值與運動黏度等燃料特性參數(shù)。同時,采用熱重-差示掃描量熱分析儀(thermogravimetry-differential scanning calorimeter,TG-DSC),對比分析加氫前后生物柴油的氧化與燃燒性能,以期為其在發(fā)動機上的應(yīng)用提供重要的理論依據(jù)。
1.1 加氫提質(zhì)生物柴油的制備工藝
以SME為原料,異丙醇為供氫體,水為反應(yīng)介質(zhì),在雷尼鎳(Raney-Ni)催化劑的作用下進行轉(zhuǎn)移加氫反應(yīng)。其中,溶劑水、異丙醇與SME的投料體積比設(shè)為100:32:7,催化劑用量為SME質(zhì)量的13%左右。設(shè)定DF-101S集熱式恒溫加熱磁力攪拌器的水浴溫度為(85±1)℃,攪拌速度為600 r/min,加氫反應(yīng)在帶有回流冷凝器的三口燒瓶中進行[16,18]。
1.2 組分測定
為了對SME和PHSME的組分變化進行分析,采用美國Agilent公司的6890GC/5973NMSD氣相色譜/質(zhì)譜聯(lián)用分析儀。色譜柱為DB-WAX(30 m×0.25 mm×0.25 μm);進樣量1 μL;載氣為氦氣。程序升溫:爐子起始溫度50 ℃,以10 ℃/min升至200 ℃,保持9 min,再以6 ℃/min升至230 ℃,保持6 min。同時,2種燃油樣品分別設(shè)定平行試驗,且每種樣品測定3次,取平均值。
1.3 理化特性測量與計算
生物柴油中含有的不飽和碳碳雙鍵,在使用和儲存過程中會與空氣中的氧發(fā)生氧化聚合反應(yīng),形成聚合物、過氧化物等,影響其使用。通過測定燃油的過氧化值,可用來評價加氫前后生物柴油的氧化安定性。將360 mL試樣裝入氧化管中,通入O2,速率為(50±5)mL/min,在95 ℃下氧化8 h,每隔2 h取樣1次,用飽和碘化鉀溶液滴定測量燃油樣品的過氧化值。為減小試驗誤差,重復(fù)測量3次,并取平均值。
燃油樣品的碘值可間接判斷樣品反應(yīng)前后飽和程度的變化。采用化學(xué)滴定法,用漢諾斯(Hanus)溶液(主要成分IBr)測定燃油樣品的碘值。以CCI4為溶劑,在燃油樣品中加入過量的漢諾斯溶液,反應(yīng)30 min后,加入KI使剩余的IBr轉(zhuǎn)化成碘,最后用Na2S2O3標準溶液進行滴定,平行測定3份,同時做空白對照試驗。
加氫后的生物柴油,其分子結(jié)構(gòu)發(fā)生變化,勢必會影響其著火特性。依據(jù)式(1)及各脂肪酸甲酯的質(zhì)量分數(shù)和十六烷值的大小,可計算出相應(yīng)燃油的十六烷值[21-22]。
式中CN為燃油的十六烷值;Ai為各脂肪酸甲酯的質(zhì)量分數(shù);CNi為各脂肪酸甲酯的十六烷值。
運動黏度是影響燃油霧化質(zhì)量的一個重要油品指標。生物柴油加氫后飽和度增加,必然導(dǎo)致其運動黏度增加。應(yīng)用平氏毛細管黏度計對SME和PHSME進行運動黏度的測定。重復(fù)測定3次并取平均值,以降低試驗誤差。
1.4 燃燒試驗
利用瑞士METTLER公司的TGA/DSC1型綜合熱分析儀,進行SME和PHSME氧化與燃燒行為熱分析。以高純空氣(N2體積分數(shù)為78.9%,O2體積分數(shù)為21.1%)為工作氣,流量為50 mL/min;保護氣為高純N2(99.99%),流量為50 mL/min;樣品進樣量為20 mg;溫升區(qū)間為30~500 ℃,升溫速率設(shè)為20 ℃/min。
1.5 數(shù)據(jù)處理與統(tǒng)計分析
相關(guān)數(shù)據(jù)采用Microsoft Excel 2013進行數(shù)據(jù)處理和繪圖。同時,運用SPSS 17.0軟件進行相關(guān)統(tǒng)計分析,且進行顯著性檢驗時,顯著水平設(shè)定為α=0.05。
2.1 加氫提質(zhì)生物柴油的理化特性分析
經(jīng)過多次試驗,發(fā)現(xiàn)100 min后生物柴油的氫化程度已達最大,分離后的產(chǎn)物為PHSME。其催化轉(zhuǎn)移加氫反應(yīng)的機理可分為2步。其中,將SME記為底物A,異丙醇記為R2CHOH。第1步反應(yīng)是供氫體R2CHOH和催化金屬Ni的氧化加成,一個氫直接和Ni作用,而另一個氫仍在供氫體中;第2步反應(yīng)是Ni和底物A的配位作用,底物A插入H-Ni鍵中,接著當?shù)?個氫轉(zhuǎn)移給底物A后就會生成還原產(chǎn)物H2A。此反應(yīng)過程是供氫體和底物A分別與相鄰的Ni原子位氧化加成,形成六元環(huán)過渡態(tài)[18,23],并不是發(fā)生在一個Ni原子位上,最終再進行氫轉(zhuǎn)移和隨后的產(chǎn)物脫除。同時,經(jīng)GC-MS分析得到SME和PHSME各脂肪酸甲酯的含量,如表1所示。
表1 生物柴油樣品組分Table 1 Compositions of biodiesel samples
圖1為SME和PHSME總離子流色譜圖。SME的各組分檢出順序分別為 C16:0、C18:0、C18:1、C18:2、C18:3、C20:0和C22:0,而PHSME中卻未見C18:3組分。結(jié)合表1可見,SME中參與加氫反應(yīng)的不飽和組分C18:3、C18:2及C18:1三者總量為70.9%,經(jīng)適度加氫后,含2個和3個雙鍵的高不飽和組分(C18:2和C18:3)優(yōu)先被轉(zhuǎn)化為C18:1和C18:0[16,18,24],低不飽和組分C18:1和飽和組分C18:0含量明顯上升,加氫飽和或者部分飽和產(chǎn)物的增加總量為26.8%,由此可計算得到該加氫反應(yīng)的轉(zhuǎn)化率為37.8%。若以脂肪酸酯碳鏈的不飽和雙鍵數(shù)目計,PHSME的不飽和程度比SME降低了46.2%。另外,采用分液、水洗、過濾、干燥和蒸餾等方式將脂肪酸甲酯從反應(yīng)物和催化劑中分離出來,回收率可達98.7%。
由表2可見,在強制氧化條件下,在酯中不飽和碳碳雙鍵上成功加氧,SME和PHSME的過氧化值隨時間延長而增加。一般來說,過氧化值越高說明油品氧化變質(zhì)越嚴重。PHSME的過氧化值比SME大幅降低,說明加氫后的產(chǎn)物PHSME的氧化安定性明顯改善。在不同氧化時段下,SME和PHSME的過氧化值經(jīng)顯著性檢驗分析,均可見其差異(P<0.05)。
圖1 SME和PHSME的總離子流色譜圖Fig.1 Total ion chromatograms of SME and PHSME
表2 燃油樣品加速氧化試驗的過氧化值Table 2 Peroxide values of accelerated oxidation experiment for biodiesel samples
氫化前后生物柴油的碘值、十六烷值和運動黏度可見表3。如表3所示,氫化前后大豆油生物柴油(SME和PHSME)的碘值分別為93.5和50.5,加氫以后SME的碘值下降,差異顯著(P<0.05)。同時,SME經(jīng)適度加氫處理成為PHSME后,其十六烷值由57.4增至69.2,這預(yù)示著火品質(zhì)的極大改善。但值得注意的是,若SME完全氫化,則燃油的十六烷值過高,不利于其燃燒應(yīng)用??紤]到提質(zhì)生物柴油一般不單獨作為燃料使用,其適宜的高十六烷值品質(zhì)可協(xié)調(diào)柴油-酯-醇等多元混合燃料的優(yōu)化應(yīng)用。另外,由表3也可得知PHSME的運動黏度比SME有所增加,提高了17.8%(P<0.05)。Moser等[25]研究也證實了部分加氫生物柴油的不飽和度得到降低,而其運動黏度要高于生物柴油。綜合考慮生物柴油的過氧化值、碘值及運動黏度可知,SME和PHSME間的差異顯著。
表3 燃油樣品的碘值、十六烷值和運動黏度Table 3 Iodine value, cetane number and kinematic viscosity of biodiesel samples
2.2 加氫提質(zhì)生物柴油的TG-DSC特性
按設(shè)定好的升溫程序分別進行2種燃油樣品的綜合熱分析試驗,得到TG-DTG和DSC曲線如圖3所示,燃燒特征參數(shù)見表4。
圖2 空氣氛圍下SME和PHSME的TG-DTG和DSC曲線Fig.2 TG-DTG and DSC curves of SME and PHSME under air atmosphere
表4 空氣氛圍下SME和PHSME的氧化特征參數(shù)Table 4 Oxidation parameters of SME and PHSME under air atmosphere
從圖2a與表4可見,在30~150 ℃范圍內(nèi),2種測試樣品的質(zhì)量基本沒有下降;隨著溫度上升,SME和PHSME分別在194.8和215.4 ℃時失質(zhì)量率達5%,記為Ti;并于324.7和317.5 ℃時失質(zhì)量率達95%,記為Tb。在330 ℃時2種燃油樣品的氧化過程基本結(jié)束。由圖2a可見,在120~250 ℃區(qū)間,與SME相比,PHSME的起始失質(zhì)量溫度滯后20.6 ℃,TG和DTG曲線均向高溫區(qū)偏移。這主要歸因于樣品在低溫階段揮發(fā)的差異。物質(zhì)由液態(tài)揮發(fā)成氣態(tài)本質(zhì)上可視為其吸收熱量克服分子間作用力的過程[26]。SME部分加氫成為PHSME后,其分子量與分子空間結(jié)構(gòu)變大,致使其分子間的作用力也增大,所以為了使燃油揮發(fā)則需要更多的能量,揮發(fā)難度變大。SME適度加氫后,PHSME飽和度提高,加之有反式脂肪酸酯的生成,在燃料屬性表現(xiàn)為黏度增加[9,25]。盡管前文油品屬性測試結(jié)果表明PHSME比SME的運動黏度略有增加,但卻影響低溫階段燃油揮發(fā)特性[27]。
雖然PHSME失質(zhì)量起點略晚,但在250 ℃之后,其氧化特性曲線已比SME向低溫區(qū)偏移,且終了失質(zhì)量溫度還提前7.2 ℃。這說明PHSME更易氧化與燃燒,其平均氧化速率比SME更高。部分加氫后的生物柴油中高不飽和脂肪酸甲酯含量減少,總體而言碳鏈彎曲程度減小,更接近于正十六烷的直線“之”字形結(jié)構(gòu)[28],在氧化氛圍下,長碳鏈末端C更易脫氫形成活性O(shè)H·,誘發(fā)鏈鎖反應(yīng),著火性能得到改善。Papadopoulos等[21]研究亦得出部分加氫生物柴油的十六烷值明顯高于生物柴油,更有利于燃油自身的著火與燃燒。
DSC熱分析技術(shù)常用來檢測樣品熱流變化[26,29]。如圖3b所示,在程序升溫的低溫階段,SME和PHSME主要發(fā)生揮發(fā),DSC曲線呈現(xiàn)吸熱峰形;隨著溫度上升,SME和PHSME分別在278.1和267.4 ℃時達到著火條件并開始燃燒放出熱量,DSC曲線呈現(xiàn)放熱峰形。PHSME因十六烷值升高,在達到一定溫度后會更易氧化與燃燒,因而其放熱始點溫度比SME提前10.7 ℃。此外,還發(fā)現(xiàn)PHSME的放熱率峰值比SME大。這可歸因于PHSME的運動黏度和十六烷值兩方面油品屬性綜合作用的結(jié)果。在低溫階段時,PHSME因運動黏度較大,在一定的升溫速率條件下,樣品來不及揮發(fā),滯留樣品在較高溫度下大量揮發(fā),就會有更多的反應(yīng)物參與燃燒,且PHSME因高十六烷值而著火性能更佳,因此會釋放出更多的熱量。而SME和PHSME的終了失質(zhì)量溫度與起始失質(zhì)量溫度之差分別為129.9和102.1 ℃,這也間接地說明了PHSME的燃燒持續(xù)期短于SME。綜上所述,部分加氫后的生物柴油雖運動黏度略有增加,但其十六烷值也適度提升,使燃油的著火性能得到改善[30-31]。
1)以異丙醇為供氫體、水為反應(yīng)介質(zhì)和Raney-Ni為催化劑,在溫度85 ℃和常壓下對SME(soybean methyl ester)進行催化轉(zhuǎn)移加氫反應(yīng)。經(jīng)GC-MS檢測發(fā)現(xiàn)高不飽和組分選擇性轉(zhuǎn)化為低不飽和或飽和組分,PHSME(partially hydrogenated soybean methyl ester)的不飽和程度比SME降低了46.2%。
2)SME經(jīng)適度加氫后,盡管其運動黏度略有增加,但氧化安定性得以明顯改善,十六烷值也升高至合理的范圍。適度加氫生物柴油的燃油品質(zhì)得到提升。
3)由于SME適度加氫后的分子結(jié)構(gòu)變化與運動黏度變大,因而PHSME的起始失質(zhì)量溫度比SME滯后20.6 ℃。盡管如此,PHSME的終了失質(zhì)量溫度比SME提前7.2 ℃,說明其平均氧化速率較高及更易氧化與燃燒。
4)在低溫階段,燃油樣品主要發(fā)生揮發(fā),在DSC曲線上呈現(xiàn)吸熱峰形,而在較高溫度下,燃油樣品開始燃燒放熱而呈現(xiàn)放熱峰形。其中,因PHSME具有較高的十六烷值,著火性能優(yōu)于SME,所以其放熱始點溫度比SME提前10.7 ℃。
[1] Lin C Y, Lin H A. Engine performance and emission characteristics of a three-phase emulsion of biodiesel produced by peroxidation[J]. Fuel Processing Technology, 2007, 88(1): 35-41.
[2] 梅帥,趙鳳敏,曹有福,等. 三種小球藻生物柴油品質(zhì)指標評價[J]. 農(nóng)業(yè)工程學(xué)報,2013,29(15):229-235. Mei Shuai, Zhao Fengmin, Cao Youfu, et al. Evaluation of quality items for biodiesel made from three kinds of Chlorella vulgaris[J]. Transactions of the Chinese Society of Agricultural Engineering (Transactions of the CSAE), 2013, 29(15): 229-235. (in Chinese with English abstract)
[3] 董芳,鄭東前,張鳳泉,等. 生物柴油儲存過程中其質(zhì)量性能的變化[J]. 石油學(xué)報:石油加工,2011,27(5):801-805. Dong Fang, Zheng Dongqian, Zhang Fengquan, et al. The variation of biodiesel quality during storage period[J]. Acta Petrolei Sinica: Petroleum Processing Section, 2011, 27(5): 801-805. (in Chinese with English abstract)
[4] Serrano M, Martínez M, Aracil J. Long term storage stability of biodiesel: Influence of feedstock, commercial additives and purification step[J]. Fuel Processing Technology, 2013, 116(6): 135-141.
[5] Knothe G. Some aspects of biodiesel oxidative stability[J]. Fuel Processing Technology, 2007, 88(7): 669-677.
[6] 李瑞娜,王忠,李銘迪,等. 過氧化改質(zhì)對生物柴油及排放影響的研究[J]. 兵工學(xué)報,2012,33(12):1545-1548. Li Ruina, Wang Zhong, Li Mingdi, et al. Study on effect of peroxide properties for biodiesel and emissions[J]. Acta Armamentarii, 2012, 33(12): 1545-1548. (in Chinese with English abstract)
[7] 劉金勝,藺建民,張建榮. 生物柴油氧化安定性研究的新進展[J]. 可再生能源,2010,28(4):145-150. Liu Jinsheng, Lin Jianmin, Zhang Jianrong. Progress in the study on oxidative stability of biodiesel[J]. Renewable Energy Resources, 2010, 28(4): 145-150. (in Chinese with English abstract)
[8] Hee Y S, Jae H R, Seong Y B, et al. Biodiesel production from highly unsaturated feedstock via simultaneous transesterification and partial hydrogenation in supercritical methanol[J]. The Journal of Supercritical Fluids, 2013, 82(1): 251-255.
[9] Souza B S, Pinho D M M, Leopoldino E C, et al. Selective partial biodiesel hydrogenation using highly active supported palladium nanoparticles in imidazolium-based ionic liquid[J]. Applied Catalysis A: General, 2012, 433/434(16): 109-114.
[10] 武文濤,支國. 碳碳雙鍵催化加氫的研究進展[J]. 化學(xué)研究,2011,22(2):84-87. Wu Wentao, Zhi Guo. Research progress in catalytic hydrogenation of C=C bond[J]. Chemical Research, 2011, 22(2): 84-87. (in Chinese with English abstract)
[11] Thunyaratchatanon C, Luengnaruemitchai A, Chollacoop N, et al. Catalytic upgrading of soybean oil methyl esters bypartial hydrogenation using Pd catalysts[J]. Fuel, 2016, 163: 8-16.
[12] 夏燕,李菲,孫楊,等. Raney-Ni催化下菜籽油生物柴油催化轉(zhuǎn)移加氫的研究[J]. 浙江工業(yè)大學(xué)學(xué)報,2012,40(3):261-264. Xia Yan, Li Fei, Sun Yang, et al. A study of catalytic transfer hydrogenation of biodiesel from rapeseed oil over Raney-Ni catalyst[J]. Journal of Zhejiang University of Technology, 2012, 40(3): 261-264. (in Chinese with English abstract)
[13] 龔靈,周少東,陳新志. 氫轉(zhuǎn)移反應(yīng)的研究概述[J]. 化工進展,2010,29(3):478-483. Gong Ling, Zhou Shaodong, Chen Xinzhi. Research progress in hydrogen transfer reaction[J]. Chemical Industry and Engineering Progress, 2010, 29(3): 478-483. (in Chinese with English abstract)
[14] Alonso F, Riente P, Yus M. Transfer hydrogenation of olefins catalysed by nickel nanoparticles[J]. Tetrahedron, 2009, 65(51): 10637-10643.
[15] Basu B, Bhuiyan M M H, Das P. Catalytic transfer reduction of conjugated alkenes and an imine using polymer-supported formats[J]. Tetrahedron Letters, 2004, 35(12): 8931-8934.
[16] Tike M A, Mahajani V V. Studies in catalytic transfer hydrogenation of soybean oil using ammonium formate as donor as donor over 5% Pd/C catalyst[J]. Chemical Engineering Journal, 2006, 123(1): 31-41.
[17] Wadumesthrige K, Salley S O, Ng K Y S. Effects of partial hydrogenation, epoxidation, and hydroxylation on the fuel properties of fatty acid methyl esters[J]. Fuel Processing Technology, 2009, 90(10): 1292-1299.
[18] 夏燕. 水環(huán)境下生物柴油催化轉(zhuǎn)移加氫[D]. 杭州:浙江工業(yè)大學(xué),2011. Xia Yan. Catalytic Transfer Hydrogenation of Biodiesel in Aqueous Media[D]. Hangzhou: Zhejiang University of Technology, 2011. (in Chinese with English abstract)
[19] 孟中磊,蔣劍春,李翔宇. 生物柴油的發(fā)展近況及趨勢[J].農(nóng)業(yè)工程學(xué)報,2006,22(增刊1):225-230. Meng Zhonglei, Jiang Jianchun, Li Xiangyu. Present situation and development prospects of biodiesel[J]. Transactions of the Chinese Society of Agricultural Engineering (Transactions of the CSAE), 2006, 22(Supp.1): 225-230. (in Chinese with English abstract)
[20] 王利兵,于海燕,賀曉輝,等. 生物柴油樹種油脂脂肪酸組成對燃料特性的影響[J]. 燃料化學(xué)學(xué)報,2012,40(4):397-404. Wang Libing, Yu Haiyan, He Xiaohui, et al. Influence of fatty acid composition of woody biodiesel plants on the fuel properties[J]. Journal of Chemistry and Technology, 2012, 40(4): 397-404. (in Chinese with English abstract)
[21] Papadopoulos C E, Lazzridou A, Koutsoumba A, et al. Optimization of cotton seed biodiesel quality (critical properties) through modification of its FAME composition by highly selective homogeneous hydrogenation[J]. Bioresource Technology, 2010, 101(6): 1812-1819.
[22] Knothe G. A comprehensive evaluation of the cetane numbers of fatty acid methyl esters[J]. Fuel, 2014, 119: 6-13.
[23] Johnstone R A W, Wilby A H, Entwistle I D. Heterogeneous catalytic transfer hydrogenation and its relation to other methods for reduction of organic compounds[J]. Chemical Reviews, 1985, 85(2): 129-170.
[24] Zaccheria F, Psaro R, Ravasio N. Selective hydrogenation of alternative oils: a useful tool for the production of biofuels[J]. Green Chemistry, 2009, 11(4): 462-465.
[25] Moser B R, Haas M J, Winkler J K, et al. Evaluation of partially hydrogenated methyl esters of soybean oil as biodiesel[J]. European Journal of Lipid Science and Technology, 2007, 109(1): 17-24.
[26] 梅德清,張永濤,譚文兵,等. 脂肪酸酯在TG-DSC下的揮發(fā)與氧化特性[J]. 林產(chǎn)化學(xué)與工業(yè),2014,34(5):133-138. Mei Deqing, Zhang Yongtao, Tan Wenbing, et al. Volatilization and oxidation properties of fatty acid methyl esters based on TG-DSC[J]. Chemistry and Industry of Forest Products, 2014, 34(5): 133-138. (in Chinese with English abstract)
[27] Oliveira L, Giordani D, Paiva E, et al. Kinetic and thermodynamic parameters of volatilization of biodiesel from babassu, palm oil and mineral diesel by thermogravimetric analysis(TG)[J]. Journal of Thermal Analysis & Calorimetry, 2013, 111(1): 155-160.
[28] 陳秀,袁銀男,孫平,等. 脂肪酸甲酯結(jié)構(gòu)對生物柴油十六烷值的影響[J]. 石油與天然氣化工,2007,36(6):481-484. Chen Xiu, Yuan Yinnan, Sun Ping, et al. Effects of structural features of the fatty acid methyl esters upon the cetane number of biodiesel[J]. Chemical Engineering of Oil & Gas, 2007, 36(6): 481-484. (in Chinese with English abstract)
[29] He F, Yi W M, Bai X Y. Investigation on caloric requirement of biomass pyrolysis using TG-DSC analyzer[J]. Energy Conversion & Management, 2006, 47(15/16): 2461-2469.
[30] Moser B R, Williams A, Haas M J, et al. Exhaust emissions and fuel properties of partially hydrogenated soybean oil methyl esters blended with ultra low sulfur diesel fuel[J]. Fuel Processing Technology, 2009, 90(9): 1122-1128.
[31] Tat M E. Cetane number effect on the energetic and exergetic efficiency of a diesel engine fuelled with biodiesel[J]. Fuel Processing Technology, 2011, 92(7): 1311-1321.
Biodiesel modified by catalytic transfer hydrogenation improving combustion performance
Yuan Yinnan1,2, Gu Meng1, Dai Pengfei1, Mei Deqing1※
(1. School of Automobile and Traffic Engineering, Jiangsu University, Zhenjiang 212013, China; 2. School of Energy, Soochow University, Suzhou 215006, China)
Biodiesel has
extensive attention as a kind of renewable and clean fuel. However, because of its intrinsic unsaturated composition, it is prone to auto-oxidation and corruption in long-term storage. Fortunately, the partial hydrogenation of biodiesel, in which the high unsaturated fatty acid esters are selectively converted to the low unsaturated or saturated fatty acid esters, has been an effective measure to improve the oxidation stability as well as the cetane number. In this study, the partially hydrogenated soybean methyl ester (PHSME) was produced from soybean methyl ester (SME) via the catalytic transfer hydrogenation. The catalytic transfer hydrogenation of SME was implemented using isopropanol as the hydrogen donor, water as the reaction medium and Raney-Ni as the catalyst. The ratio of solvent water, isopropanol and SEM was 100:32:7, and the catalyst loading accounted for 13% of SME approximately. The hydrogenation reaction was progressing under the water bath of (85±1) ℃ with a magnetic stirring speed of 600 r/min. After about 100 min, the degree of hydrogenation for biodiesel was found to reach the maximum, and the final product PHSME was collected by suitable separation. By the gas chromatography-mass spectrometry (GC-MS) analysis, methyl palmitate (C16:0), methyl stearate (C18:0), methyl oleate (C18:1), methyl linoleate (C18:2), methyl linolenate (C18:3), methyl eicosanoate (C20:0) and methyl docosanoate (C22:0) were detected out in sequence for SME sample, however, C18:3 did not exist in the PHSME. The total amount of unsaturated components C18:3, C18:2 and C18:1 in the SME was 70.9%. After moderate hydrogenation, the high unsaturated components C18:3 and C18:2 containing 3 and 2 double bonds were converted into C18:1 and C18:0 preferentially, and the conversion rate could reach 37.8%. In view of the number of unsaturated double bonds in carbon chain, the unsaturation degree of SME was reduced by 46.2%. Compared with SME, although the kinematic viscosity of PHSME increased slightly, its oxidation stability was improved significantly, and the cetane number of PHSME rose to a desirable level as well. In air atmosphere, the oxidation and combustion characteristics of SME and PHSME were comprehensively explored in a thermal analyzer. Due to the molecular structure change and increased kinematic viscosity, the start of weight loss for PHSME was a little late, whose TG (thermogravimetry) profile shifted to the high temperature region with respect to that for SME, however eventually the finish of weight loss advanced by 7.2 ℃, which affirmatively indicated that PHSME, owning a greater average oxidation rate than SME, was more prone to be oxidized and burned. Meanwhile, in DSC (differential scanning calorimeter) profiles, due to the desirable cetane number, the exothermic onset temperature of PHSME was 10.7 ℃ earlier than that of SME. In summary, the fuel properties including the oxidation stability, iodine value and cetane number of SME are beneficially upgraded by moderate hydrogenation. The better quality of partially hydrogenated biodiesel makes it more popular in the fuel blend market.
combustion; biodiesel; hydrogenation; oxidation; thermogravimetry; differential scanning calorimeter
10.11975/j.issn.1002-6819.2017.11.007
TK6
A
1002-6819(2017)-11-0054-06
袁銀男,顧 萌,戴鵬飛,梅德清. 生物柴油催化轉(zhuǎn)移加氫改善其燃燒特性[J]. 農(nóng)業(yè)工程學(xué)報,2017,33(11):54-59.
10.11975/j.issn.1002-6819.2017.11.007 http://www.tcsae.org
Yuan Yinnan, Gu Meng, Dai Pengfei, Mei Deqing. Biodiesel modified by catalytic transfer hydrogenation improving combustion performance[J]. Transactions of the Chinese Society of Agricultural Engineering (Transactions of the CSAE), 2017, 33(11): 54-59. (in Chinese with English abstract) doi:10.11975/j.issn.1002-6819.2017.11.007 http://www.tcsae.org
2016-10-09
2017-05-09
國家自然科學(xué)基金項目(51376095,51506101);江蘇高校優(yōu)勢學(xué)科建設(shè)工程資助項目(蘇政辦發(fā)[2014]72號);江蘇省科技廳重點研發(fā)計劃項目(BE2016139)
袁銀男,男,江蘇常熟人,教授,博士生導(dǎo)師,從事發(fā)動機代用燃料及排放控制的研究。鎮(zhèn)江 江蘇大學(xué)汽車與交通工程學(xué)院,212013。Email:yuanyn@suda.edu.cn
※通信作者:梅德清,男,江蘇儀征人,副教授,主要從事發(fā)動機排放控制與新能源研究。鎮(zhèn)江 江蘇大學(xué)汽車與交通工程學(xué)院,212013。
Email:meideqing@ujs.edu.cn