劉文,于薇
磁共振評估冠狀動脈粥樣硬化斑塊的研究進展
劉文,于薇*
作者單位:
首都醫(yī)科大學附屬北京安貞醫(yī)院,北京 100029
冠狀動脈粥樣硬化性心臟病(coronary atherosclerosis heart disease,CHD)是人類主要死亡原因之一,其中急性冠脈綜合征(acute coronary syndromes,ACS)是導致患者預后不良和發(fā)生猝死的主要原因。尸檢病理結(jié)果發(fā)現(xiàn),ACS發(fā)病的主要原因為動脈粥樣硬化易損斑塊破裂或內(nèi)皮表面糜爛導致冠脈內(nèi)血栓形成。磁共振成像(magnetic resonance imaging,MRI)作為一種無創(chuàng)、可重復性強、組織分辨率高的檢查方法,多對比成像序列經(jīng)過20余年的研發(fā)在頸動脈粥樣硬化斑塊中的應用已得到廣泛證實,并在臨床上及病理對照上得到進一步的驗證。但冠狀動脈管壁成像由于成像技術(shù)復雜,目前尚處于研究階段。本文就磁共振成像評估冠狀動脈粥樣硬化斑塊的研究進展進行綜述。
冠狀動脈疾病;斑塊,動脈粥樣硬化;易損斑塊;磁共振成像
冠狀動脈粥樣硬化性心臟病(coronary atherosclerosis heart disease,CHD)是人類主要死亡原因之一,近年來,其發(fā)病率呈逐年上升趨勢。急性冠脈綜合征(acute coronary syndromes,ACS)的主要發(fā)病原因為冠狀動脈粥樣硬化斑塊破裂導致的動脈內(nèi)血栓形成。此外,許多心源性猝死也與冠脈斑塊破裂及其合并癥有關(guān)。易于破裂并導致血栓形成的斑塊稱為易損斑塊(vulnerable plaque),或高危斑塊(high-risk plaque)。這些易損斑塊的主要形態(tài)學特征為:薄纖維帽、斑塊內(nèi)出血、大的脂質(zhì)壞死核心、炎癥反應及內(nèi)膜新生血管化[1-6]。因此,早期診斷冠狀動脈粥樣硬化斑塊的穩(wěn)定性已成為國內(nèi)外研究熱點之一。應用無創(chuàng)影像學檢查技術(shù)對易損斑塊進行早期識別、預測有利于對冠心病進行危險性診斷及預后評估。
目前,臨床診斷易損冠脈斑塊的影像學檢查技術(shù)主要有選擇性冠狀動脈造影(coronary angiography,CAG)、冠狀動脈CT血管成像(coronary computed tomographic angiography,CCTA)、血管內(nèi)超聲(intravascular ultrasound,IVUS)、高分辨率核磁共振成像(magnetic resonance imaging,MRI)、光學相干斷層成像術(shù)(optical coherence tomography,OCT)。IVUS及OCT作為冠脈腔內(nèi)成像技術(shù),可對不穩(wěn)定斑塊在成分及形態(tài)兩方面進行評價,診斷準確性高,可作為冠狀動脈管壁成像的參照標準,但對于較小管腔或狹窄血管段的觀察IVUS和OCT均受到限制,且由于其有創(chuàng)性、價格昂貴,不能常規(guī)應用于斑塊的危險分層。MRI是一種可重復性強、無創(chuàng)、無放射性的檢查方法,高場強(3.0 T) MRI的空間分辨力高,高分辨、多對比成像序列在大、中動脈(如頸動脈)粥樣硬化斑塊的評估中已得到廣泛證實,并在臨床上得到進一步的驗證。但MRI對小動脈(如冠狀動脈)粥樣硬化斑塊的評估尚處于研究階段。因此,本文就冠狀動脈粥樣硬化斑塊MRI成像研究進展進行簡要綜述。
冠狀動脈斑塊的MRI成像由于受呼吸、心臟跳動等因素的影響,加之冠狀動脈本身管腔的直徑細小,一直以來對其成像都具有極高挑戰(zhàn)性。對于呼吸和心跳運動偽影常采用屏氣、呼吸運動導航和心電門控技術(shù)來消除。通過雙反轉(zhuǎn)回波(Dual-IR/Double-IR)黑血技術(shù)來實現(xiàn)管腔血流抑制,而脂肪抑制技術(shù)則通過反轉(zhuǎn)恢復脈沖實現(xiàn)對周圍組織的抑制,提高組織分辨率。此外,空間分辨率不足是導致MRI低估病變狹窄段管腔面積的主要原因,也是導致其不能對斑塊成分進行精確分析的主要原因。但若增加空間分辨率會降低信噪比,同時延長掃描時間,從而降低圖像質(zhì)量。因此,不能無限制增加空間分辨率。
常規(guī)冠狀動脈管壁成像一般采用雙反轉(zhuǎn)回波黑血技術(shù)(Dual-IR/Double-IR)與三維梯度回波序列或二維快速自旋回波序列相結(jié)合[7-10],來抑制血流信號,從而提供管腔和管壁的對比。其原理是:在圖像采集前先施加一個非選擇性180°反轉(zhuǎn)脈沖,使全身組織磁化發(fā)生反轉(zhuǎn),包括血液;緊接著再施加一個選擇性180°反轉(zhuǎn)脈沖,使成像層面的血液磁化再次反轉(zhuǎn),而層面外的血液例外,于是成像層面內(nèi)的血液信號被抑制,避免了血液流動偽影;在雙反轉(zhuǎn)脈沖之后施加脂肪飽和預脈沖以抑制心外膜脂肪信號。這樣,冠狀動脈管壁與管腔內(nèi)血液以及血管周圍組織之間形成了良好的對比。但常規(guī)冠脈黑血成像技術(shù)需要呼吸導航,掃描時間長短要依據(jù)導航的效率來決定,通常要15 min以上。另外,除黑血管壁成像外,還需要單獨掃描亮血磁共振血管造影(magnetic resonance angiography,MRA),又額外需要增加5~10 min的掃描時間。此外,掃描范圍不能覆蓋全心,僅為血管的近中段。采集的數(shù)據(jù)非各向同性,分辨率僅為1.34 mm×1.35 mm×1.60 mm。
CATCH是一項新近研發(fā)的掃描技術(shù)[11],主要由前瞻性心電門控、應用反轉(zhuǎn)恢復準備的三維黃金角放射采集的梯度回波序列、高效呼吸門控技術(shù)聯(lián)合回顧性運動校正組成。該技術(shù)采用隔次心跳發(fā)射反轉(zhuǎn)恢復脈沖,從而使黑血T1WI圖像及亮血解剖參考圖像交錯采集。采用頻率選擇絕熱反轉(zhuǎn)恢復脈沖抑制心臟外的組織,以減少徑向采樣不足導致的條形偽影。應用頻率選擇絕熱反轉(zhuǎn)恢復脈沖聯(lián)合水激發(fā)脈沖抑制心外膜脂肪。用于重建的所有圖像數(shù)據(jù)(相當于100%有效呼吸導航)均不采用呼吸導航,掃描期間,膈肌導航儀開啟“僅監(jiān)測”模式監(jiān)測受試者的呼吸狀況,反轉(zhuǎn)恢復脈沖后立即應用反跳脈沖恢復導航信號。該技術(shù)能將圖像分辨率提高到各向同性1.1 mm×1.1 mm×1.1 mm。更大的優(yōu)勢在于此項技術(shù)能在10 min的掃描時間內(nèi)同時獲得全心冠脈亮血MRA和黑血管壁圖像,其亮血序列能夠評估冠脈解剖異常及管腔狹窄嚴重程度,黑血序列作為重度T1加權(quán)圖像,冠脈易損斑塊在圖像上表現(xiàn)為高亮信號,與被抑制的其他組織成分間對比良好,極易識別。
2000年,Worthley等[12]應用高脂飼料喂養(yǎng)聯(lián)合球囊拉傷法成功建立了小型豬的動脈粥樣硬化模型。他們在完整的豬離體心臟上對所有冠狀動脈進行掃描,保留了冠狀動脈曲線。該項研究成功顯示了斑塊內(nèi)的脂質(zhì)心、纖維細胞成分、鈣化及出血。由于Worthley等采用曲面成像法采集冠脈管壁圖像,為后來活體研究冠脈斑塊提供了可能。同時,也為在體監(jiān)測斑塊的發(fā)生、發(fā)展提供了平臺。因技術(shù)難度大、實驗成本高,此后,再無相關(guān)理想動脈粥樣硬化模型的文章發(fā)表。
2.2.1 冠狀動脈管壁MRI成像的技術(shù)可行性研究
2000年,F(xiàn)ayad等[13]對8名健康志愿者和5例冠心病患者進行黑血MRI冠脈管壁成像,并成功獲得了2D黑血管壁圖像,同時,該研究發(fā)現(xiàn)冠心病患者的冠脈管壁厚度較正常人增厚,這在患者的冠狀動脈造影上也得到了進一步證實。該項研究證實高分辨率黑血MRI冠狀動脈管壁成像技術(shù)能夠識別早期冠狀動脈粥樣硬化斑塊,從而使冠狀動脈管壁MRI成像技術(shù)成為可能。2002年,Kim等[14]采用雙反轉(zhuǎn)回波(Dual-IR/Double-IR)及亮血序列對6名健康志愿者和6例冠心病患者進行3D容積采集,并成功獲得右冠狀動脈近中段3D管壁圖像。但因技術(shù)復雜、影響因素較多,未見左冠狀動脈管壁成像的相關(guān)報道。因此,這僅僅是初步的技術(shù)可行性研究。
2.2.2 MRI技術(shù)評價冠狀動脈粥樣硬化斑塊的可重復性研究和冠脈斑塊不同表現(xiàn)及強化方式的研究
2005年,Desai等[15]對18名健康志愿者進行3D右冠狀動脈MRI管壁成像及半定量分析,并于1個月后對其中的8名受試者進行再次成像。研究結(jié)果證實3D右冠狀動脈成像和半定量分析可重復性良好。2006年,Maintz等[16]嘗試對9例多層螺旋CT (multi-slice computed tomography,MSCT)證實有冠狀動脈粥樣斑塊的患者進行3D T1加權(quán)成像(T1-weighted imaging,T1WI)冠狀動脈管壁增強成像,研究結(jié)果表明斑塊對對比劑的攝取因其性質(zhì)的不同而不同,但這能否成為斑塊定性、分類的依據(jù)還有待于進一步研究。2007年,Yeon等[17]對6名健康志愿者及14例冠心病患者進行冠狀動脈管壁MRI延遲強化成像,研究結(jié)果表明,具有粥樣硬化斑塊的冠脈節(jié)段延遲強化程度明顯高于正常節(jié)段。這提示,MRI延遲強化有助于識別冠狀動脈粥樣硬化斑塊。
2.2.3 MRI管壁成像與有創(chuàng)腔內(nèi)影像技術(shù)(IVUS、OCT)的對照研究和臨床癥狀之間的相關(guān)性研究
以有創(chuàng)腔內(nèi)影像技術(shù)(IVUS、OCT)為對照,進一步證實MRI黑血冠脈管壁成像技術(shù)在冠脈斑塊成分定量、定性分析中的作用。(1)相關(guān)概念的提出及易損斑塊的識別。Kawasaki等[18]通過非對比增強TlWI技術(shù)進行斑塊成像,并與MSCT及血管內(nèi)超聲對比。將斑塊信號強度與心肌信號強度比值(plaque-to-myocardium signal intensity ratio,PMR)大于1.0的冠脈斑塊定義為高信號斑塊(highintensity plaque,HIP)。研究結(jié)果表明,與非高信號斑塊相比,T1WI上HIP與超聲衰減、正性重構(gòu)、顯著低CT值及慢流現(xiàn)象有良好相關(guān)性。第一次證明了非對比增強冠狀動脈T1WI有助于評價冠脈斑塊成分。Li等[19]對41例具有非鈣化斑塊患者進行MR冠脈增強檢查,結(jié)果表明易損斑塊具有早期強化的特征。(2)冠脈HIP與易損斑塊形態(tài)之間的相關(guān)性及對血栓的提示。Oei等[20]初步證實,應用冠狀動脈黑血TlWI成像技術(shù)結(jié)合冠脈MRA有助于冠心病患者冠狀動脈粥樣硬化斑塊內(nèi)出血的診斷。Jansen等[21]對18例首次心絞痛發(fā)作后24~72 h內(nèi)急性冠脈綜合征發(fā)作的患者進行冠狀動脈非對比增強3D T1加權(quán)成像,同時,對患者進行CAG檢查。結(jié)果顯示,其中10例CAG證實有冠脈內(nèi)血栓形成,與冠脈內(nèi)無血栓者相比,冠脈內(nèi)血栓形成節(jié)段MR圖像信號較高。這表明,非對比增強T1WI上冠脈斑塊高信號與冠脈內(nèi)血栓形成有關(guān)。Matsumoto等[22]對100例冠狀動脈粥樣硬化患者進行冠狀動脈斑塊成像,并與OCT檢測到的斑塊形態(tài)及患者心絞痛臨床嚴重程度(Braunwald分級)對比。研究結(jié)果首次證實,T1WI上壁內(nèi)或腔內(nèi)高信號(high-intensity signal,HIS)與心絞痛臨床嚴重程度及OCT檢測到的斑塊形態(tài)有關(guān)(圖1)。此外,他們對研究人群進行多變量分析顯示,血栓形成、內(nèi)膜新血管生成是腔內(nèi)HIS的獨立危險因素,而巨噬細胞的存在及缺乏鈣化與壁內(nèi)HIS相關(guān)。在破裂和出血的斑塊中,內(nèi)膜新生血管的存在更易導致血栓形成。Xie[11]研究證實,全心冠脈斑塊定性技術(shù)(CATCH序列)上的冠脈HIS與OCT所檢測到的易損斑塊形態(tài)相關(guān)性良好。既往及新近研究結(jié)果顯示,早期冠脈內(nèi)血栓含有高鐵血紅蛋白,能產(chǎn)生短T1信號,這與T1WI上腔內(nèi)HIS的形成有關(guān)。而T1WI上冠脈壁內(nèi)HIS可能提示與炎癥相關(guān)的斑塊內(nèi)出血[11,20-23]。諸研究表明,T1WI成像技術(shù)有望成為識別與血栓形成、斑塊內(nèi)出血相關(guān)易損斑塊的新的成像技術(shù)。(3)冠脈HIS與臨床癥狀、遠期預后等臨床事件的相關(guān)性。Noguchi等[24]對583例冠心病患者隨訪研究發(fā)現(xiàn),非對比增強T1WI上冠脈HIS更有可能代表發(fā)展為遠期心血管事件的易損斑塊,與遠期冠脈事件有關(guān),可能代表評估易損斑塊的新的無創(chuàng)、量化預測因子。
圖1 A:全心冠脈MRA顯示左側(cè)前降支近端嚴重狹窄(箭);B~D:T1WI所示冠脈高信號(箭)(B:斜位,C:軸位,D:短軸位);E:冠脈高信號與相應嚴重狹窄節(jié)段的融合成像(圓圈);F:CAG顯示左側(cè)前降支近端嚴重狹窄(圓圈);G、H:OCT顯示與冠脈高信號相應區(qū)域的冠脈內(nèi)血栓形成(星號)及內(nèi)膜新生血管形成(箭頭)(引自:參考文獻[22])Fig. 1 A: Whole-heart coronary magnetic resonance angiography revealed severe stenosis in the proximal left anterior descending coronary artery(arrow); B—D: Coronary T1WI revealed HIS (arrow) (B: Oblique; C: Axial; D: Short-axis image); E: Fused image demonstrated HIS (circle) in the area corresponding to the significant stenosis; F: CAG showed significant coronary stenosis (circle); G, H: OCT examination showed intracoronary thrombus(asterisk) and intimal vasculature (arrow head) in the corresponding area of HIS (Cite from: reference[22]).
隨著技術(shù)的進步及臨床需求的增加,血管成像技術(shù)已不再滿足于僅觀察管腔的狹窄或擴張程度,直接觀察血管壁病變的管壁成像技術(shù)已成為發(fā)展趨勢。同時,近年來,該技術(shù)的研究方向更傾向于早期識別與遠期心血管事件相關(guān)的易損斑塊特征。MR血管成像技術(shù)在大、中動脈成像(如頸動脈成像)中取得了滿意的結(jié)果[25-26]。研究證明,冠狀動脈黑血管壁成像技術(shù)與OCT檢測到的斑塊形態(tài)具有良好的相關(guān)性,可以發(fā)現(xiàn)冠狀動脈的粥樣硬化斑塊,并且能夠識別與血栓形成、斑塊內(nèi)出血相關(guān)的易損斑塊。雖然目前的技術(shù)尚不能對冠狀動脈粥樣硬化斑塊進行精確評估,但隨著MR多參數(shù)冠狀動脈管壁成像技術(shù)的進步,能提供關(guān)于MR冠脈血管和管壁的更可靠、直觀的信息。真正實現(xiàn)包括冠脈解剖、心臟功能、心肌灌注及心肌活性在內(nèi)的“一站式”心臟檢查。
[References]
[1] Ge JB, Liang C. The diagnosis and treatment of acute coronary syndrome (ACS). Chinese Journal of Postgraduates of Medicine,2002, 25(2): 1-3.葛均波, 梁春. 急性冠脈綜合征(ACS)的診治進展. 醫(yī)師進修雜志,2002, 25(2): 1-3.
[2] Cai JM, Hat sukami TS, Ferguson MS, et al. Classification of human carotid atherosclerotic lesions with in vivo multicontrast magnetic resonance imaging. Circulation, 2002, 106(11): 1368-1373.
[3] Saam T, Ferguson MS, Yarnykh VL, et al. Quantitative evaluation of carotid plaque composition by in vivo MRI. Arterioscler Thromb Vasc Biol, 2005, 25(1): 234-239.
[4] Chu B, Kampschulte A, Ferguson MS, et al. Hemorrhage in the atherosclerotic carotid plaque: A high-resolution MRI study. Stroke,2004, 35(5): 1079-1084.
[5] Kerwin WS, O'Brien KD, Ferguson MS, et al. Inflammation in carotid atherosclerotic plaque: A dynamic contrast-enhanced MR imaging study. Radiology, 2006, 241(2): 459-468.
[6] Kerwin W, Hooker A, Spilker M, et al. Quantitative magnetic resonance imaging analysis of neovasculature volume in carotid atherosclerotic plaque. Circulation, 2003, 107(6): 851-856.
[7] Botllar RM, Kim WY, Bornert P, et a1. 3D coronary vessel waIl imaging utilizing a local inversion technique with spiral image acquisition. Magnetic Resonance in Medicine, 2001, 46(5): 848-854.
[8] Desai MY, Lai SG, Bannet C, et a1. Reproducibility of 3D freebreathing Magnetic coronary vessel wall imaging. Eur Heart J, 2005,26(21): 2320-2324.
[9] Fayad ZA, Fuster V, Fallon JT, et e1. Noninvasive in vivo human coronary artery lumen and wall imaging using black blood magnetic resonance imaging. Ciredation, 2000, 102(5): 506-510.
[10] Botnar RM, Stuber M, Kissinger KV, et a1.Noninvasive coronary vessel wall and plaque imaging with magnetic resonance imaging.Circulation, 2000, 102(21): 2582- 2587.
[11] Xie Y. Coronary atherosclerosis T1-weighed characterization with integrated anatomical reference (CATCH). Journal of Cardiovascular Magnetic Resonance, 2016, 18(1): 1-3.
[12] Worthley SG, Helft G, Fuster V, et al. High resolution ex vivo magnetic resonance imaging of in situ coronary and aortic atherosclerotic plaque in a porcine model. Atherosclerosis, 2000,150(2): 321-329.
[13] Fayad ZA, Fuster V, Fallon JT, et al. Noninvasive in vivo human coronary artery lumen and wall imaging using black-blood magnetic resonance imaging. Circulation, 2000, 102(5): 506-510.
[14] Kim WY, Stuber M, Bornert P, et al. Three-dimensional black-blood cardiac magnetic resonance coronary vessel wall imaging detects positive arterial remodeling in patients with nonsignificant coronary artery disease. Circulation, 2002, 106(3): 296-299.
[15] Desai MY, Lai S, Barmet C, et al. Reproducibility of 3D free-breathing magnetic resonance coronary vessel wall imaging. Eur Heart J, 2005, 26(21): 2320-2324.
[16] Maintz D, Ozgun M, Hoffmeier A, et al. Selective coronary artery plaque visualization and differentiation by contrast-enhanced inversion prepared MRI. Eur Heart J, 2006, 27(14): 1732-1736.
[17] Yeon SB, Sabir A, Clouse M, et al. Delayed -enhancement cardiovascular magnetic resonance coronary artery wall imaging comparison with multislice computed tomography and quantitative coronary angiography. J Am Coll Cardiol, 2007, 50(5): 441-447.
[18] Kawasaki T, Koga S, Koga N, et al. Characterization of hyperintense plaque with noncontrast T(1)-weighted cardiac magnetic resonance coronary plaque imaging: comparison with multislice computed tomography and intravascular ultrasound. JACC Cardiovasc Imaging,2009, 2(6): 720-728.
[19] Li T, Zhao X, Liu X, et a1. Evaluation of the early enhancement of coronary atherosclerotic plaque by contrast-enhanced MR angiography. Eur J Radiol, 2011, 80(1): 136-142.
[20] Oei ML, Ozgun M, Seifarth H, et al. T1-weighted MRI for the detection of coronary artery plaque haemorrhage.Eur Radiol, 2010,20(12): 2817-2823.
[21] Jansen CH, Perera D, Makowski MR, et al. Detection of intracoronary thrombus by magnetic resonance imaging in patients with acute myocardial infarction. Circulation, 2011, 124(4): 416-424.[22] Matsumoto K, Ehara S, Hasegawa T, et al. Localization of coronary high-intensity signals on T1-weighted MR imaging: relation to plaque morphology and clinical severity of angina pectoris. JACC Cardiovasc Imaging, 2015, 8(10): 1143-1152.
[23] Ehara S, Hasegawa T, Nakata S, et al. Hyperintense plaque identified by magnetic resonance imaging relates to intracoronary thrombus as detected by optical coherence tomography in patients with angina pectoris. Eur Heart J Cardiovasc Imaging, 2012, 13(5): 394-399.
[24] Noguchi T, Kawasaki T, Tanaka A, et al. High-intensity signals in coronary plaques on noncontrast T1-weighted magnetic resonance imaging as a novel determinant of coronary events. J Am Coll Cardiol, 2014, 63(10): 989-999.
[25] Te Boekhorst BC, Cramer MJ, Pasterkamp G, et al. Recent developments and new perspectives on imaging of atherosclerotic plaque: role of anatomical, cellular and molecular MRI Part ⅠandⅡ. Int J Cardiovasc Imaging, 2010, 26(4): 433-445.
[26] Wasserman BA, Astor BC, Sharrett AR, et al. MRI measurements ofcarotid plaque in the atherosclerosis risk in communities (ARIC)study: methods, reliability and descriptive statistics. J Magn Reson Imaging, 2010, 31(2): 406-415.
Research progress in the evaluation of coronary atherosclerosis plaque by magnetic resonance imaging
LIU Wen, YU Wei*
Beijing Anzhen Hospital Affilliated to Capital Medical Universily, Beijing 100029,China
*Correspondence to: Yu W, E-mail: nxyw1969@163.com
Coronary atherosclerosis heart disease (CHD) is one of the leading causes of death, and the patients with acute coronary syndrome (ACS) is the main cause of poor prognosis and sudden death. Autopsy pathology shows that vulnerable plaque rupture or erosion of the endothelial surface with thrombus formation is recognized as the most important mechanism of acute coronary syndromes. Magnetic resonance imaging (MRI) is noninvasive, with high reproducibility and perfect soft tissue characterization. After 20 years of hard work, carotid arteries allow identification of plaque morphology using multi-contrast weighted MRI, which has got additional validation studies using histopathologic materials and clinical practice. Although,at present, coronary artery wall imaging is still in the stage of research due to the complexity of imaging technology. In this article, the research progress of magnetic resonance imaging to evaluate coronary artery atherosclerotic plaque is reviewed.
Coronary disease; Plaque, atherosclerotic; Vulnerable plaque; Magnetic resonance imaging
14 Dec 2016, Accepted 20 Jan 2017
國家自然科學基金項目(編號:81071196,81541126);衛(wèi)生公益性行業(yè)科研專項項目(編號:201402019);北京市衛(wèi)生系統(tǒng)高層次衛(wèi)生技術(shù)人才培養(yǎng)計劃項目(編號:2013-2-005)
于薇,E-mail:nxyw1969@163.com
2016-12-14
接受日期:2017-01-20
R445.2;R743.1
A
10.12015/issn.1674-8034.2017.04.014
劉文, 于薇. 磁共振評估冠狀動脈粥樣硬化斑塊的研究進展. 磁共振成像,2017, 8(4): 312-316.
ACKNOWLEDGMENTS This work was part of National Natural Science Foundation of China (No.81071196, 81541126); Health Public Welfare Industry Special Scientific Research Projects (No.201402019); Beijing Health System High Level Health Technical Personnel Training Plan (No.2013-2-005).