晏 超,陳鄭輝,楊立強(qiáng),王藝茜,曾 樂,胡正華
(1.中國地質(zhì)大學(xué)(北京)地球科學(xué)與資源學(xué)院,北京 100083;2.中國地質(zhì)科學(xué)院礦產(chǎn)資源研究所,北京 100037;3.長安大學(xué),陜西西安 710054;4.天津地質(zhì)礦產(chǎn)研究所,天津 300170;5.江西省地質(zhì)調(diào)查研究院,江西 南昌 330001)
贛北東坪銅鎢多金屬礦點(diǎn)巖體鋯石U-Pb定年及其地質(zhì)意義
晏 超1,陳鄭輝2,楊立強(qiáng)1,王藝茜3,曾 樂4,胡正華5
(1.中國地質(zhì)大學(xué)(北京)地球科學(xué)與資源學(xué)院,北京 100083;2.中國地質(zhì)科學(xué)院礦產(chǎn)資源研究所,北京 100037;3.長安大學(xué),陜西西安 710054;4.天津地質(zhì)礦產(chǎn)研究所,天津 300170;5.江西省地質(zhì)調(diào)查研究院,江西 南昌 330001)
武寧縣東坪銅鎢多金屬礦點(diǎn)是贛北地區(qū)發(fā)現(xiàn)的石英脈型黑鎢礦床。根據(jù)礦床地質(zhì)特征及對樣品采集后分析認(rèn)為,東坪礦區(qū)深部隱伏白云母花崗巖富硅、富堿,屬過鋁質(zhì)巖石,部分樣品σEu表現(xiàn)出明顯的負(fù)異常;對白云母花崗巖進(jìn)行LA-ICP-MS鋯石U-Pb定年法研究,獲得成巖年齡為(128.79±0.39)Ma,屬燕山晚期,與贛南典型鎢礦床的成巖年齡形成存在一定的時間差距,與贛北地區(qū)的陽儲嶺、大湖塘、朱溪等大型超大型鎢礦的成礦亦存在時間差,表明贛北地區(qū)鎢礦存在多個成礦作用時期,顯示贛北地區(qū)找礦潛力巨大。
贛北;東坪銅鎢多金屬礦;鋯石U-Pb年齡
根據(jù)前人研究的鎢礦有關(guān)的花崗巖,贛北地區(qū)主要是S型花崗巖,本文根據(jù)1∶20萬(通山幅)發(fā)現(xiàn)在武寧縣周邊有諸多鎢礦及礦點(diǎn),如大湖塘鎢礦,東坪銅鎢礦點(diǎn)等,因此認(rèn)為周圍有成礦花崗巖體,后期通過鉆孔發(fā)現(xiàn)了隱伏東坪巖體,認(rèn)為東坪巖體與東坪銅鎢礦點(diǎn)的形成密切相關(guān),因此對東坪巖體展開了年代學(xué)及礦床地球化學(xué)的研究。
東坪銅鎢多金屬礦點(diǎn)地處九宮山隆起帶,南鄰修水—武寧滑覆拗褶帶,北鄰下?lián)P子坳褶帶。成礦區(qū)帶屬于Ⅰ—濱太平洋成礦域、Ⅱ—揚(yáng)子成礦省下?lián)P子成礦亞省、Ⅲ—長江中下游Cu-Au-Fe-Pb-Zn(Sr-W-Mo-Sb)-硫鐵礦-石膏成礦帶,幕阜山-九華山Pb-Zn-Sn-W-Mo-Nb-Ta-V螢石成礦亞帶[1]。
區(qū)域地層屬揚(yáng)子地層區(qū),從新元古界青白口系至中—新生界均有出露,以新元古界青白口系的雙橋山群淺變質(zhì)巖系出露最為廣泛,構(gòu)成九宮山復(fù)式背斜的核部。震旦系及古生界的寒武系、奧陶系、志留系、石炭系及二疊系分布于背斜兩翼。中生界的三疊系分布于南部的向斜核部,白堊系則分布于斷陷盆地內(nèi)。第四系沿山間凹地、山麓、坡腳及水系發(fā)育。區(qū)內(nèi)發(fā)育北東向、北西向及近東西向三組斷裂構(gòu)造,其中規(guī)模最大者當(dāng)屬北東向斷裂。北東向斷裂:多為走向(北東)穩(wěn)定、傾角較陡,顯示左型走滑的特征。規(guī)模較大的有雞林咀—界牌斷裂、傅家山—上陳斷裂、太陽山—羊山斷裂、溫湯—沙店斷裂、騎坪—婁下斷裂等,區(qū)內(nèi)延伸都在5 km以上,最大者大于15 km。區(qū)域上歷經(jīng)元古代、中生代、新生代構(gòu)造巖漿巖活動。元古代與新生代規(guī)模較小,前者見有基性輝綠巖脈侵位于雙橋山群,后者以少量玄武巖噴溢為主。中生代巖構(gòu)造漿活動頻繁,構(gòu)成了規(guī)模宏大的幕阜山復(fù)式巖基,巖性以過鋁質(zhì)強(qiáng)分異花崗巖類,與區(qū)內(nèi)成礦關(guān)系密切。
礦區(qū)內(nèi)出露的巖石地層單位單一,僅為雙橋山群安樂林組(Pt3laa),其巖性為灰綠色、黃綠色、青灰色、灰色變質(zhì)粉砂質(zhì)、凝灰質(zhì)變質(zhì)細(xì)砂巖、粉砂質(zhì)板巖、千枚狀板巖、變沉凝灰?guī)r等,由變質(zhì)砂巖類與板巖類構(gòu)成基本層序,沉積韻律明顯,各種原生沉積構(gòu)造多見,尤其是板巖中常含條紋條帶構(gòu)造成為其特征之一。礦區(qū)處于九宮山復(fù)背斜的核部偏南側(cè),巖層總體呈近東西走向,其間發(fā)育若干個次級褶皺。次級褶皺的軸跡呈近東西走向,軸面多北傾,兩翼不對稱。褶皺形態(tài)嚴(yán)格受巖性及層厚的控制,以厚層變質(zhì)砂巖為主組成的褶皺多具開闊圓滑的轉(zhuǎn)折端,形態(tài)較為簡單;以板巖類和薄層變質(zhì)砂巖為主組成的褶皺則形成緊閉尖棱狀轉(zhuǎn)折端,形態(tài)復(fù)雜而多變。構(gòu)造形跡主要以次級褶皺和規(guī)模較小的斷裂、節(jié)理/裂隙,構(gòu)造巖(帶)不甚發(fā)育,大多以裂隙(或節(jié)理)的形式出現(xiàn)。礦區(qū)地表未見火山巖、侵入巖出露。通過鉆孔揭露了隱伏的白云母花崗巖,屬幕阜山巖基超單元燕山期第三次侵入巖體。
東坪礦點(diǎn)內(nèi)共發(fā)現(xiàn)礦(化)體414條,其中具有工業(yè)利用價值的300條,區(qū)內(nèi)礦體均主要賦存于安樂林組變質(zhì)粉砂巖內(nèi)石英脈中,其主成礦元素均為鎢、銅,共(伴)生銀、鉍、鎵等。根據(jù)礦體的產(chǎn)出位置與空間展布特征,可將東坪礦區(qū)鎢礦體劃分為Ⅰ、Ⅱ、Ⅲ、Ⅳ、Ⅴ等五個礦帶,五個礦帶的礦體走向均為北東。Ⅰ、Ⅱ、Ⅲ號礦帶自礦區(qū)北西側(cè)至南東依次分布(圖1)。Ⅳ、Ⅴ號礦帶在礦區(qū)零星產(chǎn)出,Ⅳ號礦帶分布于Ⅰ號礦帶北西側(cè),由1線ZK1-30孔與6線ZK6-50、ZK6-30鉆孔揭示出6條礦體(Ⅳ001、Ⅳ002、Ⅳ003、Ⅳ004、Ⅳ005、Ⅳ006),其規(guī)模均較小,呈透鏡狀產(chǎn)出,多為單工程控制。Ⅴ號礦帶分布于Ⅲ號礦帶附近,由10線ZK10-50、14線ZK14-50鉆孔揭示出38條礦體(Ⅴ001~Ⅳ038),其規(guī)模均較小,呈透鏡狀產(chǎn)出。礦床整體賦存海拔標(biāo)高處于+580m~-590m之間,是江西南造山帶東段典型的石英脈型黑鎢礦床[2]。
礦體均為隱伏礦體,沿礦體走向或傾向上礦體形態(tài)和厚度變化較大,傾向上呈上緩下陡的趨勢,脈體從淺部到深部逐漸變大,局部出現(xiàn)膨大縮小的現(xiàn)象,甚至尖滅再現(xiàn)現(xiàn)象。主要礦化為黑鎢礦、黃鐵礦局部見黃銅礦,云英巖化主要分布在脈體兩側(cè)。
礦帶發(fā)育五層樓式垂向分帶,即垂向上自上至下礦脈具有五個分帶:第一層樓石英-云母線脈帶(脈寬0.05~1 cm,黑鎢礦-黃銅礦-黃鐵礦-輝銀礦-白云母-絹云母-石英)→第二層樓細(xì)脈帶(脈寬2~10 cm,黑鎢礦-黃銅礦-輝銀礦-閃鋅礦-黃鐵礦-白鎢礦-白云母-絹云母-石英)→第三層樓薄脈帶(脈寬5~50 cm,黑鎢礦-白鎢礦-輝銀礦-黃銅礦-黃鐵礦-白云母-石英)→第四層樓大脈帶 (脈寬20~200 cm,黑鎢礦-黃銅礦-磁黃鐵礦-黃鐵礦-輝鉬礦-輝鉍礦-石英)→第五層樓尖滅帶(脈寬200~1 cm,黑鎢礦-黃銅礦-輝鉍礦-輝銀礦-黃鐵礦-方解石-石英)(圖2);脈內(nèi)礦化自上至下為鎢、銅、銀→鎢、鉍→鎢、鉍、銀逆向分帶特征[2]。
圖1 礦區(qū)地質(zhì)簡圖[2]Fig.1 Geologicalmap of Dongping area
圖2 東坪礦區(qū)0號勘探線剖面圖[3]Fig.2 Sectionview(No.0exploration line)inDongpingm iningdeposit
東坪礦點(diǎn)的礦石構(gòu)造按其成因分類,主要為氣-水熱液礦石構(gòu)造,其次為表生礦石構(gòu)造。氣-水熱液礦石構(gòu)造以脈狀-網(wǎng)脈狀、浸染狀構(gòu)造為主,次梳狀構(gòu)造、塊狀、條帶狀、團(tuán)斑狀及星點(diǎn)狀構(gòu)造。表生礦石可見薄膜狀構(gòu)造。東坪鎢礦點(diǎn)的礦石結(jié)構(gòu)按照成因分為結(jié)晶結(jié)構(gòu)、交代結(jié)構(gòu)、固溶體分離結(jié)構(gòu)三大類其中結(jié)晶結(jié)構(gòu)、交代結(jié)構(gòu)為礦石主要結(jié)構(gòu)類型[2]。黑鎢礦呈自形板狀、長柱狀產(chǎn)于脈石礦物中,其與脈石礦物石英、長石等界線平直。
ZK5050,ZK6-20,ZK6-50等多個孔發(fā)現(xiàn)了隱伏成礦白云母花崗巖,巖體侵位于雙橋山群淺變質(zhì)碎屑巖系,巖體與圍巖界線清晰,接觸面平直,傾角多為70°~85°(圖3(a))。巖體內(nèi)接觸帶普遍發(fā)育有細(xì)粒冷凝邊,多具鈉長石化、云英巖化、綠泥石、絹云母化、高嶺土化、硅化等,而外接觸帶的淺變質(zhì)碎屑巖系多具角巖化、硅化等,內(nèi)外接觸帶硅化均主要以浸染狀、團(tuán)斑狀黑鎢礦化石英脈的形式存在(圖3(b)),部分脈內(nèi)伴生有輝鉬礦化、黃銅礦化、黃鐵礦化、磁黃鐵礦化、綠泥石化、云英巖化等(圖3(c)、3(d)),由此可見,區(qū)內(nèi)隱伏白云母花崗巖是東坪鎢銅多金屬礦化的分布具有明顯的控制作用。
礦區(qū)地表未見火山巖、侵入巖出露。本次研究針對最深的兩個鉆孔ZK6-50、ZK5050開展詳細(xì)的研究。
圖3 東坪花崗巖特征與礦化特征Fig.3 The featureof Dongping graniteandm ineralization
圖4 白云母花崗巖Fig.4 M uscovitegranite
礦區(qū)鉆孔揭露的花崗巖巖性主要是白云母花崗巖。白云母花崗巖,細(xì)粒花崗結(jié)構(gòu),塊狀構(gòu)造,礦物為斜長石、鉀長石、石英、白云母(圖4)。斜長石近半自形板狀,大小一般0.5~1mm,部分0.2~0.5mm,少量1~2mm。常見聚片雙晶、卡鈉復(fù)合雙晶。輕絹云母化,表面略臟。斜長石牌號:An=24⊥(010)晶帶最大消光角法測定。石英半自形粒狀,一般0.5~1mm,星散狀分布。波狀消光明顯。鉀長石1~2mm。斜長石35%~45%、鉀長石10%~15%、石英20%~25%、白云母10%~15%。
為了確定礦區(qū)內(nèi)與成礦密切相關(guān)的中細(xì)粒白云母花崗巖形成時限,對ZK6-50、ZK5050的巖心進(jìn)行了詳細(xì)的觀察,最后選定了東坪銅鎢礦點(diǎn)ZK5050鉆孔揭露的巖心,采樣位置為1 445m附近。
本次采用LA-ICP-MS鋯石U-Pb年齡原位分析方法進(jìn)行年齡測定。LA-ICP-MS鋯石測年在礦產(chǎn)資源研究所國土資源部成礦作用與資源評價重點(diǎn)實驗室完成。測試數(shù)據(jù)采用ICPMSDataCal程序[4]對數(shù)據(jù)進(jìn)行分析處理,利用EXCEL宏程序ComPbCorr#3-17對普通鉛校正進(jìn)行校正。用Isoplot3.0程序獲得測試樣品鋯石U-Pb年齡諧和圖。
對全巖主量和微量元素分析的樣品采自ZK5050、ZK6-50,先在中國地質(zhì)科學(xué)院地質(zhì)研究所磨片室將樣品無污染粉碎至0.074mm以下,然后在國家地質(zhì)實驗測試中心完成全巖樣品主量和微量元素的測試工作,測試方法詳見文獻(xiàn)[5],全巖主量微量和稀土元素分析數(shù)據(jù)采用GeoKit程序[6]處理。
表1 東坪白云母花崗巖鋯石LA-ICP-M SU-Pb同位素分析結(jié)果Tab.1 LA-ICP-MSU-Pb isotopic analysesof zircons from Dongpingm us-granite
4.1 LA-ICP-MS鋯石U-Pb定年
本次花崗巖樣品中鋯石透射光和CL圖像揭示出鋯石總體以灰白色和淺棕色為主,透明-半透明,自形程度較好,均發(fā)育原生包裹體。該樣品鋯石均具有清晰的典型巖漿震蕩生長環(huán)帶,為典型的巖漿鋯石特征。該樣品鋯石的CL圖像顯示出呈灰白色(圖5),邊部呈現(xiàn)灰色,可能由于鋯石形成之后受到后期疊加作用,從所測鋯石的同位素比值和年齡數(shù)據(jù)(表1)可以看出,20個分析測點(diǎn)中,除去點(diǎn)2和16,其余點(diǎn)的Th含量變化范圍為60.2×10-6~702.3× 10-6,平均值190.4×10-6,U含量變化范圍為349.4× 10-6~2 898.6×10-6,平均值950.7×10-6,鋯石具有較高的ω(Th)/ω(U)值(0.03~1.71,平均值0.36)(表1),表現(xiàn)出兼具巖漿和熱液成因鋯石的特征[7]。
對于年輕鋯石,通常將206Pb/238U的年齡作為鋯石結(jié)晶的年齡[8]。從表1中18個測試點(diǎn)的數(shù)據(jù)得出206Pb/238U加權(quán)平均年齡為(128.69±0.75)Ma,MSWD=6.8(圖6、圖7),說明該數(shù)據(jù)的可靠程度較高,能夠代表白云母花崗巖的形成時代,為燕山中期。
圖5 東坪白云母花崗巖鋯石CL圖像Fig.5 Cathodolum inescence im agesofzircons from Dongpingmus-granite
圖6 東坪白云母花崗巖鋯石U-Pb等時線年齡圖Fig.6 U-Pb isochron of zircons from Dongpingmus-granite
圖7 東坪白云母花崗巖鋯石U-Pb年齡加權(quán)平均圖Fig.7 W eighted averageof U-Pbmodelageof zircons from the Dongpingm us-granite
表2 東坪花崗巖主量元素分析結(jié)果 %Tab.2 M ajor chem icalcom position of Dongping granite
4.2 花崗巖巖石地球化學(xué)特征
表2中可以看出,東坪礦區(qū)與成礦的密切相關(guān)的白云母花崗巖SiO2含量除樣品ZK5050-38含量較高82.94%外,其余樣品含量在74.07%~77.24%之間,平均值76.22%。TiO2、Fe2O3、MgO和CaO的含量分別為0.02%~0.19%、0.1%~0.43%、0.05%~0.32%、0.3%~0.7%;全堿含量Na2O+K2O為3.56%~8.16%,平均7.10%,反映巖體的富堿質(zhì)特征;K2O/ Na2O值為0.29%~9.17%,7個樣品中除ZK6-50-20、ZK5050-60兩個樣品在SiO2-K2O圖解中落于鈣堿性系列外,其余5個樣品均落入高鉀鈣堿性系列中(圖8(a))。Al2O3含量為9.99%~14.82%,平均13.16%。在SiO2-(Na2O-K2O)圖解中所有樣品均落入花崗巖區(qū)域(圖8(c)),A/NK值為1.70~2.81,A/ CNK1.57~2.59,在A/NK-A/CNK圖解中落于過鋁質(zhì)花崗巖區(qū)(圖8(b))。在Zr-TiO2圖解中(圖8(d)),7件樣品均落于S型花崗巖區(qū)。
東坪礦點(diǎn)白云母花崗巖的稀土和微量元素分析結(jié)果見表3,微量元素原始地幔標(biāo)準(zhǔn)化蛛網(wǎng)圖中,均表現(xiàn)出富集Th、U、Rb等大離子親石元素(LILE)。虧損Nb、Ti等高場強(qiáng)元素(HFSE)(圖9(a))。稀土元素特征明顯分為兩類,ZK5050-63、ZK6-50-26、ZK6-50-30、ZK6-50-35四個樣品(A組)稀土元素總量∑REE 25.51~110.57μg/g較 ZK5050-38、ZK5050-60、ZK6-50-20(B組)稀土元素總量∑REE1.61~13.62μg/g高;A組(La/Yb)N比值為1.76~7.76高于B組1.21~2.11,A組LREE/HREE比值為2.51~8.06,B組LREE/HREE比值為2.22~2.81;A組輕重稀土分餾明顯,相對富集輕稀土,稀土元素球粒隕石標(biāo)準(zhǔn)化分布型式圖(圖9(b))表現(xiàn)為向右緩傾斜的海鷗型配分趨勢,B組輕重稀土分餾不明顯,稀土元素球粒隕石標(biāo)準(zhǔn)化分布型式圖表現(xiàn)為平緩的海鷗型和倒海鷗型配分趨勢。A組樣品δEu均表現(xiàn)出明顯的負(fù)異常,B組中ZK5050-38與ZK5050-60δEu呈現(xiàn)出明顯的正異常而ZK6-50-20則表現(xiàn)出負(fù)異ZK5050-38、ZK5050-60、ZK6-50-20(B組)三個樣品在稀土元素球粒隕石標(biāo)準(zhǔn)化分布型式圖上和SiO2-K2O圖解上均表現(xiàn)出與其余樣品的不同,這三個樣品稀土元素通過查找?guī)r芯采樣記錄發(fā)現(xiàn),ZK5050-38與ZK5050-60、ZK6-50-20三個樣品采自1200m深部以下,其余樣品均采自1 200m至900m,暗示東坪巖體可能是多期形成的,并且有地幔物質(zhì)的加入。
圖8 東坪白云母花崗巖巖石分類圖解Fig.8 Classification diagram s for themus-graniteof Dongping
表3 東坪花崗巖微量元素組成 μg/gTab.3 Traceand rareearth elementcompositionsof Dongpinggranite
圖9 白云母花崗巖微量元素原始地幔標(biāo)準(zhǔn)化蛛網(wǎng)圖和稀土元素球粒隕石標(biāo)準(zhǔn)化配分型式圖Fig.9 Prim itivem antle-normalized spider diagrams(a)and Chondrite-norm alized REE distributionspatternsofmus-granite
5.1 東坪白云母花崗巖的成因類型及形成背景
中生代以來華南發(fā)生了由擠壓向拉張的構(gòu)造轉(zhuǎn)換[15],在中侏羅世(150~160Ma)勞亞超大陸開始裂解[16],在中國東部引發(fā)巖石圈大規(guī)模拆沉、減薄、軟流圈地幔上隆[17],殼幔的相互作用引起了華南地區(qū)強(qiáng)烈的巖漿活動、長江中下游的準(zhǔn)裂谷以及南嶺地區(qū)大面積花崗巖巖漿的形成[18]。大規(guī)模的巖漿活動導(dǎo)致了華南板塊大規(guī)模的成礦作用。東坪白云母花崗巖巖石地球化學(xué)特征顯示具有富堿質(zhì)特征,屬于過鋁質(zhì)系列。東坪白云母花崗巖的主量元素含量呈現(xiàn)S型花崗巖的特征[19],具有明顯的Ba、Ti負(fù)異常,Nb的輕微負(fù)異常和U的正異常,與典型富鋁的華南殼源型花崗巖地球化學(xué)特征基本相同[20-23]。在Nb-Y和Rb-Y/Nb構(gòu)造環(huán)境判別圖中(圖10),東坪白云母花崗巖主要為島弧花崗巖和同碰撞花崗巖,表明其形成于同碰撞環(huán)境。
圖10 東坪白云母花崗巖Nb-Y、Rb-Y/Nb構(gòu)造環(huán)境判別圖解[24]Fig.10 Nb-Y/Nb and Nb-Y diagram of Dongpingm us-granite
5.2 成巖成礦時代
華南燕山期的成礦作用前人將其分為三個階段,170~150Ma,140~125Ma和110~80Ma,前一階段以銅鉛鋅和鎢礦化為主,后一階段主要是錫金銀鈾礦化。盡管140~125Ma也是一個成礦相對集中的時間段,但主要表現(xiàn)為第一個階段的繼續(xù),同時,也是前一個階段向后一個階段的過渡,以鎢錫礦化為主[25]。在130~150Ma這一時間段里(見表4、表5),贛中、贛西北、贛東北形成一批鎢錫多金屬礦床,同時華南地區(qū)以贛南-武夷為中心地帶,成礦時代向南、北、東、西顯示逐漸變新的趨勢[26],而近年來的鎢礦找礦進(jìn)展較好的為該觀點(diǎn)提供了證據(jù),如大湖塘的成巖成礦年齡,以及本次測試獲得的東平鎢礦的成巖年齡(128.69±0.69Ma)。
表4 贛北花崗巖成巖年齡Tab.4 Agesof granitenorthern Jiangxiprovince
表5 贛北鎢礦成礦年齡Tab.5 AgesofW-polymetallic deposits in northern Jiangxi
5.3 成巖成礦物質(zhì)來源
朱溪、大湖塘、陽儲嶺三個礦床花崗巖SiO2-(Na2O-K2O)圖解中,均落與花崗閃長巖與花崗巖區(qū),對比圖8(c)和11(a)可以看出東坪白云母花崗巖與大湖塘與朱溪的花崗巖具有相似性,而與陽儲嶺則相差較大,SiO2-K2O判別圖中(圖11(b)),東坪白云母花崗巖與大湖塘、朱溪、陽儲嶺四個礦床的花崗巖均落于高鉀鈣性系列,除東坪有兩個樣品落于鈣堿性系列。朱溪礦區(qū)稀土花崗巖稀土元素球粒隕石標(biāo)準(zhǔn)化配分曲線呈平緩右傾型,低負(fù)Eu異常,呈現(xiàn)此等特征的花崗巖,是來源于地幔并受到陸殼物質(zhì)混染的同熔花崗巖。大湖塘石門寺花崗巖稀土元素球粒隕石標(biāo)準(zhǔn)化曲線呈現(xiàn)出緩右傾型,Eu具有明顯的負(fù)異常,巖石化學(xué)及微量元素特征顯示為同碰撞-造山后構(gòu)造背景形成的S型花崗巖[47]。陽儲嶺斑巖型鎢礦稀土元素球粒隕石配分曲線呈現(xiàn)出較陡的右傾型,Eu具有較弱的負(fù)異常,表現(xiàn)為來源于地幔并受到陸殼物質(zhì)混染的同熔花崗巖[48],與I型花崗巖相似。東坪白云母花崗巖與大湖塘礦區(qū)的含礦花崗巖據(jù)有相似的微量元素特征,稀土元素特征表現(xiàn)為具有平緩的右傾稀土元素球粒隕石標(biāo)準(zhǔn)化曲線,Eu呈現(xiàn)明顯的負(fù)異常和輕重稀土分餾不明顯,Eu呈現(xiàn)明顯的正異常兩類不同的特征。在構(gòu)造環(huán)境判別圖上,兩者均落于同碰撞花崗巖區(qū)域。大湖塘鎢礦的形成與富含W的雙橋山群有關(guān),雙橋山群變質(zhì)融熔形成的富含鎢元素及揮發(fā)分的花崗巖漿是成礦的主要物質(zhì)來源[49-51],根據(jù)東坪銅鎢礦的花崗巖特征、賦礦圍巖雙橋山群淺變質(zhì)巖,推測東坪礦區(qū)的成礦物質(zhì)主要來源于雙橋山群變質(zhì)重融產(chǎn)生的花崗巖,同時還有來自地幔物質(zhì)的加入。
圖11 朱溪、大湖塘、陽儲嶺花崗巖主量元素特征對比Fig.11 The feature com parison ofmajor elem entsof granite from Zhuxi、Dahutang、Yangchu ling
(1)江西東坪銅鎢多金屬礦點(diǎn)采自ZK5050鉆孔的與成礦相關(guān)的白云母花崗巖LA-ICP-MS鋯石U-Pb年齡為(128.79±0.39)Ma,屬于燕山晚期的巖漿活動產(chǎn)物,顯示其主要為華南第二階段晚期成巖成礦作用的產(chǎn)物。根據(jù)東坪銅鎢礦成礦花崗巖的成巖年齡顯示,東坪銅鎢多金屬礦點(diǎn)的成礦年齡相對晚于128Ma左右。贛北地區(qū)的鎢礦呈現(xiàn)出至少兩期的特征,一期為150~140Ma,是華南最為主要的鎢礦成礦作用期,同時還發(fā)現(xiàn)了130Ma左右,相對晚一些的鎢礦成礦期,這也進(jìn)一步說明贛北地區(qū)的鎢礦成礦強(qiáng)度大,鎢礦成礦物質(zhì)來源豐富,能夠形成大-超大型的鎢礦可能,顯示贛北地區(qū)鎢礦的找礦潛力大。
(2)東坪白云母花崗巖富硅,SiO2平均值76.22%;全堿含量Na2O+K2O為3.56%~8.16%,平均7.10%反映巖體的富堿質(zhì)特征;A/CNK平均值1.81,屬過鋁質(zhì)巖石,富集Th、U、Rb等大離子親石元素;虧損Nb、Ti等高場強(qiáng)元素;與(華南)陸殼改造系列花崗巖(S型花崗巖)的地球化學(xué)特征相類似。東坪花崗巖為碰撞環(huán)境下形成的產(chǎn)物。
(3)東坪花崗巖的稀土元素球粒隕石標(biāo)準(zhǔn)化配分形式明顯分為兩種,一種輕重稀土分餾明顯,σEu表現(xiàn)出明顯的負(fù)異常,配分曲線呈向右的緩傾斜的海鷗型;另一種則表現(xiàn)為輕重稀土分餾不明顯,σEu表現(xiàn)出明顯的正異常,配分曲線呈平緩的倒海鷗型。東坪巖體表現(xiàn)出的不同的稀土元素配分形式表明,東坪巖體的形成可能具有多期次,部分物質(zhì)來源于地幔。
[1] 徐志剛,陳毓川,王登紅,等.中國成礦區(qū)帶劃分方案[M].北京:地質(zhì)出版社,2008.
[2] LIJiming,LIYongming,LOU Fasheng,etal.A“Five-storey”style quartz vein wolframite deposit in northern Jiangxi province:The discovery of the Dongping wolframite deposit and its geological significance[J].ActaGeoscientica Sinica,2016(3):379-384.
[3] LIU Y S,GAO S,HU Z C,et al.Continental and oceanic crust recycling-inducedmelt-peridotiteinte ractions in the Trans-North China Orogen:U-Pbdating,Hf isotopes andtrace elements inzircons frommantle xenoliths[J].Journalof Petrology,2010,51(1/ 2):537-571.
[4] LIU Y S,GAO S,HU Z C,et al.Continental and oceanic crust recycling-inducedmelt-peridotiteinte ractions in the Trans-North China Orogen:U -Pbdating,Hf isotopes andtrace elements inzircons frommantle xenoliths[J].Journalof Petrology,2010,51(1/ 2):537-571.
[5] LIXianhua,LIU Ying,TU Xianglin,et al.Precise determination of chemical composition in silicate rocks using ICP-AES and ICPMS:A comparative study of sample digestion techniques of alkalifusion and acid dissolution[J].Geochimica,2002,31(5):289-294.
[6] LU Yuanfa.Geolit:A geochemical toolkit for microsoft excel[J]. Geochimica,2004,33(5):459-464.
[7] HOSKIN PW O,BLACK L P.Metamorphic zircon for Mation by solid-state recrystallization of protolith igneous zircon[J].Journal of Metamorphic Geology,2000,18(4):423-439.
[8] COMPSTONW,WILLIAMS IS,KIRSCHVINK I L.Zircon U-Pb ages for the early cambrian time scale[J].Geological Society of London,1992,149(2):171-184.
[9] RICHTER FM.Simplemodels for traceelement fractionation during melt segregation[J].Earth and Plant Science Letters,1989,77(3/ 4):333-344.
[10] PAPU D M,PHILIPMP.Tectonic discrimination of granitoids[J].GeologicalSocietyofAmerica Bulletin,1989,101(5):635-643.
[11] WILSON M.Igneous Petrogenesis:a global tectonic approach[M]. London:Chapmann&Hall:1-415.
[12]CHAPPELL BW,WHITE A JR.Two contrasting granite types:25 yearslater[J].Australian Journalof Earth Sciences:An International Geoscience Journal of the Geological Society of Australia,2001,48(4):489-499.
[13]SUN SS,MCDONOUGHW F.Chemical and isotopic systematic of oceanic basalts:implications formantle composition and process[J].GeologicalSociety SpecialPublication,1989,42:313-345.
[14]TALOYSR,MCLENNANSM.Thecontinentalcrust:itscomposition and evolution[M].Blackwell:Oxford,1985.
[15]鄧晉福,滕吉文,彭 聰,等.2008.中國地球物理場特征及深部地質(zhì)與找礦[M].北京:地質(zhì)出版社:1-212.
[16] VEEVERS J J.Pangea:evolution of a supercontinent and its consequencesforEarth’spaleoclimateandsedimentaryenvironments [S]KLEINGO.Pangea:Paleoclimate,Tectonics,and Sedimentation duringAccretion,Zenith,and Breakup ofa Supercontinent:Boulder,Colorado[M].Geological Society of America Special Paper,1994(288):13-23.
[17]WUFuyuan,SUNDeyou,ZHANGGuangliang,etal.Deepgeodynamics of Yanshainmovement[J].Geological JournalofChina Universities,2000,6(3):379-388.
[18] CHEN Yuchuan,WANG Denghong,XU Zhigang,et al.Outline of regionalmetallogeny of ore deposits associated with themesozoic magmatism in south China[J].Geotectonica et Metallogenia,2014(2):219-229.
[19] XU Keqin,CHENG Hai.Tectonic environment for the formation of tungsten deposit in China[J].Contributions to Geology and Mineral ResourcesResearch,1987(3):1-7.
[20]SUNTao,CHENPeirong,ZHOUXinmin,etal.Strongly peralminous granites in eastern Nanlingmountains,China:study onmuscovites. [J].GeologicalReview,2002(5):518-525.
[21] SUN Tao,ZHOU Xinmin,CHEN Peirong,et al.Petrogenesis and tectonic significance of Mesozoic strong peraluminous granites in Eastern Nanling Mountains [J].Science China(DSeries;Earth Science),2003(12):1209-1218.
[22]WANGXiaolei,ZHOU Jincheng,QIU Jiansheng,etal.Petrogenesis of neoproterozoic peraluminous granites from northeastern Hunan province:chronological and geochemical constraints[J].Geological Review,2004(1):65-76.
[23]ZHOUXinmin.My thinkingaboutgranitegenesesofsouth China[J]. Geological JournalofChina Universities,2003(4):556-565.
[24]PEARCEJA,HARRISNB,TINDLEAG.Traceelementdiscrimination diagrams for the tectonic interpretation ofgranitic rocks[J].Journal ofPetrology,1984,25(4):956-983.
[25] MAO Jingwen,XIE Guiqing,LI Xiaofeng,et al.Mesozoic large scale mineralization and multiple lithospheric extension in south China[J].Earth Science Frontiers,2004(1):45-55.
[26] CHEN Yuchuan,WANG Denghong.Four main topics concerning themetallogeny related tomesozoicmagmatism in south China[J]. GeotectonicaetMetallogenia,2012(3):315-321.
[27]ZHANG Jiajing,MEIYuping,WANGDenghong,etal.Isochronology study on the Xianglushan scheelite deposit i n north Jiangxi provinceand itsgeologicalsignificance[J].ActaGeological Sinica,2008(7):927-931.
[28]MAOZH,LIUJJ,MAOJW,etal.Geochronologyandgeochemistryof granitoids related to the giant Dahutang tungsten deposit,middle Yangtze River region,China:Implications for petrogenesis,geodynamic setting,and mineralization[J].Gondwana Research,2014,28(2):816-836.
[29]HUANG LC,JIANG SY.Highly fractionated S-type granites from thegiantDahutang tungsten deposit in Jiangnan Orogen,Southeast China:Geochronology,516 petrogenesisand their relationship with W-mineralization[J].Lithos,2014(202/203):207-226.
[30]PENGHuaming,YUANQi,LIqiuyun,etal.U-Pb Ages,Hf Isotope of zircons from biotie granite porphyry in Dalingshan tungsten deposite,northwestern Jiangxi and relations to the W-Cu mineralization[J].GeologicalReview,2014,61(5):1089-1098.
[31]HUANG L C,JIANG S Y.Geochronology,geochemistry and petrogenesis of the tungsten-bearing porphyritic granite in the Dahutang tungsten deposit,Jiangxi province[J].Acta Petrologica Sinica,2013,29(12):4323-4335.
[32]ZHANGMingyu,F(xiàn)ENGChengyou,LIDaxin,etal.Geochronological study of the Kunshan W-Mo-Cu deposit in the Dahutang area,northern Jiangxi province and its geological significance[J]. GeotectonicaetMetallogenia,2016(3):503-516.
[33]HUANGLC,JIANGSY.Zircon U-Pb geochronology,geochemistry and petrogenesis of the porphyric-like muscovite granite in the Dahutang tungsten deposit,Jiangxi province[J].Acta Petrologica Sinica,2012,28(12):3887-3900.
[34]WANGD E,ZHOU X,YU X Q,etal.SHRIMP zircon U-Pb dating and characteristics of Hf isotopes of the granodiorite porphyries in the Dongyuan W-Mo ore district,Qimen area,southern Anhui[J]. GeologicalBulletin ofGhina,2011,30(10):1514-1529.
[35]WANGXianguang,LIU Zhanqing,LIUShanbao,etal.LA-ICP-MS Zircon U-Pb dating and petrologic geochemistry of fine grained granite from zhuxicu-w deposit,Jiangxiprovinceand itsgeological significance[J].Rock and MineralAnalysis,2015(5):592-599.
[36]YE Haimin,ZHANG Xiang,ZHU Yunhe.In-situ monazite U-Pb geochronology of granites in Shimensi tungsten polymetallicdeposit,Jiangxi province and its geological significance[J]. GeotectonicaetMetallogenia,2016(1):58-70.
[37]QIN Yan,WANG Denghong,WU Libin,et al.Zircon SHRIMPUPb Dating of themineralized porphyry in the Dongyuan W deposit in an huiprovince and itsgeological significance[J].Acta Geologica Sinica,2010(4):479-484.
[38]LIYan,PANXiaofei,ZHAOMiao,etal.LA-ICP-MSZircon U-Pb age,geochemical featuresand relations to theW Cumineralization of granitic porphyry in Zhuxi skarn deposit,Jingdezhen,Jiangxi[J]. Geology Review,2014(3):693-708.
[39]LIU Shanbao,WANG Chenghui,LIU Zhanqing,et al.Northeast Jiangxi Taqian-Fuchunmetallogenic beltmagmatite time limitand sequence division and its significance [J].Rock and Mineral Analysis,33(4):598-611.
[40] HU Zhenghua,LIU Dong,LIU Shanbao,et al.Rock-forming and ore-forming ages and significance of Taqian Mo(W)deposit,Leping,Jiangxi.China [J].Journal of Chengdu University of Technology(Scince&Technology Edition),2015(3):312-322.
[41]WAN Haozhang,LIU Zhanqing,LIU Shanbao.LA-ICP-MSZircon U-Pb dating of granodioritic porphyry located Zhuxi coppertungstenminein northeast Jiangxiand itsgeological significance[J]. Rock And MineralAnalysis,2015(4):494-502.
[42]MAO Z H,CHENG Y B,LIU J J,et al.Geology and molybdenite Re-Osageof the Dahutang granite-related veinlets-disseminated tungsten ore field in the Jiangxin Province,China[J].Ore Geology Reviews,2013(53):422-433.
[43]MANFasheng,WANGXiaosong.Studyon the isotopicgeochronology of Yangchuling porphyry type of tungsten andmolybdenum deposit [J].MineralResourcesand Geology,1988(4):61-67.
[44]FENGCY,ZHANGDQ,XIANGX K,etal.Re-Os isotopic dating ofmolybdenite from the Dahutang tungsten deposit in northwestern JiangxiProvinceand itsgeological implication[J].Acta Petrological Sinica,2012,28(12):3858-3868.
[45] XIANG X K,WANG P,SUN D M,et al.Re-Os isotopic age of molybdeinte from the Shimensi tungsten polymetallic deposit in northern Jiangxi province and its geological implications[J]. GeologicalBulletin ofChina,2013,32(11):1824.
[46] HUANG Anjie,WEN Zutao,LIU Shanbao,et al.Re-Os isotopic dating ofmolybdenite from the Taqian W-Mo deposit in Leping county,Jiangxi province and its geological implications[J].Acta PetrologicaetMineralogical,2013(4):496-504.
[47]XIANGXinkui,CHENMaosong,ZHANGuonian,etal.Metallogenic geologicalconditionsof Shimensitungsten-polymetallic deposite in north Jiangxiprovince[J].Contr GeolMiner Resour Res,1988(4):61-67.
[48] CHI Shifu,JI Jinsheng.Characteristic of ore-bearing rocks and distributed rule ofmineralization of the Yangchuling pophyry-type W-Mo deposit,Jiangxi province [J].Journal of Changchun University ofEarth Sciences,1985(1):37-58.
[49]RUAN Kun,PAN Jiayong,CAOHaojie.Syudy on c-o-s isotopesof shimengsi tungsten deposite in Dahutang[J].Journal of Mineral Petrol,2015(1):57-62.
[50]WANGH,F(xiàn)ENGCY,LID X,etal.Sourcesofgranitoidsand oreformingmaterialsof Dahutang tungsten deposit in northern Jiangxi province:Constraints from mineralogy and isotopic tracing[J].Acta Petrologica Sinica,2015,31(3):725-739.
[51] JIANG S Y,PENG N J,HUANG L C,et al.Geological characteristic and ore genesis of the giant tungsten deposits from the Dahutangore-concentrated district in northern JiangxiProvince [J].Acta PetrologicalSinica,2015,31(3):639-655
[52]XIANGXinkui,CHENMaosong,ZHANGuonian,etal.Metallogenic geological conditions of Shimensi tungsten-polymetallic deposit in north Jiangxi province[J].Contributions to Geology and Mineral ResourcesResearch,2012(2):143-155.
[53]LIU Jianguang,YANGXiaopeng,ZHOU Yaoxiang,etal.Genesisof granites and relationship of mineralization in Zhuxi tungstencopper deposit,F(xiàn)uliang county,Jiangxi provinc[J].Resources Survey&Environment,2015,36(4):276-284.
U-Pb Dating ofM ineralization Rock Zircon in Dongping Copper Tungsten M ine and ItsGeological Significance
YANChao1,CHEN Zhenghui2,YANG Liqiang1,WANGYiqian3,ZENG Le4,HU Zhenghua5
(1.SchoolofEarth Sciencesand Resources,ChinaUniversityofGeosciences,Beijing 100083,China;2.InstituteofMineralResources,Chinese Academyof GeologicalSciences,Beijing100037,China;3.Chang`an University,Xian 710054,Shaanxi,China;4.Tianjin InstituteofGeologyand MineralResource, Tianjin 300170,China;5.Jiangxi InstituteofGeology,Nanchang 330001,Jiangxi,China)
Dongping tungsten ore inWuning County is the largestquartzvein typewolframite deposit.The geological characteristics of the deposit and sample analysis showed that the deep-buried muscovite granite in Dongping miningarea is rich in silicon and alkali,some samplesofσEu showing obviousnegativeanomalies.Itshowed that the diagenetic agewas(128.79±0.39)Ma by applying the zirconia LA-ICP-MSU-Pb datingmethod to themuscovite granite.There existed some time gap between the diagenetic age of Dongping tungsten ore and thatof the tungsten ore in Southern Jiangxi.It indicated that thereweremanymineralization periods in the tungsten deposits in northern Jiangxi,showing itsgreatpotential for tungsten prospecting.
Northern Jiangxi;Dongping copper tungstenmine;Zircon U-Pb dating
P612
A
(編輯:劉新敏)
10.3969/j.issn.1009-0622.2017.03.001
2017-05-11
全國礦產(chǎn)資源潛力動態(tài)評價項目(12120110300015000)
晏 超(1993-),男,陜西富平人,碩士研究生,主要從事鎢礦礦床學(xué)和成礦預(yù)測方面的研究。
陳鄭輝(1973-),男,福建霞浦人,教授級高級工程師,主要從事成礦規(guī)律和礦產(chǎn)資源潛力預(yù)測評價、深部探測技術(shù)方法等研究。