付長靜,李國英,趙天龍
(1. 重慶交通大學(xué) 河海學(xué)院,重慶 400074;2. 重慶交通大學(xué) 水利水運工程教育部重點實驗室,重慶 400074;3. 南京水利科學(xué)研究院,江蘇 南京 210029)
非線性波浪作用下埋置管道上波浪力簡化計算
付長靜1, 2,李國英3,趙天龍1, 2
(1. 重慶交通大學(xué) 河海學(xué)院,重慶 400074;2. 重慶交通大學(xué) 水利水運工程教育部重點實驗室,重慶 400074;3. 南京水利科學(xué)研究院,江蘇 南京 210029)
由于淺水區(qū)波浪的非線性影響顯著,淺埋管道受非線性波浪荷載的影響大,為了保證管道長期運行的穩(wěn)定性,在管道設(shè)計過程中需要充分考慮由非線性波浪引起的波浪力??紤]孔隙水和海床土的壓縮性,基于Biot固結(jié)理論和一階近似橢圓余弦波理論,利用分離變量法推導(dǎo)了非線性波浪作用下淺水區(qū)埋置管道周圍海床的滲流壓力,進而給出了埋置管道上的波浪力壓力解析解,并與已有的文獻結(jié)果進行比較。計算結(jié)果表明,在橢圓余弦波的作用下,海底管道周圍海床內(nèi)的滲流壓力呈正弦分布,且管道所受的波浪力隨著管徑的增大而增大。
非線性波浪原理;滲流壓力;波浪力;埋置管道;孔隙水壓力;可滲海床土
Abstract: Due to the effect caused by the nonlinear shallow wave, the nonlinear wave load has a great influence on the pipelines buried shallowly. In order to ensure the stability of the pipeline, the force caused by nonlinear wave should be considered thoroughly during the pipe designing process. Taking pore water and compressibility of the seabed soil into consideration, and based on Biot consolidation theory and the first-order approximate elliptical cosine wave theory, the seepage force caused by nonlinear wave around buried pipelines in shallow water was derived by the way of variables separation, and the analytic solution of wave force around buried pipelines was proposed, and the solution was compared with others. The calculating results showed that the seepage force around buried pipelines assumed a Sine distribution under the effect of cnoidal waves, and the wave forces acting on the pipeline became bigger as the diameter increased.
Keywords: nonlinear wave theories; wave force; seepage force; buried pipeline; pore water pressure; porous seabed
隨著海洋石油勘探開采步伐的加快,海底管道的建設(shè)成為開發(fā)海洋石油天然氣不可缺少的關(guān)鍵工程之一。由于施工成本及施工難度等原因,管道鋪設(shè)大多采用淺埋方式,淺水區(qū)的海上工程受波浪荷載的影響最大,波浪的傳播會引起海床面波壓力隨周期變化,在海床中引起滲流壓力,因此為了保證管道長期運行,在設(shè)計淺埋管道時必須充分考慮波浪荷載作用下管道所受豎向總波浪力。在進行管道波浪力的求解時,通??上扔嬎愎艿乐車臐B流壓力。20世紀80年代,各國學(xué)者對管道周圍滲流壓力的求解進行了大量研究,在最初進行的解析推導(dǎo)時,常忽略了孔隙水的壓縮和土骨架的變形,假設(shè)海床土是剛性體,基于勢流理論,利用線性波浪理論,采用映像法或保角映射法提出無限或有限深海床中作用在埋置管道周圍的滲流壓力計算解析解[1]。這種假設(shè)與實際的海床情況相差比較大,并且淺水區(qū)波浪的非線性明顯,線性波浪理論僅適用于深水區(qū)的某些海況條件,用于淺水區(qū),會引起較大的誤差[2]。因此需要考慮海床土體的可壓縮性,在淺水區(qū)時考慮波浪的非線性對波浪力的影響。隨著計算機技術(shù)的發(fā)展,近年來關(guān)于非線性波對管道的作用等相關(guān)問題大多采用有限元方法[3],主要采用Stokes波浪理論[5-6]。許多學(xué)者在研究波浪理論的適用范圍時,認為Stokes波浪理論適用于深水區(qū),在淺水區(qū)更適合采用孤立波理論或橢圓余弦波理論[7]。孫昭晨等[8]曾根據(jù)一階近似橢圓余弦波理論,利用鏡像管法推導(dǎo)得到了淺水區(qū)非線性波浪作用下埋設(shè)管道上的波浪力解析解。本文在以往研究成果的基礎(chǔ)上,考慮了孔隙水和海床土體的可壓縮性,基于Biot固結(jié)理論和一階近似橢圓余弦波理論,利用分離變量法重新給出非線性波浪作用下,無限深海床中埋置管道周圍滲流壓力的解析解,進一步推導(dǎo)單位管道長度上的豎向波浪力,該解析公式較以往成果更清晰全面,解決以往研究成果公式中待定參數(shù)不明,無法直接應(yīng)用等缺陷。
一般取冪級數(shù)作為勢函數(shù)Φ,表達式為[9]:
若假定在x無窮遠處不存在波動,則自由水面z=+d處的邊界條件為:
在研究淺水區(qū)的波浪時,通常認為水質(zhì)點的豎向分速遠小于水平分速,因此忽略vz的影響,并將vx用線性化水平分速取代,則上述邊界條件可轉(zhuǎn)化為:
根據(jù)上述條件,可得到自由水面非線性影響的二階近似波動方程:
由于考慮到淺水區(qū)水質(zhì)點的豎向分速很小,因此忽略vz的影響,根據(jù)文獻[8],給出一階近似橢圓余弦波近似解:
式中:H為波高;m為波數(shù);ω為波頻率;F(κ)為模數(shù)κ的第一類完全橢圓積分;i為復(fù)數(shù);ε=exp(-πF′(κ)/F(κ)),F(xiàn)(κ)為模數(shù)為κ的第一類完全橢圓積分。
通常在計算海床表面的孔隙水壓力時,往往忽略水的黏性和摩擦力,不考慮海床表面的豎向有效應(yīng)力和剪應(yīng)力,認為其近似等于波浪在海床底部引起的波壓力,則:
式中:ρw為海水密度。
以往的研究大多基于勢流理論,忽略孔隙水的壓縮和土骨架的變形,這里考慮孔隙水的壓縮和土骨架的變形,根據(jù)Biot固結(jié)理論,土體的控制方程可以表示為[10]:
對于可壓密介質(zhì)中的可壓縮性流體,其運動用控制方程可描述為[11]:
將式(7)與式(8)中的位移項消去[12],得到關(guān)于孔隙水壓p的控制方程為:
圖1 坐標定義圖Fig. 1 The schematic diagram of calculation model
假設(shè)海床無限深且海床土體為均勻介質(zhì),管道的半徑為R,埋置深度為dt,如圖1所示。
由于管道的存在,海床內(nèi)流體與管道相遇時會發(fā)生散射,因此將p分為兩部分,即:
當(dāng)海床內(nèi)沒有管道時,由波浪引起的滲流壓力p1滿足如下的控制方程和相應(yīng)的邊界條件:
根據(jù)邊界條件可以很容易得出海床由波浪引起的滲流壓力p1:
通常管道為圓管,為了方便求解將控制方程進行坐標轉(zhuǎn)換,則p2的控制方程及邊界條件:
利用分離變量法,得出管道所引起的攝動壓力p2:
電子商務(wù)運營與企業(yè)運營存在相似之處,包括調(diào)研、產(chǎn)品定位、管理分類、開發(fā)規(guī)劃、運營策劃、產(chǎn)品管控、數(shù)據(jù)分析、分析執(zhí)行及跟進等。但其執(zhí)行對象有別于實體產(chǎn)品。電子商務(wù)運營的對象是根據(jù)企業(yè)需要所開發(fā)設(shè)計建設(shè)的電子商務(wù)平臺的附屬宣傳推廣產(chǎn)品。
式中:f(θ)=(Csinθ+iamcosθ)exp(CRsinθ+iamRcosθ),f(t)=exp(-iaωt)。
則由管道所引起的攝動壓力p2為:
最后得到海床內(nèi)任意一點的滲流壓力p:
根據(jù)已求得的滲流壓力,可以得到作用于單位長度管道上的豎向總力:
式中:Re為雷諾數(shù)。
曲鵬[15]在研究海底管道周圍海床的動力響應(yīng)時,考慮了橢圓余弦波的影響,鑒于本文推導(dǎo)的豎向波浪力是對管道周圍滲流壓力的積分計算,因此為驗證計算理論的合理性,將利用式(18)進行計算(計算參數(shù)見表1),并與曲鵬計算結(jié)果進行了對比,如圖2所示。從圖2可以看出,本文計算得出的管道周圍滲流力分布規(guī)律同文獻計算結(jié)果基本一致,數(shù)值基本相同,認為本文給出的解析公式存在一定的可行性,可用于淺水區(qū)海底管道的相關(guān)研究。
表1 計算參數(shù)Tab. 1 The calculating parameter
圖2 管道周圍滲流壓力比p/p0對比分析Fig. 2 The analysis of seepage force around pipeline
在設(shè)計管道時,往往需要考慮管道所受的環(huán)境荷載,而對于淺水區(qū)的埋置管道,管道受波浪的影響非常大,為了確保管道的在位穩(wěn)定,需要考慮管道上所受波浪力的大小,利用埕島油田不同海區(qū)50年一遇的波浪條件,計算不同尺寸的管道在各海區(qū)的波浪力極值,相關(guān)計算參數(shù)見表2,計算結(jié)果如圖3所示。從圖3可以看出,不同區(qū)域所得到的極限波浪力有差別,在波浪條件相同的情況下,這種計算差異是由于不同區(qū)域海床土的性質(zhì)造成的,因此在研究中不能忽視孔隙水的壓縮和土骨架的變形。同時,隨著管徑的增大,極限波浪力呈增加的趨勢。將上述結(jié)果與其他荷載相加,最后與設(shè)計荷載相比即可知道管道是否穩(wěn)定。遠航[16]在以往的研究中利用有限元法也計算了該油田不同海區(qū)管道所受波浪力的情況,本文將計算結(jié)果與其進行對比,對比顯示兩種計算方法得到的結(jié)果相近,趨勢相同,認為本文給出的解析公式有一定的工程應(yīng)用價值。
表2 波浪力計算參數(shù)Tab. 2 The calculating parameter of wave force
圖3 各區(qū)不同管徑的管道所受波浪力極值對比分析Fig. 3 The contrast analysis of wave force on different pipelines in different research areas
基于Biot固結(jié)理論和一階近似橢圓余弦理論,給出了無限深海床中埋置管道周圍滲流壓力解析公式,進而推導(dǎo)了管道上所受波浪力的計算公式。與已有的文獻結(jié)果進行比較,結(jié)果表明,在橢圓余弦波的作用下,海底管道周圍海床內(nèi)的滲流壓力呈正弦分布,與實際情況相符。同時,深水區(qū)的波浪理論不適用于淺水區(qū),會低估波浪對管道的作用,造成較大誤差,且對于不同性質(zhì)的土體計算得到的波浪力不同,波浪力的大小隨管徑增加而增大。因此在研究中不能忽視孔隙水的壓縮和土骨架的變形,在設(shè)計管道時需選擇適合的管徑。文中計算結(jié)果與已有分析結(jié)果近似,有一定的可行性和工程價值,但由于橢圓余弦波作用下海底管道及管道周圍海床的動力特性等相關(guān)試驗數(shù)據(jù)匱乏,因此本文的計算方法還需進一步驗證。
[1] MCDOUGAL W G, DAVIDSON S H, MONKMEYER P L, et al. Wave-induced forces on buried pipelines[J]. Journal of Waterway, Port, Coastal, and Ocean Engineering, 1988, 114(2): 220-236.
[2] CASERTA A, KANIVESKY R, SALUSTI E. On solitary shock waves for solute and fluid pressure in geologic porous media[C]//Proceedings of the Fifth Biot Conference on Poromechanics. 2013: 533-540.
[3] 徐云峰,夏小和,王建華,等. 橢圓余弦波作用下海床的響應(yīng)[J]. 上海交通大學(xué)學(xué)報, 2013(10): 1580-1584.(XUN Yunfeng, XIAO Xiaohe, WANG Jianhua. Response of seabed to cnoidal wave[J]. Journal of Shanghai Jiao Tong University, 2013(10): 1580-1584. (in Chinese))
[4] CHENG X, WANG Y, WANG G. Hydrodynamic forces on a large pipeline and a small pipeline in piggyback configuration under wave action[J]. Journal of Waterway, Port, Coastal, and Ocean Engineering, 2012, 138(5): 394-405.
[5] 欒茂田,曲鵬,楊慶,等. 波浪引起的海底管線周圍海床動力響應(yīng)分析[J]. 巖石力學(xué)與工程學(xué)報, 2008(4): 789-795. (LUAN Maotian, QU Peng, YANG Qing, et al. Wave-induced dynamic response of seabed around submarine pipeline[J]. Chinese Journal of Rock Mechanics and Engineering, 2008(4): 789-795.(in Chinese))
[6] 欒茂田,曲鵬,楊慶,等. 非線性波浪作用下海底管線-海床動力響應(yīng)分析[J]. 巖土力學(xué), 2007(S1): 709-714. (LUAN Maotian, QU Peng, YANG Qing, et al. Nonlinear wave-induced transient response of pipeline-seabed interaction[J]. Rock and Soil Mechanics, 2007(S1): 709-714. (in Chinese))
[7] 邱大洪. 波浪滲流力學(xué)[M]. 北京: 國防工業(yè)出版社, 2006. (QIU Dahong. Wave percolation mechanics[M].Beijing: National Defence Industry Press, 2006.( in Chinese))
[8] 孫昭晨,邱大洪. 淺水區(qū)海底埋設(shè)管線上非線性波浪力[J]. 大連理工大學(xué)學(xué)報, 2000(S1): 95-98. (SUN Zhaochen, QIU Dahong. Nonlinear wave force on a buried pipeline in shallow water[J]. Journal of Dalian University of Technology, 2000(S1): 95-98. (in Chinese))
[9] 邱大洪. 波浪理論及其在工程上的應(yīng)用[M]. 北京: 高等教育出版社, 1985. (QIU Dahong. The engineering application of wave theory[M].Beijing: Higher Education Press,1985. (in Chinese))
[10] 錢家歡. 土工原理與計算[M]. 北京: 中國水利水電出版社, 1995. (QIAN J H. Geotechnical principle and calculation[M].Beijing: China Water Power Press, 1995. (in Chinese))
[11] J 貝爾. 多孔介質(zhì)流體動力學(xué)[M]. 北京: 中國建筑工業(yè)出版社, 1983. (BELL J. Problem of porous media's fluid mechanics[M]. Beijing: China Building Industry Press, 1983. (in Chinese))
[12] KOKKINOWRACHOS K. Hydrodynamic analysis of large offshore structure on porous elastic seabed[Z]. Tokyo: OMAE, 1985.
[13] TURCOTTE B R, LIU P L F, KULHAWY F H. Laboratory evaluation of wave tank parameters for wave-sediment interaction[R]. Joseph H. DeFree Hydraulic Laboratory Report 84-1, New York: Cornell University, 1984.
[14] SUDHAN V C M, SUNDAR V, RAO S N. Wave induced forces around buried pipelines[J]. Ocean Engineering, 2002, 29(5): 533-544.
[15] 曲鵬. 波浪作用下海底管線及周圍海床動力響應(yīng)分析[D]. 大連:大連理工大學(xué), 2008. (QU Peng. Numerical analysis of dynamic response of submarine pipeline and seabed under wave loading[D]. Dalian: Dalian University of Technology, 2008. (in Chinese))
[16] 遠航. 波浪作用下埕島油田海底管線穩(wěn)定性數(shù)值分析[D]. 青島:中國海洋大學(xué), 2009. (YUAN Hang. Numerical analysis of stability of submarine pipeline under wave loading in Chengdao oil field[D]. Qingdao: Ocean University of China, 2009.(in Chinese))
The calculation of seepage force on buried pipeline under nonlinear wave
FU Changjing1, 2, LI Guoying3, ZHAO Tianlong1, 2
(1. Hehai Institute, Chongqing Jiaotong University, Chongqing 400074, China; 2. Key Laboratory of Water Transportation Engineering of Ministry of Education, Chongqing Jiaotong University, Chongqing 400074, China; 3. Nanjing Hydraulic Research Institute, Nanjing 210029, China)
TV139.2
A
10.16483/j.issn.1005-9865.2017.03.013
1005-9865(2017)03-0099-06
2016-07-16
重慶市基礎(chǔ)科學(xué)與前沿技術(shù)研究專項項目(cstc2016jcyjA0551);重慶市教委科學(xué)技術(shù)研究項目(KJ1600516);重慶交通大學(xué)國家內(nèi)河航道整治工程技術(shù)研究中心暨水利水運工程教育部重點實驗室開放基金(SLK2016B07)
付長靜(1987-),青海西寧人,主要從事巖土工程數(shù)值計算分析研究。
趙天龍(1985-),山東淄博人,主要從事水工建筑物安全及地質(zhì)體穩(wěn)定方面的研究。E-mail:neo_3303@163.com