蘇永莊
(南京市第十二中學(xué),江蘇南京 210011)
經(jīng)典模型下的新情境
——剖析2016年江蘇高考第14題
蘇永莊
(南京市第十二中學(xué),江蘇南京 210011)
高中物理試題中,如何體現(xiàn)學(xué)生對(duì)物理核心概念的理解,如何選拔出真正“懂”物理的學(xué)生,江蘇2016年高考第14題給了一線教師明確的回答,本文就對(duì)此題進(jìn)行分析,期望教師在平時(shí)教學(xué)中能注重核心概念的講解.
江蘇高考;核心概念;細(xì)繩約束下的經(jīng)典模型
每年各地的高考題對(duì)于一線教師來(lái)說(shuō),就如一盤(pán)盤(pán)美味佳肴,有的回味無(wú)窮,有的拍案驚奇,有的深刻明了.每年下來(lái)總會(huì)有值得思考的題目,筆者在做各地試題的過(guò)程中,給筆者最深刻印象的是2016年江蘇高考物理試卷第14題,因?yàn)榇祟}完全滿足作為選拔型考試的所有要求.通過(guò)對(duì)本題的分析,我們發(fā)現(xiàn),命題者的指導(dǎo)思想是:(1)要把真正“懂物理”的考生選拔出來(lái),對(duì)基本概念的深刻理解,是做好此題的關(guān)鍵所在,而物理學(xué)中的基本概念是構(gòu)成物理學(xué)大廈的基石.(2)要把空間想象能力,構(gòu)建物理模型能力強(qiáng)的考生選拔出來(lái),此題的構(gòu)建要素都是經(jīng)典模型,但受到斜面、細(xì)繩、滑輪的約束限制、相互牽連,就顯得耳目一新,此題很能體現(xiàn)考生的綜合分析能力、推理能力及應(yīng)用數(shù)學(xué)知識(shí)處理物理問(wèn)題的能力,這些能力恰恰是一個(gè)優(yōu)秀學(xué)生所應(yīng)具備的,因而是個(gè)非常好的題目.通過(guò)此題我們看到了出題者的良苦用心,此題也給一線教師提供了很多信息,研究此題對(duì)今后的教學(xué)起到很好的引領(lǐng)作用.本文就以此題為例,以期與更多同仁分享.
原題.如圖1所示,傾角為α的斜面A被固定在水平面上,細(xì)線的一端固定于墻面,另一端跨過(guò)斜面頂端的小滑輪與物塊B相連,B靜止在斜面上.滑輪左側(cè)的細(xì)線水平,右側(cè)的細(xì)線與斜面平行.A、B的質(zhì)量均為m.撤去固定A的裝置后,A、B均做直線運(yùn)動(dòng).不計(jì)一切摩擦,重力加速度為g.求:
圖1
(1)A固定不動(dòng)時(shí),A對(duì)B支持力的大小N;
(2)A滑動(dòng)的位移為x時(shí),B的位移大小s;
(3)A滑動(dòng)的位移為x時(shí)的速度大小vx.
考題一定不能犯科學(xué)性的錯(cuò)誤,這是最基本的原則,筆者在初看此題時(shí),題設(shè)條件已經(jīng)告訴A、B均做直線運(yùn)動(dòng),在審題時(shí)候,因?yàn)锽物體的這種運(yùn)動(dòng)以前從來(lái)沒(méi)有考慮過(guò)軌跡問(wèn)題,所以很是懷疑它是否做直線運(yùn)動(dòng),后經(jīng)過(guò)數(shù)學(xué)證明,B運(yùn)動(dòng)的軌跡的確是條直線,對(duì)此題的嚴(yán)謹(jǐn)性更加嘆服.證明如下:
建立如圖2所示的坐標(biāo)系,設(shè)繩子的總長(zhǎng)為L(zhǎng),B物體在任意一個(gè)位置的坐標(biāo)P(x y).
圖2
由幾何關(guān)系可得
變形可得
由(2)試可以看出,B物體運(yùn)動(dòng)軌跡方程是一次函數(shù),所以物體B的確是沿著直線運(yùn)動(dòng).
本題第(1)問(wèn)比較簡(jiǎn)單,在這里就不做累述.以下重點(diǎn)討論后兩個(gè)問(wèn)題的解法
本題的第(2)問(wèn),方法靈活多樣,很能考察出學(xué)生的能力.以下列舉兩個(gè)方法解決此問(wèn).
解法1:平面幾何關(guān)系法.
根據(jù)題意,畫(huà)出如圖3所示兩物體運(yùn)動(dòng)的軌跡圖.A物體向左發(fā)生的位移為x,由幾何關(guān)系可得繩子伸長(zhǎng)的距離也為x,這里至少有兩種找?guī)缀侮P(guān)系的方法.
方法1:如圖4把s分解為水平、豎直兩個(gè)方向,根據(jù)幾何關(guān)系可得
圖3
圖4
又因?yàn)?/p>
由(3)、(4)兩式可得
方法2:如圖5所示,過(guò)頂點(diǎn)作s垂線.由幾何關(guān)系可得
圖5
由二倍角公式可以得到(5)、(6)兩式是等價(jià)的.
解法2:解析式法.
如圖6建立平面直角坐標(biāo)系,設(shè)B物體初位置坐標(biāo)為(x1,y1);末位置坐標(biāo)為(x2,y2).B物體的位移可表示為
圖6
由(2)、(7)兩式可得
由圖4的幾何關(guān)系可得
由(8)、(9)兩式解得
本題第(3)小問(wèn)中兩個(gè)物體速度大小與方向都不相同,雖然都是直線運(yùn)動(dòng),但要找到兩者之間的速度關(guān)系是個(gè)難點(diǎn),這兩者之間的速度關(guān)系也可以用兩種方法,解法如下.
方法1:對(duì)基本概念的靈活運(yùn)用.利用速度這一最本質(zhì)的定義來(lái)建立兩者速度的關(guān)系.速度的定義可得
由(5)、(10)兩式可得
B下落的高度為
由機(jī)械能守恒定律可得
方法2:運(yùn)動(dòng)的合成與分解來(lái)找兩者速度之間的關(guān)系.
物體運(yùn)動(dòng)到任一位置時(shí),垂直于斜面方向上速度相等,把兩物體的速度分解到垂直于斜面方向上,如圖7所示,由幾何關(guān)系可得
圖7
代入(13)式
由(14)、(15)式解得
利用二倍角公式,(16)式也可寫(xiě)成
本題是一道涉及力的平衡及機(jī)械能守恒的力學(xué)綜合題.試題模型看似傳統(tǒng)的斜面,實(shí)則引入了新的約束元素,對(duì)傳統(tǒng)模型進(jìn)行了創(chuàng)新.具體地說(shuō),如果沒(méi)有滑輪和細(xì)線的約束,則是一道典型的“陳題”,也不適用于當(dāng)前高考.而有了這個(gè)新的約束,考生要想解決此題,首先要畫(huà)出兩物體的運(yùn)動(dòng)軌跡圖,以及找準(zhǔn)他們之間的幾何關(guān)系,這點(diǎn)考察學(xué)生的空間想象能力;其次此題考察了最為基本的兩個(gè)概念(位移與速度),學(xué)生只有深刻理解這兩個(gè)概念,才能解出此題,對(duì)于這點(diǎn),恰恰是本題最為閃亮的地方,因?yàn)槔@開(kāi)了“相對(duì)運(yùn)動(dòng)”這一個(gè)“超綱”的方法,甚至可以不用運(yùn)動(dòng)的合成與分解解決此題,直接速度的定義,找到兩者速度的關(guān)系,進(jìn)而打開(kāi)了解決第三問(wèn)的突破口.在高中物理的教學(xué)中,我們要圍繞最為基本的概念,讓學(xué)生不斷深入理解基本概念,才能不斷深入理解物理學(xué).
2017-02-13)