李娜,楊志遠(yuǎn),代鄒,孫永健,徐徽,何艷,嚴(yán)田蓉,蔣明金,郭長春,王春雨,馬均
?
不同氮效率水稻根系形態(tài)和氮素吸收利用與產(chǎn)量的關(guān)系
李娜,楊志遠(yuǎn),代鄒,孫永健,徐徽,何艷,嚴(yán)田蓉,蔣明金,郭長春,王春雨,馬均
(四川農(nóng)業(yè)大學(xué)水稻研究所/農(nóng)業(yè)部西南作物生理生態(tài)與耕作重點(diǎn)實(shí)驗(yàn)室,成都 611130)
【目的】探究不同氮效率水稻根系形態(tài)和氮素吸收利用與產(chǎn)量關(guān)系的規(guī)律,明確水稻高產(chǎn)根系形態(tài)特征,提出相應(yīng)的水氮優(yōu)化管理措施。【方法】2013年以氮高效品種川農(nóng)優(yōu)498和氮低效品種川優(yōu)6203為試驗(yàn)材料,進(jìn)行不同穗肥運(yùn)籌比例的裂區(qū)試驗(yàn);2014年以相同試驗(yàn)材料進(jìn)行穴苗數(shù)和促花肥、保花肥配比的裂裂區(qū)試驗(yàn);2015年以氮高效品種德香4103和氮低效品種宜香3724為試驗(yàn)材料,進(jìn)行水分管理方式和氮肥施用模式的裂裂區(qū)試驗(yàn);分別以上述3個(gè)大田試驗(yàn)獲得的產(chǎn)量、根系形態(tài)及氮素吸收利用相關(guān)指標(biāo)為樣本,通過計(jì)算方差膨脹因子診斷變量間存在的多重共線性關(guān)系。在多重共線性嚴(yán)重的情況下,運(yùn)用嶺回歸分析研究根系形態(tài)、氮素吸收利用和產(chǎn)量三者之間的關(guān)系?;谶@些關(guān)系在年度間的重演性,確定其中普遍存在的共性規(guī)律?!窘Y(jié)果】(1)氮高效品種拔節(jié)期、抽穗期及成熟期的氮素積累量、氮素干物質(zhì)生產(chǎn)效率和干物重與產(chǎn)量嶺回歸方程的決定系數(shù)范圍分別為0.0219—0.3961、0.0452—0.1379和0.0914—0.6694,氮低效品種分別為0.0084—0.6190、0.1224—0.4341和0.0818—0.4881,產(chǎn)量與氮素吸收利用的關(guān)系年度間重演性較差,無明顯共性規(guī)律;以根干重、不定根數(shù)量、長度、表面積、體積、粗分枝根長度、表面積、體積以及細(xì)分枝根長度、表面積、體積11項(xiàng)根系形態(tài)指標(biāo)為自變量,氮素積累量、氮素干物質(zhì)生產(chǎn)效率和干物重三者分別為因變量進(jìn)行嶺回歸分析,氮高效品種的回歸方程決定系數(shù)范圍分別為0.0527—0.2728、0.0653—0.3139和0.0714—0.3158,氮低效品種分別為0.0607—0.5040、0.0555—0.4411和0.0724—0.5449,氮素吸收利用與根系形態(tài)的關(guān)系規(guī)律年度間存在較大差異;2013—2015年,氮高效和氮低效品種抽穗期根系形態(tài)與產(chǎn)量嶺回歸方程的決定系數(shù)均超過0.8,<0.001,表明抽穗期根系形態(tài)對產(chǎn)量具有顯著影響是共性規(guī)律。(2)在以抽穗期根系形態(tài)指標(biāo)為自變量,產(chǎn)量為因變量的嶺回歸方程中,氮高效品種的粗分枝根長度標(biāo)準(zhǔn)回歸系數(shù)最高,對產(chǎn)量影響最大;對氮低效品種而言,細(xì)分枝根表面積的增加對產(chǎn)量提高最有利。(3)常規(guī)施氮量(150 kg·hm-2)下,優(yōu)化施肥模式為穗肥占比40%,且?;ǚ实谋壤_(dá)到或超過50%,其結(jié)合交替灌溉,有利于優(yōu)化根系形態(tài);SPAD指導(dǎo)施肥模式下,施氮量較優(yōu)化施肥減少(由150 kg·hm-2降為120 kg·hm-2),采用常規(guī)灌溉比交替灌溉更有利于根系形態(tài)優(yōu)化?!窘Y(jié)論】水稻抽穗期根系形態(tài)與產(chǎn)量關(guān)系極為密切,合理的水氮管理措施能夠優(yōu)化根系形態(tài)提高產(chǎn)量。常規(guī)灌溉結(jié)合SPAD指導(dǎo)施肥或交替灌溉結(jié)合優(yōu)化施肥均有利于氮高效品種抽穗期粗分枝根長度的增長和氮低效品種細(xì)分枝根表面積的增大,最終提高產(chǎn)量。
氮效率;水稻;根系形態(tài);產(chǎn)量;嶺回歸分析
【研究意義】水稻根系是土壤養(yǎng)分的直接利用者和地上部光合生產(chǎn)主要的養(yǎng)分供應(yīng)者,其形態(tài)和生理特征與地上部生長發(fā)育和產(chǎn)量形成有密切關(guān)系。氮素是水稻生長發(fā)育最重要的元素之一,水稻體內(nèi)氮素主要由根系從土壤中吸收[1-2]。分別以根系和產(chǎn)量為出發(fā)點(diǎn)和落腳點(diǎn),以氮素吸收利用為紐帶,進(jìn)行水稻根系性狀和氮素吸收利用與產(chǎn)量關(guān)系的定量研究,有助于深入剖析根系在水稻產(chǎn)量形成過程中發(fā)揮作用的機(jī)理?!厩叭搜芯窟M(jìn)展】圍繞水稻根系與氮素吸收和利用的關(guān)系,及其對產(chǎn)量形成的影響,前人已經(jīng)開展了比較系統(tǒng)的研究,從水稻根系對氮素吸收利用的基因型差異[3-7],到根系對氮肥調(diào)控的響應(yīng)[8-10],再到農(nóng)藝措施對根系的影響及其與地上部生長及產(chǎn)量形成的關(guān)系[11-12]等方面均有涉及,這些研究在根系形態(tài)特征、生理活性、基因表達(dá)等層面取得了豐碩的理論成果,同時(shí)針對性地提出了一系列栽培技術(shù)措施,促進(jìn)了水稻氮肥利用效率和產(chǎn)量的同步提高?!颈狙芯壳腥朦c(diǎn)】已有研究多以包含較少變量的環(huán)境控制性重復(fù)試驗(yàn)為樣本,通過簡單相關(guān)分析或普通最小二乘法回歸分析,獲得水稻根系形態(tài)和氮素吸收利用與產(chǎn)量的關(guān)系。這種研究策略針對性較強(qiáng),得到的結(jié)果對特定條件下水稻生產(chǎn)的指導(dǎo)價(jià)值較大,但由于重復(fù)試驗(yàn)工作量大,故這類研究包含的控制變量普遍較少,導(dǎo)致最終的試驗(yàn)結(jié)果存在理論局限性較大,技術(shù)可移植性不高的問題。同時(shí)在統(tǒng)計(jì)分析中由于未對研究對象內(nèi)部(自變量間)的共線性問題予以足夠重視,使得試驗(yàn)結(jié)果中變量間關(guān)系的穩(wěn)定性較差,加劇了不同研究結(jié)果的不一致性[6-7, 13]。針對上述研究不足,擬從不同試驗(yàn)組成的包含較多變量因子的樣本中探求水稻根系形態(tài)、氮素吸收利用和產(chǎn)量三者之間的關(guān)系,與少變量重復(fù)試驗(yàn)樣本相比,從多變量非重復(fù)試驗(yàn)樣本中發(fā)掘三者關(guān)系的共性規(guī)律難度更大,但若三者的關(guān)系在排除共線性的干擾后仍能夠呈現(xiàn)出共性規(guī)律,則該研究結(jié)果的生產(chǎn)指導(dǎo)價(jià)值將更加廣泛?!緮M解決的關(guān)鍵問題】本研究以課題組前期篩選出的在四川盆地稻區(qū)廣泛種植的氮高效和氮低效品種為試驗(yàn)材料[14-16],通過3年大田試驗(yàn),探究水稻根系形態(tài)、氮素吸收和利用、產(chǎn)量形成三者之間關(guān)系的規(guī)律,以及實(shí)現(xiàn)高產(chǎn)的根系特征及相應(yīng)水氮調(diào)控措施,為水稻高產(chǎn)高效育種及栽培提供理論依據(jù)及技術(shù)參考。
1.1 試驗(yàn)地點(diǎn)
試驗(yàn)于2013—2015年在四川農(nóng)業(yè)大學(xué)水稻研究所試驗(yàn)農(nóng)場(30°43’N,103°47’E)進(jìn)行。試驗(yàn)點(diǎn)地處成都平原,屬亞熱帶濕潤氣候區(qū)。2006—2015年水稻生長季氣象資料來自四川省氣象局(圖1)。試驗(yàn)地前茬為油菜,土壤質(zhì)地為砂壤土,耕層土壤養(yǎng)分含量見表1。
1.2 供試材料
本研究以課題組前期篩選出的在農(nóng)學(xué)利用率上有顯著差異的品種為供試材料。2013年和2014年為氮高效品種川農(nóng)優(yōu)498和氮低效品種川優(yōu)6203[16],2015年為氮高效品種德香4103和氮低效品種宜香3724[14-15]。4個(gè)品種均為中秈遲熟雜交稻,生育期150 d左右。
圖1 2006—2015年水稻生長季平均氣溫和降雨量
表1 2013—2015年耕層土壤養(yǎng)分含量表
1.3 試驗(yàn)設(shè)計(jì)
2013年試驗(yàn)采用裂區(qū)設(shè)計(jì),品種為主區(qū),氮肥運(yùn)籌為副區(qū),設(shè)基蘗肥與穗肥配比為B1(90﹕10)、B2(75﹕25)、B3(60﹕40)、B4(45﹕55)、B5(30﹕70),共計(jì)10個(gè)處理,3次重復(fù),施氮量為150 kg·hm-2。
2014年試驗(yàn)為裂裂區(qū)設(shè)計(jì),品種為主區(qū),每穴苗數(shù)為副區(qū),設(shè)單苗(S)和雙苗(D)2個(gè)水平,穗肥氮運(yùn)籌為裂裂區(qū),設(shè)促花肥與?;ǚ逝浔葹镻1(40﹕0)、P2(20﹕20)、P3(0﹕40),共計(jì)12個(gè)處理,3次重復(fù),施氮量為150 kg·hm-2,其中穗肥占比40%。
2015年試驗(yàn)為裂裂區(qū)設(shè)計(jì),品種為主區(qū),水分管理為副區(qū),設(shè)常規(guī)灌溉(W1)和交替灌溉(W2)2個(gè)水平[17],氮肥管理為裂裂區(qū),設(shè)SPAD指導(dǎo)施肥(N1)、優(yōu)化施肥(N2)及農(nóng)民習(xí)慣施肥(N3)3種模式(表2),共計(jì)12個(gè)處理,3次重復(fù)。
2013—2015年試驗(yàn)中,基肥(包含75 kg·hm-2磷肥和150 kg·hm-2鉀肥)、蘗肥、促花肥和?;ǚ史謩e于移栽前1 d、移栽后7 d、幼穗分化期(倒四葉)和抽穗前(倒二葉)施用。
表2 2015年氮肥施用量及施肥時(shí)期
括號內(nèi)百分?jǐn)?shù)代表該日期氮肥施入量占總施氮量的比例 Values in the brackets indicate the percentage of N fertilizer applied to total N rate
1.4 測定項(xiàng)目與方法
1.4.1 根系形態(tài)指標(biāo)測定 分別于拔節(jié)期、抽穗期和成熟期,每小區(qū)按平均莖蘗數(shù)標(biāo)記5株具有代表性稻株,采用原狀土柱法,用鐵板取根器以稻株為中心掘取長等于行距(33.3 cm),寬等于株距(16.7 cm),深20 cm的土柱,裝入孔徑為0.4 mm的尼龍網(wǎng)袋中,浸泡6 h后洗去泥土雜質(zhì),獲得單株完整根系。用Epson Expression 10000XL掃描后,采用WinRHIZO Prov.2009c軟件分析不定根、粗分枝根、細(xì)分枝根各形態(tài)參數(shù),而后置于80℃下烘干至恒重,測得根系總干重。不定根(0.3 mm<D≤1.65 mm)、粗分枝根(0.1 mm<D≤0.3 mm)、細(xì)分枝根(D≤0.1 mm)的界定參照顧東祥等[18]的方法。
1.4.2 氮素積累測定 將根系形態(tài)指標(biāo)測定剩余的地上部,分莖、葉、穗各器官烘干,稱質(zhì)量,再粉碎、過篩,用凱氏定氮儀(FOSS—8400)測定各器官的全氮含量。氮素干物質(zhì)生產(chǎn)效率(nitrogen dry matter production efficiency,NDMPE)用單位氮素生產(chǎn)的干物質(zhì)量表示。
1.4.3 考種與計(jì)產(chǎn) 成熟期各小區(qū)單獨(dú)收割,按實(shí)收株數(shù)計(jì)產(chǎn)。
1.5 數(shù)據(jù)處理
方差膨脹因子(variance inflation factor,VIF)用于診斷變量間存在的共線性關(guān)系,當(dāng)某組變量的VIF平均值大于1且最大值大于10時(shí),認(rèn)為該組變量共線性嚴(yán)重。本研究用SPSS 20計(jì)算自變量的方差膨脹因子,結(jié)果顯示自變量間共線性嚴(yán)重(表3),符合進(jìn)行嶺回歸分析的條件。嶺回歸分析(ridge regression)是一種用于共線性數(shù)據(jù)分析的有偏估計(jì)回歸,通過在自變量信息矩陣的主對角線元素上加入一個(gè)非負(fù)因子(嶺回歸參數(shù)k),使回歸系數(shù)的估計(jì)稍有偏差,但估計(jì)的穩(wěn)定性明顯提高。本研究中當(dāng)k=0.2時(shí)各自變量的嶺跡都基本穩(wěn)定,因此嶺參數(shù)都取k=0.2。本研究用DPS 7.05進(jìn)行嶺回歸分析和多重比較,用Excel 2003進(jìn)行圖表制作。
2.1 根系形態(tài)與氮素吸收利用及物質(zhì)積累的嶺回歸分析
氮高效品種的產(chǎn)量、氮積累量、氮素干物質(zhì)生產(chǎn)效率及成熟期干物重均顯著高于氮低效品種(表4)。二者根系形態(tài)與氮素吸收利用及物質(zhì)積累的嶺回歸分析顯示,54組樣本中僅有2組決定系數(shù)超過0.5。2015年氮低效品種在拔節(jié)期的根系形態(tài)對氮素積累量和干物重變化的影響程度分別達(dá)到0.5040和0.5449,但在2013年和2014年對應(yīng)樣本的方程決定系數(shù)均不超過0.2(表5)。這表明水稻根系形態(tài)與氮素積累量、氮素干物質(zhì)生產(chǎn)效率及干物重關(guān)系的規(guī)律性較差。
表3 自變量方差膨脹因子
HN:氮高效;LN:氮低效;JS:拔節(jié)期;HS:抽穗期;MS:成熟期;NA:氮素積累;NDMPE:氮素干物質(zhì)生產(chǎn)效率;DW:干物質(zhì)量。下同
HN: High N use efficiency; LN: Low N use efficiency; JS: Jointing stage; HS: Heading stage; MS: Maturity stage; NA: N accumulation; NDMPE: N dry matter production efficiency; DW: Dry matter weight. The same as below
表4 氮高效和氮低效品種產(chǎn)量和氮素吸收利用比較
同列數(shù)據(jù)后不同字母表示在5 %水平差異顯著。下同
Values within a column followed by different letters are significantly different at<0.05. The same as below
表5 根系形態(tài)與氮素吸收利用及物質(zhì)積累的嶺回歸分析
*, **, ***分別表示在0.05, 0.01, 0.001水平差異顯著;NS表示二者差異未達(dá)顯著水平。下同
*, ** and *** indicate significance at 0.05, 0.01 and 0.001 levels, respectively; NS means that the difference was not significant. The same as below
2.2 各生育時(shí)期氮素吸收利用及物質(zhì)積累與產(chǎn)量的嶺回歸分析
表6表明,氮高效和氮低效水稻在拔節(jié)期、抽穗期和成熟期的氮素積累量、氮素干物質(zhì)生產(chǎn)效率及干物重與產(chǎn)量嶺回歸分析方程的決定系數(shù)大多低于0.5,僅有的決定系數(shù)超過0.6的3組(共計(jì)18組)樣本在年份間或品種間的重演性均較差。2013年和2014年氮高效品種成熟期的氮素積累量、氮素干物質(zhì)生產(chǎn)效率及干物重對產(chǎn)量的影響程度分別為0.6694和0.6596,其中成熟期干物重對產(chǎn)量影響最大,氮素干物質(zhì)生產(chǎn)效率次之,氮素積累量最小,但2015年嶺回歸方程的決定系數(shù)僅為0.0914,且干物重對產(chǎn)量的影響遠(yuǎn)小于氮素干物質(zhì)生產(chǎn)效率和氮素積累量。2015年氮低效品種在拔節(jié)期的氮素積累量、氮素干物質(zhì)生產(chǎn)效率及干物重對產(chǎn)量的影響程度達(dá)到0.6190,但2013年和2014年嶺回歸方程的決定系數(shù)僅為0.0084和0.0680。這表明水稻拔節(jié)期、抽穗期及成熟期的氮素吸收、利用及生物量對產(chǎn)量的影響可能具有較強(qiáng)的品種特異性或受氣象條件影響較大,因而相互關(guān)系的規(guī)律重演性較差。
表6 產(chǎn)量與各生育時(shí)期氮素吸收利用及物質(zhì)積累的嶺回歸分析
2.3 抽穗期根系形態(tài)與產(chǎn)量的嶺回歸分析
以水稻拔節(jié)期、抽穗期及成熟期的根系形態(tài)為自變量與產(chǎn)量作嶺回歸分析,結(jié)果顯示不同氮效率水稻均表現(xiàn)為抽穗期根系形態(tài)結(jié)構(gòu)特征與產(chǎn)量關(guān)系的密切程度遠(yuǎn)大于拔節(jié)期、成熟期,且該結(jié)果在3年大田試驗(yàn)中重演性較好(數(shù)據(jù)未列出),本文僅對抽穗期根系形態(tài)與產(chǎn)量的關(guān)系進(jìn)行分析(表7)。6組樣本的方程決定系數(shù)均超過0.8,達(dá)到極顯著水平,2013年和2014年氮高效品種抽穗期根系形態(tài)結(jié)構(gòu)對產(chǎn)量的解釋程度均高于氮低效品種,2015年二者嶺回歸方程的決定系數(shù)相近。從各根系形態(tài)指標(biāo)分析,氮高效品種的粗分枝根長度與產(chǎn)量關(guān)系最密切,氮低效品種的細(xì)分枝根表面積對產(chǎn)量的影響居所有指標(biāo)之首。
表7 抽穗期根系形態(tài)與產(chǎn)量的嶺回歸分析
TRW:根干重。下同 TRW: Total root dry weight. The same as below
2.4 水肥管理對抽穗期根系形態(tài)的影響
2.4.1 氮肥運(yùn)籌對抽穗期根系形態(tài)的影響 由表8可見,氮高效水稻抽穗期根系形態(tài)指標(biāo)較氮低效水稻平均高21.81%—23.08%。隨著穗肥占比升高,根系生物量呈逐漸增大趨勢,穗肥占比超過40%,根系干重變化較小。穗肥占比提高促進(jìn)了不定根數(shù)量、長度、表面積及體積的增長,穗肥占比超過40%,氮高效品種不定根數(shù)量及表面積等指標(biāo)呈小幅下降趨勢,氮低效品種基本保持穩(wěn)定。不定根上分出的粗分枝根以及后者分出的細(xì)分枝根也延續(xù)了不定根對氮肥運(yùn)籌的響應(yīng)規(guī)律,大都在B3處理時(shí)達(dá)到最大值。
2.4.2 穗肥氮運(yùn)籌及每穴苗數(shù)對抽穗期根系形態(tài)的影響 氮高效品種抽穗期根系指標(biāo)較氮低效品種平均高21.76%—22.18%,單苗或雙苗栽插對根系形態(tài)影響較?。ū?)。施用?;ǚ誓茱@著提高根系生物量,但不同?;ǚ适┯帽壤g差異較小。不定根的數(shù)量、長度、表面積和體積及其上分出的粗分枝根和細(xì)分枝根的各項(xiàng)指標(biāo)也基本符合根系干重對穗肥運(yùn)籌的響應(yīng)規(guī)律。施用保花肥使氮高效品種粗分枝根長度和氮低效品種細(xì)分枝根表面積分別增加5.21%—20.78%和12.19 %—16.74 %。
表8 氮肥運(yùn)籌對抽穗期根系形態(tài)的影響(2013年)
B1:基蘗肥﹕穗肥=90 : 10;B2:基蘗肥﹕穗肥=75 : 25;B3:基蘗肥﹕穗肥=60 : 40;B4:基蘗肥﹕穗肥=45 : 55;B5:基蘗肥﹕穗肥=30 : 70
B1: Basal - tillering N : panicle N = 90 : 10; B2: Basal - tillering N : panicle N = 75 : 25; B3: Basal - tillering N : panicle N = 60 : 40; B4: Basal - tillering N : panicle N =45 : 55; B5: Basal - tillering N : panicle N = 30 : 70
表9 穗肥氮運(yùn)籌及每穴苗數(shù)對抽穗期根系形態(tài)的影響(2014年)
S:單苗;D:雙苗;P1:促花肥﹕?;ǚ?40 : 0;P2:促花肥﹕?;ǚ?20 : 20;P3:促花肥﹕?;ǚ?0 : 40
S: Single seedling; D: Double seedlings; P1: The ratio of nitrogen dressing at 4thand 2ndleaf from top stretching was 40 : 0; P2: The ratio of nitrogen dressing at 4thand 2ndleaf from top stretching was 20 : 20; P3: The ratio of nitrogen dressing at 4thand 2ndleaf from top stretching was 0 : 40
2.4.3 水氮管理對抽穗期根系形態(tài)的影響 表10表明,無論在常規(guī)灌溉還是交替灌溉條件下,均以農(nóng)民習(xí)慣施肥(N3)抽穗期根系形態(tài)指標(biāo)最小。常規(guī)灌溉條件下SPAD指導(dǎo)施肥氮高效品種根系形態(tài)指標(biāo)均顯著高于優(yōu)化施肥,采用SPAD指導(dǎo)施肥或優(yōu)化施肥對氮低效品種根系形態(tài)指標(biāo)影響差異較小。交替灌溉條件下,氮高效品種優(yōu)化施肥比SPAD指導(dǎo)施肥在根系形態(tài)指標(biāo)上更具優(yōu)勢,而氮低效品種采用SPAD指導(dǎo)施肥更有利根系生長發(fā)育。對氮高效品種而言,常規(guī)灌溉下采用SPAD指導(dǎo)施肥和交替灌溉下采用優(yōu)化施肥對粗分枝根長度增長更有利,比農(nóng)民習(xí)慣施肥分別提高35.87%和36.26%;對氮低效品種而言,常規(guī)灌溉下SPAD指導(dǎo)施肥或交替灌溉下優(yōu)化施肥均能有效促進(jìn)細(xì)分枝根表面積增加,較農(nóng)民習(xí)慣施肥分別提高29.91%和28.98%。
表10 水氮管理對抽穗期根系形態(tài)的影響(2015年)
W1:常規(guī)灌溉,W2:交替灌溉;N1、N2、N3分別代表SPAD指導(dǎo)施肥、優(yōu)化施肥模式、農(nóng)民習(xí)慣施肥
W1: Conventional irrigation, W2: Controlled alternate irrigation; N1: SPAD-diagnosis N management; N2: Optimal N management; N3: Farmer’s usual N management
3.1 根系形態(tài)與氮素吸收利用的關(guān)系
Cassman等[6]研究表明氮高效水稻在根系生物量、體積、總吸收表面積和活性吸收面積方面均具有較大優(yōu)勢。戢林等[3]研究認(rèn)為水稻粗分枝根的發(fā)育情況會(huì)直接影響氮素的吸收,進(jìn)而影響產(chǎn)量和氮素利用效率。Samejima等[7, 19]和石慶華等[13]研究認(rèn)為部分在根系形態(tài)、生理活性方面較優(yōu)的品種,在氮素吸收利用率方面并未表現(xiàn)明顯優(yōu)勢。本研究水稻根系形態(tài)與氮素吸收利用嶺回歸方程的決定系數(shù)波動(dòng)范圍較大(0.0527≤2≤0.5449),且相同指標(biāo)在不同試驗(yàn)中表現(xiàn)也差異較大,這反映了水稻根系形態(tài)與氮素吸收利用關(guān)系的復(fù)雜性。首先,水稻根系吸收養(yǎng)分的過程中,氮、磷、鉀等元素存在顯著地協(xié)同或拮抗作用,而磷等對根系生長發(fā)育具有較強(qiáng)的調(diào)節(jié)作用[20-22];其次,根系吸收養(yǎng)分的同時(shí)會(huì)以根泌的方式釋放出不同類型化合物,反饋調(diào)節(jié)根系生長發(fā)育及對氮、磷、鉀等的吸收利用[23];因此土壤性狀、肥水管理等都可能對根系形態(tài)與氮素吸收利用的關(guān)系產(chǎn)生重要影響。本研究中,不同試驗(yàn)間的氣象條件、土壤性狀及水氮管理等均存在一定差異,這可能是根系性狀與氮素吸收利用之間關(guān)系在3個(gè)試驗(yàn)中無共性規(guī)律的主要原因。
3.2 氮素吸收利用及物質(zhì)積累與產(chǎn)量的關(guān)系
氮素干物質(zhì)生產(chǎn)效率是衡量水稻氮素利用效率的重要指標(biāo)之一[24],過量施氮或穗肥占比過高易導(dǎo)致植株氮積累尤其是花后氮積累偏高,削弱其碳同化能力,使氮素干物質(zhì)生產(chǎn)效率降低[25]。Chen等[26]研究認(rèn)為不同氮效率水稻的氮素籽粒生產(chǎn)效率及氮素干物質(zhì)生產(chǎn)效率差異并不顯著,氮高效品種發(fā)揮產(chǎn)量優(yōu)勢的關(guān)鍵在于吸收更多的氮素。Qiao等[27]研究認(rèn)為在高地力稻田,施氮雖能增加植株氮積累量,但較多氮素會(huì)滯留在秸稈內(nèi),增產(chǎn)效果較差。本研究顯示在決定系數(shù)較高的嶺回歸方程里,氮素吸收和利用對產(chǎn)量的影響較小,普遍低于生物量,與前人研究存在一定差異,其原因可能在兩方面:首先,四川盆地稻田土壤基礎(chǔ)肥力高,對產(chǎn)量貢獻(xiàn)大,屬地力貢獻(xiàn)率高值區(qū),施肥發(fā)揮的作用較小[28-29]。其次,四川盆地晝夜溫差小、光照時(shí)數(shù)少,水稻產(chǎn)量潛力小。本研究中絕大多數(shù)處理產(chǎn)量已經(jīng)超過該地區(qū)產(chǎn)量潛力估值,此時(shí)氮素可能已經(jīng)不是產(chǎn)量的決定因素[30-31]。
2013年和2014年試驗(yàn)氮高效品種干物重對產(chǎn)量的影響遠(yuǎn)大于2015年試驗(yàn),除了品種間的基因型差異外,氣象條件的差異亦可能是重要原因。2015年試驗(yàn)水稻灌漿期降水頻繁,日照時(shí)數(shù)較近十年平均值減少27%,較2013年和2014年分別減少35%和29%,光照不足限制了水稻群體花后光合生產(chǎn)能力,增強(qiáng)了花前物質(zhì)輸出對產(chǎn)量的影響,導(dǎo)致生物量對產(chǎn)量的影響減弱[32]。
3.3 抽穗期根系形態(tài)與產(chǎn)量的關(guān)系
目前研究普遍認(rèn)為抽穗期水稻根系已經(jīng)完成生長且對產(chǎn)量影響最大[33-34]。本研究顯示抽穗期根系形態(tài)對產(chǎn)量的影響在所有樣本中均較大,表明該時(shí)期根系形態(tài)與產(chǎn)量的密切關(guān)系具有普遍性。就常見形態(tài)指標(biāo)來說,不定根數(shù)量、根系吸收表面積及根直徑等對產(chǎn)量影響較大,采用根系分析系統(tǒng)細(xì)化到分枝根層面,則是粗分枝根長度、表面積及細(xì)分枝根表面積等與產(chǎn)量關(guān)系密切[3, 35]。本研究獲得相近的結(jié)果,即粗分枝根長度和細(xì)分枝根表面積分別對氮高效和氮低效品種產(chǎn)量影響較大。不同氮效率品種間的差異可能與二者對養(yǎng)分的需求差異有關(guān),氮高效品種更高產(chǎn)量的實(shí)現(xiàn)需要較多的養(yǎng)分支撐,粗分枝根數(shù)量增加有利于擴(kuò)展根系吸收空間,增加土壤養(yǎng)分供應(yīng)量[3]。
根系對土壤環(huán)境的適應(yīng)具有可塑性,合理的水氮管理能夠通過與土壤互作優(yōu)化根系形態(tài)提高產(chǎn)量,在此過程中分枝根的表現(xiàn)尤為突出[10,18,36-38]。本研究中,合理施氮(基蘗肥﹕促花肥﹕?;ǚ? 60﹕20﹕20)和水氮耦合管理(SPAD指導(dǎo)施肥采用常規(guī)灌溉、優(yōu)化施肥結(jié)合交替灌溉)能夠優(yōu)化抽穗期氮高效品種粗分枝根長度和氮低效品種細(xì)分枝根表面積,實(shí)現(xiàn)產(chǎn)量增長。
水稻根系形態(tài)對產(chǎn)量具有重要影響,尤其是抽穗期根系形態(tài)與產(chǎn)量關(guān)系極為密切。合理施氮與控水可優(yōu)化各類型根的生長與分布特征,但需考慮不同品種之間的差異,促進(jìn)抽穗期粗分枝根長度及細(xì)分枝根表面積增長分別是實(shí)現(xiàn)氮高效和氮低效品種根系形態(tài)優(yōu)化的首要目標(biāo)。常規(guī)施氮量(150 kg·hm-2)下,穗肥比例為40%,且其中保花肥的占比達(dá)到或超過50%,同時(shí)結(jié)合交替灌溉,有利于優(yōu)化根系形態(tài);在SPAD指導(dǎo)施肥模式(施氮量為120 kg·hm-2)下,采用常規(guī)灌溉更有利于根系形態(tài)優(yōu)化。
[1] PENG S B, HUANG J L, ZHONG X H, YANG J C, WANG G H, ZOU Y B, ZHANG F S, ZHU Q S, ROLAND B, CHRISTIAN W.Challenge and opportunity in improving fertilizer-nitrogen use efficiency of irrigated rice in China., 2002, 1(7): 776-785.
[2] 蔡昆爭, 駱世明, 段舜山. 水稻根系在根袋處理?xiàng)l件下對氮養(yǎng)分的反應(yīng). 生態(tài)學(xué)報(bào), 2003, 23(6): 1109-1116.
CAI K Z, LUO S M, DUAN S S. The response of the rice root system to nitrogen conditions under root confinement., 2003, 23(6): 1109-1116. (in Chinese)
[3] 戢林, 李廷軒, 張錫洲, 余海英. 氮高效利用基因型水稻根系形態(tài)和活力特征. 中國農(nóng)業(yè)科學(xué), 2012, 45(23): 4770-4781.
JI L, LI T X, ZHANG X Z, YU H Y. Root morphologyical and activity characteristics of rice genotype with high nitrogen utilization efficiency.2012, 45(23): 4770-4781. (in Chinese)
[4] 魏海燕, 張洪程, 張勝飛, 杭杰, 戴其根, 霍中洋, 許軻, 馬群, 張慶, 劉艷陽. 不同氮利用效率水稻基因型的根系形態(tài)與生理指標(biāo)的研究. 作物學(xué)報(bào), 2008, 34(3): 429-436.
WEI H Y, ZHANG H C, ZHANG S F, HANG J, DAI Q G, HUO Z Y, XU K, MA Q, ZHANG Q, LIU Y Y.Root morphological and physiological characteristics in rice genotypes with different N use efficiencies.2008, 34(3): 429-436. (in Chinese)
[5] 李敏, 張洪程, 楊雄, 葛夢婕, 馬群, 魏海燕, 戴其根, 霍中洋, 許軻, 曹利強(qiáng), 吳浩. 水稻高產(chǎn)氮高效型品種的根系形態(tài)生理特征. 作物學(xué)報(bào), 2012, 38(4): 648-656.
LI M, ZHANG H C, YANG X, GE M J, MA Q, WEI H Y, DAI Q G, HUO Z Y, XU K, CAO L Q, WU H. Root morphological and physiological characteristics of rice cultivars with high yield and high nitrogen use efficiency.2012, 38(4): 648-656. (in Chinese)
[6] CASSMAN K G, DOBERMANN A, WALTERS D T. Agroecosystems, nitrogen-use efficiency, and nitrogen management.,2002, 31(2): 132-140.
[7] SAMEJIMA H, KONDO M, ITO O, NOZOE T, SHINANO T, OSAKI M. Characterization of root systems with respect to morphological traits and nitrogen-absorbing ability in the new plant type of tropical rice lines.2005, 28(5): 835-850.
[8] 樊小林, 史正軍, 吳平. 水肥(氮)對水稻根構(gòu)型參數(shù)的影響及其基因型差異. 西北農(nóng)林科技大學(xué)學(xué)報(bào)(自然科學(xué)版), 2002, 30(2): 1-5.
FAN X L, SHI Z J, WU P.Effects of nitrogen fertilizer on parameters of rice (L.) root architecture and their genotypic difference., 2002, 30(2): 1-5. (in Chinese)
[9] 孫虎威, 王文亮, 劉尚俊, 候蒙蒙, 謝天寧, 粱志浩, 樊亞男, 張亞麗. 低氮脅迫下水稻根系的發(fā)生及生長素的響應(yīng). 土壤學(xué)報(bào), 2014, 51(5): 1096-1102.
SUN H W, WANG W L, LIU S J, HOU M M, XIE T N, LIANG Z H, FAN Y N, ZHANG Y L. Formation of rice root regulated by nitrogen dificiency.2014, 51(5): 1096-1102. (in Chinese)
[10] WALCH-LIU P, IVANOV I, FILLEUR S Y, GAN Y, REMANS T, FORDE B G. Nitrogen regulation of root branching.2006, 97(5): 875-881.
[11] 楊志遠(yuǎn), 孫永健, 徐徽, 秦儉, 賈現(xiàn)文, 馬均. 栽培方式與免耕對雜交稻Ⅱ優(yōu)498灌漿期根系衰老和籽粒灌漿的影響. 中國農(nóng)業(yè)科學(xué), 2013, 46(7): 1347-1358.
YANG Z Y, SUN Y J, XU H, QIN J, JIA X W, MA J. Influence of cultivation methods and no-tillage on root senescence at filling stage and grain-filling properties of Eryou 498., 2013, 46(7): 1347-1358. (in Chinese)
[12] 張洪程, 朱聰聰, 霍中洋, 許軻, 蔣曉鴻, 陳厚存, 高尚勤, 李德劍, 趙成美, 戴其根, 魏海燕, 郭保衛(wèi). 缽苗機(jī)插水稻產(chǎn)量形成優(yōu)勢及主要生理生態(tài)特點(diǎn). 農(nóng)業(yè)工程學(xué)報(bào), 2013, 29(21): 50-59.
ZHANG H C, ZHU C C, HUO Z Y, XU K, JIANG X H, CHEN H C, GAO S Q, LI D J, ZHAO C M, DAI Q G, WEI H Y, GUO B W.Advantages of yield formation and main characteristics of physiological and ecological in rice with nutrition bowl mechanical transplanting.2013, 29(21): 50-59. (in Chinese)
[13] 石慶華, 李木英, 涂起紅. 雜交水稻根系N素營養(yǎng)效率及其生理因素研究. 雜交水稻, 2002, 17(4): 49-52.
SHI Q H, LI M Y, TU Q H. Studies on efficiency of N nutrition and physiological factors in roots of hybrid rice.2002, 17(4): 49-52. (in Chinese)
[14] 秦儉, 楊志遠(yuǎn), 孫永健, 馬均. 不同穗型雜交秈稻物質(zhì)積累、氮素吸收利用和產(chǎn)量的差異比較. 中國水稻科學(xué), 2014, 28(5): 514-522.
QIN J, YANG Z Y, SUN Y J, MA J. Differential comparison of assimilation products accumulation, nitrogen uptake and utilization and grain yield of hybridrice combinations with different panicle types.,2014, 28(5): 514-522. (in Chinese)
[15] 朱從樺, 孫永健, 嚴(yán)奉君, 蔣明金, 徐徽, 趙建紅, 馬均. 曬田強(qiáng)度和氮素穗肥運(yùn)籌對不同氮效率雜交稻產(chǎn)量及氮素利用的影響. 中國水稻科學(xué), 2014, 28(3): 258-266.
ZHU C H, SUN Y J, YAN F J, JIANG M J, XU H, ZHAO J H, MA J. Effects of different paddy field drainage degrees and panicle nitrogen fertilizer managements on yield and nitrogen utilization of different nitrogen efficiency hybrid rice.2014, 28(3): 258-266. (in Chinese)
[16] 楊世民, 楊志遠(yuǎn), 孫永健, 馬均. 氮肥運(yùn)籌對2個(gè)不同穗重型雜交稻產(chǎn)量及氮肥利用的影響. 浙江大學(xué)學(xué)報(bào)(農(nóng)業(yè)與生命科學(xué)版), 2015, 41(6): 685-694.
YANG S M, YANG Z Y, SUN Y J, MA J. Effects of nitrogen on grain yield and nitrogen use efficiency of two hybrid rice varieties with different panicle masses.2015, 41(6): 685-694. (in Chinese)
[17] 孫永健, 馬均, 孫園園, 徐徽, 嚴(yán)奉君, 代鄒, 蔣明金, 李玥. 水氮管理模式對雜交秈稻岡優(yōu)527群體質(zhì)量和產(chǎn)量的影響. 中國農(nóng)業(yè)科學(xué), 2014, 47(10): 2047-2061.
SUN Y J, MA J, SUN Y Y, XU H, YAN F J, DAI Z, JIANG M J, LI Y. Effects of water and nitrogen management patterns on population quality and yield of hybrid rice Gangyou 527.,2014, 47(10): 2047-2061. (in Chinese)
[18] 顧東祥, 湯亮, 徐其軍, 雷曉俊, 曹衛(wèi)星, 朱艷. 水氮處理下不同品種水稻根系生長分布特征. 植物生態(tài)學(xué)報(bào), 2011, 35(5): 558-566.
GU D X, TANG L, XU Q J, LEI X J, CAO W X, ZHU Y. Root growth and distribution in rice cultivars as affected by nitrogen and water supply.2011, 35(5): 558-566. (in Chinese)
[19] SAMEJIMA H, KONDO M, ITO O, NOZOE T, SHINANO T. Root-shoot interaction as a limiting factor of biomass productivity in new tropical rice lines.2004, 50(4): 545-554.
[20] 許飛云, 張茂星, 曾后清, 朱毅勇. 水稻根系細(xì)胞膜質(zhì)子泵在氮磷鉀養(yǎng)分吸收中的作用. 中國水稻科學(xué), 2016, 30(1): 106-110.
XU F Y, ZHANG M X, ZENG H Q, ZHU Y Y. Involvement of plasma membrane H+-ATPase in uptake of nitrogen, phosphorus and potassium by rice root.2016, 30(1): 106-110. (in Chinese)
[21] DINGKUHN M, LUQUET D, KIM H K, TAMBOUR L, CLEMENTVIDAL A. EcoMeristem, a model of morphogenesis and competition among sinks in rice. 2. Simulating genotype responses to phosphorus deficiency.,2006, 33(4): 325-337.
[22] INSALUD N, BELL R W, COLMER T D, RERKASEM B. Morphological and physiological responses of rice () to limited phosphorus supply in aerated and stagnant solution culture.2006, 98(5): 995-1004.
[23] LI M, ZHANG H C, YANG X, GE M J, MA Q, WEI H Y, DAI Q G, HUO Z Y, XU K, LUO D Q. Accumulation and utilization of nitrogen, phosphorus and potassium of irrigated rice cultivars with high productivities and high N use efficiencies.2014, 161: 55-63.
[24] CASSMAN K G, Peng S, OLK D C, LADHA J K, REICHARDT W, DOBERMANN A, SINGH U. Opportunities for increased nitrogen- use efficiency from improved resource management in irrigated rice systems.1998, 56(1): 7-39.
[25] JIANG L G, DAI T B, JIANG D, CAO W X, GAN X Q, WEI S Q. Characterizing physiological N-use efficiency as influenced by nitrogen management in three rice cultivars.2004, 88(2/3): 239-250.
[26] CHEN G, CHEN Y, ZHAO G H, CHENG W D, GUO S W, ZHANG H L, SHI W M. Do high nitrogen use efficiency rice cultivars reduce nitrogen losses from paddy fields?2015, 209: 26-33.
[27] QIAO J, YANG L Z, YAN T M, XUE F, ZHAO D. Nitrogen fertilizer reduction in rice production for two consecutive years in the Taihu Lake area.2012, 146(1): 103-112.
[28] 湯勇華, 黃耀. 中國大陸主要糧食作物地力貢獻(xiàn)率和基礎(chǔ)產(chǎn)量的空間分布特征. 農(nóng)業(yè)環(huán)境科學(xué)學(xué)報(bào). 2009, 28(5): 1070-1078.
TANG Y H, HUANG Y. Spatial distribution characteristics of the percentage of soil fertility contribution and its associated basic crop yield in Mainland China., 2009, 28(5): 1070-1078. (in Chinese)
[29] 梁濤, 陳軒敬, 趙亞南, 黃興成, 李鴻, 石孝均, 張躍強(qiáng). 四川盆地水稻產(chǎn)量對基礎(chǔ)地力與施肥的響應(yīng). 中國農(nóng)業(yè)科學(xué), 2015, 48(23): 4759-4768.
LIANG T, CHEN X J, ZHAO Y N, HUANG X C, LI H, SHI X J, ZHANG Y Q. Response of rice yield to inherent soil productivity of paddies and fertilization in Sichuan basin, 2015, 48(23): 4759-4768. (in Chinese)
[30] VAN WART J, KERSEBAUM K C, Peng S B, MILNER M, CASSMAN K G. Estimating crop yield potential at regional to national scales.2013, 143(1): 34-43.
[31] DOBERMANN A. Fertilizer best management practices: General principles, strategy for their adoption and voluntary initiatives vs regulations//Proceedings of the IFA International Workshop on Fertilizer Best Management Practices. Paris: International Fertilizer Industry Association, 2007: 1-28.
[32] 楊志遠(yuǎn), 胡蓉, 孫永健, 徐徽, 許遠(yuǎn)明, 馬均. 三角形強(qiáng)化栽培模式下氮肥運(yùn)籌對II優(yōu)498產(chǎn)量及氮肥利用的影響. 作物學(xué)報(bào), 2012, 38(6): 1097-1106.
YANG Z Y, HU R, SUN Y J, XU H,XU Y M, MA J. Effects of nitrogen fertilizer management on yield and nitrogen use efficiency of Eryou 498 in triangle-planted system of rice intensification., 2012, 38(6): 1097-1106. (in Chinese)
[33] 劉桃菊, 戚昌瀚, 唐建軍. 水稻根系建成與產(chǎn)量及其構(gòu)成關(guān)系的研究. 中國農(nóng)業(yè)科學(xué), 2002, 35(11): 1416-1419.
LIU T J, QI C H, TANG J J. Studies on relationship between the character parameters of root and yield formation in rice.2002, 35(11): 1416-1419. (in Chinese)
[34] 樊劍波, 沈其榮, 譚炯壯, 葉利庭, 宋文靜, 張亞麗. 不同氮效率品種根系生理生態(tài)指標(biāo)的差異. 生態(tài)學(xué)報(bào), 2009, 29(6): 3052-3058.
FAN J B, SHEN Q R, TAN J Z, YE L T, SONG W J, ZHANG Y L. Difference of root physiological and ecological indicies in rice cultivars with different N use efficiency.2009, 29(6): 3052-3058. (in Chinese)
[35] 李杰, 張洪程, 常勇, 龔金龍, 胡雅杰, 龍厚元, 戴其根, 霍中洋, 許軻, 魏海燕, 高輝. 高產(chǎn)栽培條件下種植方式對超級稻根系形態(tài)生理特征的影響. 作物學(xué)報(bào), 2011, 37(12): 2208-2220.
LI J, ZHANG H C, CHANG Y, GONG J L, HU Y J, LONG H Y, DAI Q G, HUO Z Y, XU K, WEI H Y, GAO H. Influence of planting methods on root system morphological and physiological characteristics of super rice under high-yielding cultivation condition., 2011, 37(12): 2208-2220. (in Chinese)
[36] DE DORLODOT S, FORSTER B, PAGèS L, PRICE A, TUBEROSA R, DRAYE X. Root system architecture: Opportunities and constraints for genetic improvement of crops.2007, 12(10): 474-481.
[37] DAVIES W J. Root growth response and functioning as an adaptation in water limiting soils//JENKS M A, HASEGAWA P M, JAIN S M.. Dordrecht: Springer Netherlands, 2007: 55-72.
[38] 徐國偉, 呂強(qiáng), 陸大克, 王賀正, 陳明燦. 干濕交替灌溉耦合施氮對水稻根系性狀及籽粒庫活性的影響. 作物學(xué)報(bào), 2016, 42(10): 1495-1505.
XU G W, Lü Q, LU D K, WANG H Z, CHEN M C. Effect of wetting and drying alternative irrigation coupling with nitrogen application on root characteristic and grain-sink activity.2016, 42(10): 1495-1505. (in Chinese)
(責(zé)任編輯 楊鑫浩)
The Relationships Between Root Morphology, N Absorption and Utilization and Grain Yield in Rice with Different N Use Efficiencies
LI Na, YANG ZhiYuan, DAI Zou, SUN YongJian, XU Hui, HE Yan, YAN TianRong, JIANG MingJin, GUO ChangChun, WANG ChunYu, MA Jun
(Rice Research Institute, Sichuan Agricultural University/Key Laboratory of Crop Physiology, Ecology, and Cultivation in Southwest, Ministry of Agriculture, Chengdu 611130)
【Objective】The objective of this research is to study the relationships between root morphology, nitrogen (N) absorption and utilization and grain yield in rice with different N use efficiencies, clarify the root morphology characters of high yielding, and put forward the corresponding optimized water-N management practice. 【Method】In 2013, high N use efficiency (HN) variety Chuannongyou 498 and low N use efficiency (LN) variety Chuanyou 6203 were used as trial materials to conduct a split-plot experiment with different panicle fertilizer ratio. In 2014, a split-split plot experiment was performed with the same varieties, where seedling number per hole was assigned to the split plot, and the proportion of spikelet preserving fertilizer and spikelet promoting fertilizer was assigned to the split-split plot. In 2015, a split-split plot experiment was carried out with water management practice as split plot and N-management practice as split-split plot, where HN variety Dexiang 4103 and LN variety Yixiang 3724 were used as trial materials. Grain yield, root morphology characters, and N absorption and utilization characters, obtained from the above 3 field experiments, were performed multiple collinearity diagnostics through calculating the variance inflation factor. After confirming that there were serious multiple collinearity problems, ridge regression analysis was used as the main data analysis method to investigate the relationships between root morphology characters, N absorption and utilization and grain yield. Based on the recurrence of these relationships from 2013 to 2015, common regularities hidden among these relationships were located. 【Result】The results were as follows: (1) For HN varieties, the determination coefficients of ridge regression equation between grain yield and N accumulation (NA), N dry matter production efficiency (NDMPE), and dry matter weight (DW) at elongation stage, heading stage, and maturity stage, were in the range of 0.0219-0.3961, 0.0452-0.1379, and 0.0914-0.6694, respectively. For LN varieties, the determination coefficients were in the range of 0.0084-0.6190, 0.1224-0.4341, and 0.0818-0.4881, respectively. The relationship between grain yield and N uptake and utilization was less repeatable during the year, and there was no obvious common regularity. Ridge regression analysis was performed with 11 root morphology characters of total root dry weight, adventitious root number, length, surface area, volume, coarse lateral root length, surface area, volume, and fine lateral root length, surface area, volume as independent variables and NA, NDMPE, and DW as dependent variables, respectively. For HN varieties, the determination coefficients were in the range of 0.0527-0.2728, 0.0653-0.3139, and 0.0714-0.3158, respectively. For LN varieties, the determination coefficients were in the range of 0.0607-0.5040, 0.0555-0.4411, and 0.0724-0.5449, respectively. There were significant differences in the relationships between N absorption and utilization and root morphology among years. From 2013 to 2015, the determination coefficients of ridge regression equation between grain yield and root morphology characters of both HN varieties and LN varieties all exceeded 0.8 (<0.001), which showed an common regularity that root morphology at heading stage had a significant effect on grain yield. (2) In the ridge regression equation with root morphology characters as independent variables, and grain yield as dependent variable, the coarse lateral root length of HN varieties obtained the largest standard coefficient, and had the greatest impact on grain yield. However, for the LN varieties, the fine lateral root surface area played the most important role in increasing grain yield. (3) With N rate of 150 kg·hm-2, the optimal N management practice (panicle fertilizer ratio was 40% and the ratio of spikelet preserving fertilizer to panicle fertilizer reached or exceeded 50%) combined with dry-wet alternate irrigation was beneficial to optimize the root morphology. For the SPAD-diagnosis N management practice, N rate reduced from 150 kg·hm-2to 120 kg·hm-2, conventional irrigation mode was more favorable to root morphology optimization than dry-wet alternate irrigation.【Conclusion】Rice root morphology at heading stage had close relationship with grain yield, and appropriate water-N management practice could optimize rice morphology to increase grain yield. SPAD-diagnosis N management practice coupled with conventional irrigation or optimal N management combined with dry-wet alternate irrigation mode could extend the coarse lateral root length of HN varieties as well as the fine lateral root surface area of LN varieties at the heading stage to increase their grain yields, respectively.
N use efficiency; rice; root morphology; grain yield; ridge regression analysis
2016-11-09;接受日期:2017-03-07
國家重點(diǎn)研發(fā)計(jì)劃(2016YFD0300506)、國家糧食豐產(chǎn)科技工程(2013BAD07B13)
李娜,E-mail:lina1409bs@163.com。通信作者馬均,E-mail:majunp2002@163.com