蔡鑫娜,譚敏,曹勝亮,黃艷,孫法超,商營利,劉思當,肖一紅
山東農業(yè)大學 動物醫(yī)學院/動物科技學院,山東 泰安 271000
豬繁殖與呼吸綜合征病毒nsp4抗體制備與鑒定
蔡鑫娜,譚敏,曹勝亮,黃艷,孫法超,商營利,劉思當,肖一紅
山東農業(yè)大學 動物醫(yī)學院/動物科技學院,山東 泰安 271000
蔡鑫娜, 譚敏, 曹勝亮, 等. 豬繁殖與呼吸綜合征病毒nsp4抗體制備與鑒定. 生物工程學報, 2017, 33(8): 1276–1283.
Cai XN, Tan M, Cao SL, et al. Preparation and identification of polyclonal antibodies specific for nsp4 protein of porcine reproductive and respiratory syndrome virus. Chin J Biotech, 2017, 33(8): 1276–1283.
為了獲得豬繁殖與呼吸綜合征病毒 (PRRSV) nsp4的抗體,根據HP-PRRSV TA-12株 (GenBank Accession No. HQ416720) 的nsp4基因序列,設計并合成一對引物。用RT-PCR擴增后克隆到原核表達載體pET-28a(+) 中,構建重組質粒pET28a-nsp4,轉化至Trasseta(DE3),經IPTG誘導重組蛋白獲得了高效可溶性表達,大小約為26 kDa。經鎳離子親和柱 (Ni+-NTA) 純化獲得了高純度重組蛋白,將純化的nsp4蛋白免疫新西蘭大白兔制備了多克隆抗體。ELISA檢測抗體效價可達106,Western blotting和IFA檢測結果表明所制備的多克隆抗體具有良好的免疫反應特異性,能夠識別PRRSV感染宿主細胞中的nsp4蛋白。本研究成功制備了針對nsp4的多克隆抗體,為進一步研究nsp4的功能及PRRSV致病機制奠定了基礎。
豬繁殖與呼吸綜合癥病毒,nsp4,多克隆抗體,鑒定
豬繁殖與呼吸綜合征 (Porcine reproductive and respiratory syndrome,PRRS) 是由 PRRS病毒 (PRRSV) 引起的一種急性傳染病。該病以母豬繁殖障礙、各年齡段豬呼吸系統(tǒng)障礙等為主要特征。該病1987年在美國首次報道[1],隨后迅速在北美洲和歐洲蔓延[2],我國于1996年由郭寶清等首次從疑似PRRS病例中分離到PRRSV,從而證實了本病在我國的存在[3]。2006年6月我國江西等地出現(xiàn)了高致病性豬繁殖與呼吸綜合征(Highly pathogenic PRRS,HP-PRRS)[4-6],感染豬臨床特征表現(xiàn)為持續(xù)高熱、精神萎靡、食欲廢絕、呼吸困難、腹部皮膚發(fā)紺、耳朵變藍、眼瞼水腫等癥狀。各日齡豬表現(xiàn)出高發(fā)病率(50%-100%) 和高死亡率 (20%-100%)。之后我國其他多個省份也相繼出現(xiàn)該病。造成300多萬頭豬發(fā)病,死亡豬只達到50多萬頭,嚴重影響我國養(yǎng)豬產業(yè)的經濟效益[7-8]。2008年底我國農業(yè)部將HP-PRRS列為一類動物疫病[9]。
PRRSV屬于動脈炎病毒科動脈炎病毒屬。PRRSV基因組為單股、正鏈RNA,長約15 kb,共含有9個相互重疊的開放讀碼框 (Open reading frame,ORF)[10],即 ORF1 (ORF1a 和 ORF1b)、ORF2 (ORF2a和 ORF2b)、ORF3、ORF4、ORF5(ORF5a)、ORF6和 ORF7[11-13]。PRRSV基因組編碼7個結構蛋白和14個非結構蛋白 (nsp)。其中,nsp4由ORF1a編碼,是具有兩種酶活性的絲氨酸蛋白酶,可以切割前體多聚蛋白 pp1a和pp1ab裂解產生多個非構蛋白 (nsp3-12),這些非結構蛋白在PRRSV病毒復制與增殖過程中起著決定性的作用[14-16]。因此,nsp4在PRRSV感染過程中起著決定性的作用,但具體作用機制尚不明確。為了研究nsp4的生物學功能及其在PRRSV感染過程中的作用機制,本研究制備了高效價的抗nsp4的抗體。
HP-PRRSV TA12株 (GenBank Accession No.HQ416720)、PRRSV 疫苗株 CH-1R、非洲綠猴腎細胞Marc-145細胞、pET-28a(+) 原核表達載體均由山東農業(yè)大學臨床病理實驗室保存,克隆大腸桿菌DH5α感受態(tài)細胞、表達菌株Trasseta(DE3) 感受態(tài)均購于TranGen Biotech公司。
T4 DNA連接酶、預染蛋白分子量標準均購于Thermo公司;限制性內切酶NheⅠ和XhoⅠ、Trans2K Plus DNA 分子量標準均購自大連TaKaRa公司;高純度質粒小提試劑盒、瓊脂糖凝膠DNA回收試劑盒、抗His鼠單克隆抗體均購于康為世紀生物科技公司;卡那霉素 (Kan+)、氨芐青霉素 (Amp+) 均購自索萊寶公司;增強型HRP-DAB底物顯色試劑盒購自北京Tiangen公司;Clarity Max? Western ECL Substrate購于Bio-Rad公司;HRP標記的羊抗鼠IgG (H+L) 抗體購于Beyotime公司;Cy3標記的羊抗兔IgG抗體及 FITC標記的羊抗豬 IgG抗體購自Jackson公司;弗氏完全佐劑、弗氏不完全佐劑購自美國 Sigma公司;硝酸纖維素膜 (PVDF)購自美國Millipore公司;Ni+-NTA 鎳離子親和層析介質購自南京金斯瑞生物科技有限公司。
根據GenBank發(fā)表的HP-PRRSV TA12株全基因組序列 (Accession No. HQ417620),設計并合成了一對用于擴增nsp4基因片段的引物。在上游引物中引入了NheⅠ酶切位點,在下游引物中引入了XhoⅠ酶切位點,上、下游引物間距離為612 bp。上游引物序列:5′-CCCGCTAGCG GTGCTTTCAGAACTCA-3′;下游引物序列:5′-CCCTCGAGTTCCAGTTCGGGTTTGGC-3′。引物由生工生物工程 (上海) 股份有限公司合成。
取出感染HP-PRRSV TA-12株的Marc-145細胞病毒液加入 TRIzol試劑,充分混勻后,按照說明書提取RNA。反轉錄體系為20 μL,包括:5×反轉錄酶緩沖液 2 μL、0.01 mol/L dNTPs 4 μL、RNA 酶抑制劑 1 μL、Oligo(dT)18 primer 1 μL、AMV 反轉錄酶 1 μL、RNase-free dH2O 1 μL、模板 RNA 10 μL;反應條件:42 ℃ 60 min,70 ℃5 min。PCR反應體系為 50 μL:上下游引物各1 μL,TaKaRa Premix Taq DNA 聚合酶 25 μL,cDNA 2 μL,補 ddH2O水至 50 μL。反應條件:94 ℃ 5 min ;94 ℃ 30 s,62 ℃ 30 s,72 ℃ 45 s,共31個循環(huán);72 ℃延伸10 min,4 ℃終止。PCR產物經膠回收試劑盒回收、純化。
將pET-28a(+) 原核表達載體與nsp4擴增片段分別利用NheⅠ和XhoⅠ進行雙酶切、膠回收純化、連接、轉化至DH5α感受態(tài)細胞。用Kan+篩選重組轉化子,挑取單個菌落接種于5 mL含Kan+抗性LB培養(yǎng)基中,37 ℃搖菌5 h,對菌液進行PCR鑒定,將菌落PCR鑒定為陽性的菌株擴大培養(yǎng)后提取重組質粒,并對質粒進行NheⅠ和XhoⅠ雙酶切鑒定,酶切鑒定正確的質粒送至生工生物工程 (上海) 股份有限公司測序。測序成功的陽性重組質粒命名為pET28a-nsp4。
重組表達質粒 pET28a-nsp4轉化至表達菌Trasseta(DE3) 感受態(tài)細胞,然后涂布于含Kan+抗性的LB平板,37 ℃培養(yǎng)過夜,挑取單菌落于LB培養(yǎng)基中活化過夜,按1%比例轉接到新鮮含有 Kan+抗性的 LB培養(yǎng)基中培養(yǎng)至 OD600約為0.6時,加入終濃度為1 mmol/L的IPTG,誘導5 h。4 ℃、10 000 r/min離心5 min收集菌體,將收集的菌體經超聲破碎后進行SDS-PAGE鑒定。參照金斯瑞 Ni+-NTA親和層析介質說明書進行蛋白純化。
將純化的nsp4蛋白進行SDS-PAGE并轉印至PVDF膜上,以1∶2 000稀釋抗His標簽鼠單克隆抗體為一抗,再加入1∶3 000稀釋的HRP標記的羊抗鼠IgG抗體為二抗,利用Bio-Rad公司ECL發(fā)光試劑盒或DAB試劑盒進行顯色。
將純化的nsp4蛋白按照1∶1體積比與弗氏完全佐劑混合,充分乳化后,背部皮下多點注射新西蘭大白兔3 只,劑量為1 mg/只。以后每隔3周用純化的蛋白與弗氏不完全佐劑1∶1混合、乳化進行2次加強免疫,免疫劑量均為1 mg/只。3次免疫之前新西蘭大白兔均通過耳緣靜脈采血,4 ℃離心分離血清,–80 ℃保存?zhèn)溆谩?/p>
采用間接ELISA方法測定抗體效價,免疫前兔血清作陰性對照。用純化的nsp4蛋白包被抗原200 ng/孔,4 ℃過夜、封閉,免疫兔血清經1∶102-1∶108稀釋后按 100 μL/孔加入,37 ℃孵育1 h,再加入1∶3 000稀釋的HRP標記的羊抗兔 IgG 100 μL,37 ℃孵育 1 h。利用 3 mol/L H2SO4終止反應后,使用酶標儀在OD450處讀取吸光值。
將 HP-PRRSV、經典 PRRSV 分別感染Marc-145細胞,以未接毒的細胞作為陰性對照,24 h后收集細胞裂解液經 SDS-PAGE分離后轉入PVDF膜上,加入1∶200稀釋的制備的兔多克隆抗體,加入1∶2 000稀釋的HRP標記的羊抗兔IgG抗體為二抗,DAB顯色。
將Marc-145細胞以 105個/cm2的密度鋪 96孔板。待細胞長成單層時進行接毒,培養(yǎng) 24 h后用4%多聚甲醛固定,1% trixon-100透化,以1∶200、1∶600、1∶800 稀釋兔多抗血清后 37 ℃孵育1 h,分別加入Cy3標記的羊抗兔、FITC標記的羊抗豬二抗避光37 ℃作用1 h,熒光顯微鏡和共聚焦顯微鏡下觀察結果。
以提取的HP-PRRSV TA-12毒株總RNA為模板,反轉錄合成cDNA,經PCR特異性擴增得到大小約612 bp的片段,與預期目的片段大小相符 (圖1)。
構建的重組質粒經NheⅠ、XhoⅠ雙酶切鑒定,1%瓊脂糖電泳分析,得到兩個片段分別為5 400 bp和612 bp,與預期大小相同 (圖2);測序結果分析與原序列核甘酸同源性為100% (結果未展示),表明重組質粒pET28a-nsp4構建成功。
圖1 HP-PRRSV TA-12株nsp4的擴增Fig. 1 Amplification of PRRSV nsp4 gene by PCR. M:DNA marker 5000; 1: PCR product of the nsp4 gene;2: negative control.
圖2 重組質粒pET28a-nsp4酶切鑒定結果Fig. 2 Identification of the recombinant plasmid pET28ansp4. M: DNA marker 5000; 1: undigested pET28ansp4; 2: pET28a-nsp4 digested by NheⅠand XhoⅠ.
將誘導表達的細菌裂解液用12% SDS-PAGE膠分離,考馬斯亮藍染色后結果顯示重組表達質粒pET28a-nsp4在Trasseta(DE3) 中獲得了高效表達,得到了大小約為26 kDa的可溶性重組蛋白 (圖 3)。
將誘導后的菌體超聲破碎后收集上清,按照鎳離子親和柱 (Ni+-NTA) 說明書進行蛋白純化,得到純度較高的可溶性重組蛋白 (圖4)。
采用間接ELISA方法測定抗體效價,將純化的nsp4蛋白包被抗原,以自制的兔血清為一抗,HRP標記的羊抗兔抗體為二抗。酶標儀讀數表明第3次免疫后的兔血清效價可達到106(圖5)。
圖3 SDS-PAGE分析nsp4在Trasseta(DE3) 表達Fig. 3 SDS-PAGE analysis of recombinant nsp4 expressed in Trasseta (DE3). M: protein marker; 1: the whole bacteria of pET-28a(+)transformed Trasseta(DE3) before induction; 2: the whole bacterium of pET-28a(+) transformed Trasseta (DE3) after induction;3: the whole bacterium of pET28a-nsp4 transformed Trasseta (DE3) before induction; 4: the whole bacterium of pET28a-nsp4 after induction; 5: supernatant of pET28a-nsp4 after induction; 6: precipitation of pET28a-nsp4 after induction; 7: Western blotting analysis of the recombinant nsp4 protein after induction; 8: Western blotting analysis of the whole bacteria of pET-28a(+) after induction.
圖4 nsp4純化產物SDS-PAGE及Western blotting鑒定Fig. 4 SDS-PAGE and Western blotting analysis of the recombinant protein. M: protein marker; 1: supernatant before purification; 2: supernatant after purification;3: wash buffer; 4–9: the purified recombinant nsp4 protein 3.1 mg/mL, 2.3 mg/mL, 0.8 mg/mL, 0.5 mg/mL,0.35 mg/mL, and 0.21 mg/mL; 10: Western blotting analysis of the recombinant nsp4 protein.
圖5 用間接ELISA檢測兔抗nsp4抗體滴度Fig. 5 Titration of the rabbit anti-nsp4 sera by ELISA.
用制備的 nsp4兔多克隆抗體分別與HP-PRRSV、經典PRRSV感染后的Marc-145細胞裂解物進行反應。結果顯示,HP-PRRSV和經典PRRSV自身產生的nsp4蛋白均在25 kDa處出現(xiàn)特異性反應條帶,而未感染PRRSV的細胞在相應位置沒有出現(xiàn)條帶 (圖6)。
為進一步驗證所制備抗體的特異性,對感染HP-PRRSV和經典PRRSV后的Marc-145細胞進行了IFA檢測,熒光顯微鏡觀察結果顯示,制備的抗體在1∶800稀釋時均能夠檢測到較強的熒光信號 (圖7)。共聚焦觀察結果表明,nsp4位于細胞漿中,而用PRRSV陽性血清檢測的病毒成分則分布于細胞漿和細胞核 (圖8)。
圖6 用Western blotting鑒定兔抗nsp4血清特異性Fig. 6 Identification of the rabbit anti-nsp4 sera by Western blotting. M: protein marker; 1: TA-12-infected Marc-145 cell lysates; 2: CH-1R-infected Marc-145 cell;3: uninfected Marc-145 cell lysates.
圖7 用IFA鑒定兔抗nsp4抗血清(200×)Fig. 7 Identification of the rabbit anti-nsp4 sera by IFA(200×).
圖8 用共聚焦顯微鏡觀察nsp4的亞細胞定位(630×)Fig. 8 Localization of the nsp4 protein in the PRRSV-infected cellsby confocal microscopy(630×).
PRRSV感染機體后,在nsp4的作用下,可產生多個非結構蛋白,在這些非結構蛋白中,nsp1、nsp2、nsp4和nsp7包含有B細胞表位,并且能刺激機體產生抗體[17-22]。其中 nsp2和nsp7可以作為PRRSV不同分離株鑒別診斷的方法。nsp4也包含B細胞表位,在 PRRSV感染的早期也能檢測到抗nsp4的抗體,說明nsp4具有較強的抗原性[23-27]。本研究中利用原核表達系統(tǒng)成功表達純化了nsp4蛋白,通過對表達條件的優(yōu)化,獲得了可溶性表達??扇苄员磉_的蛋白更加接近天然構象,保留原有的線性表位和構象表位,誘導產生的抗體水平較高,特異性較強。將nsp4免疫新西蘭大白兔,經3次免疫后獲得的抗 nsp4抗體的效價能達到 106。并且該抗體可應用于IFA、Western blotting等常規(guī)實驗,具有較高的特異性和敏感性。
通過用制備的抗 nsp4抗體對感染的 HPPRRSV的 Marc-145分析發(fā)現(xiàn),nsp4位于細胞漿中,這與已報道的nsp4可在細胞核中檢測到不同[28]。其原因可能為nsp4的表達方法不同,我們的研究中是PRRSV感染的細胞,而已報道的是將nsp4基因克隆入帶有GFP標簽的真核表達載體中進行表達,GFP可在胞漿、胞核中均能檢測到,因此nsp4在胞核中檢測到可能是GFP引導而導致的入核。
nsp4具有復雜和重要的生物學功能,除了包含有 B細胞表位,可刺激機體產生高效價抗體外,還可以作為蛋白酶裂解多聚蛋白產生多個非結構蛋白,以及通過干擾 NF-κB通路而抑制IFN-β產生而抑制機體的先天性免疫反應[29-30]。但對于nsp4在PRRSV感染過程中的具體作用未知。DNAStar對來自不同毒力的nsp4氨基酸序列分析發(fā)現(xiàn),其同源性達到 97.5%。Western blotting和IFA結果也證明,制備的抗體與經典PRRSV的 nsp4也可以反應,擴大了其應用范圍,為進一步揭示nsp4功能的研究提供了重要平臺。
REFERENCES:
[1] Paton DJ, Brown IH, Edwards S, et al. ‘Blue ear’disease of pigs. Vet Rec, 1991, 128(26): 617.
[2] Wensvoort G, Terpstra C, Pol JMA, et al. Mystery swine disease in the Netherlands: the isolation of Lelystad virus. Vet Q, 1991, 13(3): 121–130.
[3] Guo BQ, Chen ZS, Liu WX, et al. Study on isolation of PRRSV from aborted fetuses suspected of PRRS.Chin J Prev Vet Med, 1996, (2): 1–5 (in Chinese).郭寶清, 陳章水, 劉文興, 等. 從疑似PRRS流產胎兒分離 PRRSV的研究. 中國畜禽傳染病,1996, (2): 1–5.
[4] Tong GZ, Zhou YJ, Hao XF, et al. Highly pathogenic porcine reproductive and respiratory syndrome,China. Emerg Infect Dis, 2007, 13(9): 1434–1436.
[5] Tian KG, Yu XL, Zhao TZ, et al. Emergence of fatal PRRSV variants: unparalleled outbreaks of atypical PRRS in China and molecular dissection of the unique hallmark. PLoS ONE, 2007, 2(6): e526.
[6] Li YF, Wang XL, Bo KT, et al. Emergence of a highly pathogenic porcine reproductive and respiratory syndrome virus in the Mid-Eastern region of China. Vet J, 2007, 174(3): 577–584.
[7] An TQ, Tian ZJ, Xiao Y, et al. Origin of highly pathogenic porcine reproductive and respiratory syndrome virus, China. Emerg Infect Dis, 2010,16(2): 365–367.
[8] Jiang YF, Zhou YJ, Tian ZJ, et al. Identification of aspecific epitope on nonstructural protein 2 of an attenuated strain of highly pathogenic porcine reproductive and respiratory syndrome virus. Chin J Anim Infect Dis, 2009, 17(3): 1–7 (in Chinese).姜一峰, 周艷君, 田志軍, 等. 高致病性豬繁殖與呼吸綜合征病毒 HuN4株致弱毒株特異性抗原表位的鑒定. 中國動物傳染病學報, 2009, 17(3): 1–7.
[9] Hao XF, Zhou YJ, Tian ZJ, et al. Development of a RT-PCR method for differentiation of the highly pathogenic PRRSVs and the classical PRRSVs. Chin J Prev Vet Med, 2007, 29(9): 704–709 (in Chinese).郝曉芳, 周艷君, 田志軍, 等. 高致病性豬繁殖與呼吸綜合征病毒 RT-PCR鑒別診斷方法的建立. 中國預防獸醫(yī)學報, 2007, 29(9): 704–709.
[10] Dea S, Gagnon CA, Mardassi H, et al. Antigenic variability among North American and European strains of porcine reproductive and respiratory syndrome virus as defined by monoclonal antibodies to the matrix protein. J Clin Microbiol,1996, 34(6): 1488–1493.
[11] Dea S, Gagnon CH, Pirzadeh B, et al. Current knowledge on the structural proteins of porcine reproductive and respiratory syndrome (PRRS) virus:comparison of the North American and European isolates. Arch Virol, 2000, 145(4): 659–688.
[12] Wu WH, Fang Y, Farwell R, et al. A 10-kDa structural protein of porcine reproductive and respiratory syndrome virus encoded by ORF2b.Virology, 2001, 287(1): 183–191.
[13] Allende R, Lewis TL, Lu Z, et al. North American and European porcine reproductive and respiratorysyndrome viruses differ in non-structural protein coding regions. J Gen Virol, 1999, 80(2): 307–315.
[14] Snijder EJ, Meulenberg JJ. The molecular biology of arteriviruses. J Gen Virol, 1998, 79(5): 961–979.
[15] Snijder EJ, Wassenaar AL, van Dinten LC, et al.The arterivirus nsp4 protease is the prototype of a novel group of chymotrypsin-like enzymes, the 3C-like serine proteases. J Biol Chem, 1996,271(9): 4864–4871.
[16] van Dinten LC, Rensen S, Gorbalenya AE, et al.Proteolytic processing of the open reading frame 1b-encoded part of arterivirus replicase is mediated by nsp4 serine protease and is essential for virus replication. J Virol, 1999, 73(3): 2027–2037.
[17] Wassenaar AL, Spaan WJ, Gorbalenya AE, et al.Alternative proteolytic processing of the arterivirus replicase ORF1a poly protein: evidence that NSP2 acts as a cofactor for the nsp4 serine protease. J Virol, 1997, 71(12): 9313–9322.
[18] Xu AT, Zhou YJ, Li GX, et al. Characterization of the biochemical properties and identification of amino acids forming the catalytic center of 3C-like proteinase of porcine reproductive and respiratory syndrome virus. Biotechnol Lett, 2010, 32(12):1905–1910.
[19] Snijder EJ, Wassenaar ALM, Spaan WJM.Proteolytic processing of the N-terminal region of the equine arteritis virus replicase. Adv Exp Med Biol, 1993, 342: 227–232.
[20] Snijder EJ, Wassenaar AL, Spaan WJ. Proteolytic processing of the replicase ORF1a protein of equine arteritis virus. J Virol, 1994, 68(9): 5755–5764.
[21] Van Dinten LC, Wassenaar AL, Gorbalenya AE, et al. Processing of the equine arteritis virus replicase ORF1b protein: identification of cleavage products containing the putative viral polymerase and helicase domains. J Virol, 1996, 70(10): 6625–6633.
[22] Yuan SZ, Zhang N, Xu L, et al. Induction of apoptosis by the nonstructural protein 4 and 10 of porcine reproductive and respiratory syndrome virus. PLoS ONE, 2016, 11(6): e0156518.
[23] Mardassi H, Mounir S, Dea S, et al. Structural gene analysis of a Quebec reference strain of porcine reproductive and respiratory syndrome virus(PRRSV). Adv Exp Med Biol, 1995, 380: 277–281.
[24] Dokland T. The structural biology of PRRSV. Virus Res, 2010, 154(1/2): 86–97.
[25] Ma ZT, Wang YL, Zhao HY, et al. Porcine reproductive and respiratory syndrome virus nonstructural protein 4 induces apoptosis dependent on its 3C-like serine protease activity. PLoS ONE,2013, 8(7): e69387.
[26] Huang C, Du YP, Yu ZB, et al. Highly Pathogenic porcine reproductive and respiratory syndrome virus Nsp4 cleaves VISA to impair antiviral responses mediated by RIG-I-like receptors. Sci Rep, 2016, 6: 28497.
[27] Zhang LL, Liu J, Bai J, et al. Poly (I:C) inhibits porcine reproductive and respiratory syndrome virus replication in MARC-145 cells via activation of IFIT3. Antiviral Res, 2013, 99(3): 197–206.
[28] Liu HL, Fang Y. Nuclear localization of porcine reproductive and respiratory syndrome virus nonstructural protein 4. J Nanjing Agric Univ,2011, 34(4): 89–94 (in Chinese).劉惠莉, 方瑩. 豬繁殖與呼吸綜合征病毒非結構蛋白 nsp4細胞核定位研究. 南京農業(yè)大學學報,2011, 34(4): 89–94.
[29] Zhang LJ, Li JN, Hu L, et al. PRRSV nsp4 inhibits type I interferon production by cleaving NF-κB essential modulator. Chin J Prev Vet Med, 2014,36(3): 169–173 (in Chinese).張利杰, 李江南, 胡亮, 等. 豬繁殖與呼吸綜合征病毒NSP4切割天然免疫分子NEMO抑制I型干擾素的產生. 中國預防獸醫(yī)學報, 2014, 36(3):169–173.
[30] Li CY, Wang SN, Li JN, et al. The inhibition of the interferon-β expression by porcine reproductive and respiratory syndrome virus NSP4 via cleaving IKKα. Chin J Prev Vet Med, 2016, 38(6): 425–428(in Chinese).李長堯, 王勝男, 李江南, 等. 豬繁殖與呼吸綜合征病毒NSP4切割IKKα抑制β干擾素產生的研究. 中國預防獸醫(yī)學報, 2016, 38(6): 425–428.
(本文責編 陳宏宇)
Preparation and identification of polyclonal antibodies specific for nsp4 protein of porcine reproductive and respiratory syndrome virus
Xinna Cai, Min Tan, Shengliang Cao, Yan Huang, Fachao Sun, Yingli Shang,Sidang Liu, and Yihong Xiao
College of Veterinary Medicine and Animal Sciences, Shandong Agricultural University, Tai’an 271000, Shandong, China
To obtain specific antibodies against nsp4 protein of porcine reproductive and respiratory syndrome virus(PRRSV), nsp4 gene was amplified by RT-PCR and cloned into pET-28a(+) vector, designated pET28a-nsp4. pET28a-nsp4was transformed into Escherichia coli Trasseta (DE3) cells and expressed after induction of IPTG. SDS-PAGE analysis showed that the recombinant protein was expressed in soluble form with the molecular weight of 26 kDa. The soluble fusion protein in the supernatant was purified using Ni+-NTA affinity chromatography. New Zealand rabbits were immunized by the purified nsp4 and anti-sera against nsp4 were obtained. The titer of polyclonal antibodies was about 106and showed good specificity and sensitivity in the immunofluorescence assay and Western blotting analysis. The polyclonal antibodies also recognized native nsp4 form PRRSV infected Marc-145 cells, providing a useful tool in PRRSV replication mechanism study.
porcine reproductive and respiratory syndrome virus, nsp4, polyclonal antibody, identification
March 25, 2017; Accepted: June 14, 2017
Yihong Xiao. Tel: +86-538-8242478; Fax: +86-538-8241419; E-mail: xiaoyihong01@163.com
Supported by: Natural Science Foundation of Shandong Province (No. ZR2014CM024), Funds of Shandong “Double Tops”.
山東省自然科學基金 (No. ZR2014CM024),山東省“雙一流”獎補基金資助。