楊小龍,須暉,李天來,王蕊
?
外源褪黑素對干旱脅迫下番茄葉片光合作用的影響
楊小龍,須暉,李天來,王蕊
(沈陽農(nóng)業(yè)大學(xué)園藝學(xué)院/設(shè)施園藝省部共建教育部重點(diǎn)實(shí)驗(yàn)室/遼寧省設(shè)施園藝重點(diǎn)實(shí)驗(yàn)室,沈陽 110866)
【目的】褪黑素是一種廣泛存在于高等植物體內(nèi)的小分子物質(zhì),被認(rèn)為是一種新的植物生長調(diào)節(jié)劑和生物刺激劑,對于提高植物抗逆性具有重要作用。探索外源褪黑素對干旱脅迫下番茄葉片光合作用的影響,為揭示褪黑素調(diào)節(jié)植物抗逆性的機(jī)制打下基礎(chǔ)?!痉椒ā恳苑选|園多麗’為試材,首先采用葉片噴施和根施不同濃度褪黑素進(jìn)行預(yù)處理:CK:葉片噴施清水、根施50 mL清水;R5、R50、R100、R150、R250:葉片噴清水,分別根施50mL 5、50、100、150和250 μmol?L-1褪黑素;L5、L50、L100、L150、L250:根施50 mL清水,葉片分別噴施5、50、100、150和250 μmol?L-1褪黑素;連續(xù)處理3 d后將植株移至溫室中,以不澆水作為干旱處理(其中CK0:葉片噴施清水、根施50 mL清水預(yù)處理后正常澆水,CK1:葉片噴施清水、根施50 mL清水預(yù)處理后干旱處理)。干旱脅迫5 d后,通過比較暗適應(yīng)下PSII最大光化學(xué)量子產(chǎn)量Fv/Fm和PSI最大氧化狀態(tài)Pm,確定根施和葉片噴施的最佳濃度處理。然后利用光合熒光同步測量系統(tǒng)分析根施和葉片噴施褪黑素對干旱脅迫下番茄葉片氣體交換參數(shù),PSII和PSI的光能分配和電子傳遞速率,類囊體膜的完整性和ATP酶活性的調(diào)節(jié)?!窘Y(jié)果】根施和葉片噴施不同濃度褪黑素均提高了干旱脅迫下番茄葉片的Fv/Fm和Pm,并且隨濃度增加表現(xiàn)出先升高后降低的趨勢,L100和R100處理下的Fv/Fm和Pm最大,顯著高于對照。L100和R100顯著緩解了干旱脅迫對氣體交換參數(shù)的抑制,其中葉片凈光合速率(Pn)分別為2.04和1.71 μmol?m-2?s-1,顯著高于對照(CK1)(0.52 μmol?m-2?s-1);蒸騰速率(E)分別為0.66和0.54 mmol?m-2?s-1,顯著高于CK1(0.25 mmol?m-2?s-1),并且顯著提高了番茄葉片氣孔導(dǎo)度(GH2O)和最大水分利用效率(WUE),降低了氣孔限制值(Ls),而L100優(yōu)于R100處理??焖俟忭憫?yīng)曲線結(jié)果表明L100和R100處理提高了干旱脅迫下番茄幼苗PSII的光化學(xué)反應(yīng)效率Fv'/Fm'及PSII光化學(xué)淬滅系數(shù)qP,表明褪黑素處理更利于干旱脅迫下番茄葉片PSII光化學(xué)反應(yīng)的高效進(jìn)行;干旱脅迫下番茄幼苗環(huán)式電子傳遞速率得到顯著加強(qiáng),而L100和R100處理降低了環(huán)式電子傳遞速率,但加強(qiáng)了線性電子傳遞速率,且L100處理下番茄葉片ETRI和ETRII均高于R100處理;L100、R100處理提高了干旱脅迫下番茄葉片的Y(I)、Y(II),表明褪黑素處理有利于干旱脅迫下番茄葉片吸收光能向光化學(xué)反應(yīng)的方向分配;暗適應(yīng)后,L100和R100處理番茄葉片P515誘導(dǎo)曲線均高于CK1,照光后,CK0處理番茄幼苗P515信號(hào)快速下降,其次是L100和R100處理,而CK1處理降低較慢,表明褪黑素具有保護(hù)葉綠體類囊體膜和ATP合成酶免受干旱脅迫傷害的作用?!窘Y(jié)論】根施和葉片噴施外源褪黑素能緩解干旱脅迫對番茄幼苗光合性能的抑制,加強(qiáng)光合運(yùn)轉(zhuǎn)效率,而葉片噴施是一種更簡單高效的處理方式;褪黑素能加強(qiáng)作物光合作用對環(huán)境脅迫的適應(yīng)性,對于農(nóng)作物的生長發(fā)育具有調(diào)節(jié)作用。
褪黑素;干旱脅迫;番茄;光合作用;葉綠素?zé)晒?/p>
【研究意義】隨著全球氣溫的升高,干旱脅迫對植物的影響越來越嚴(yán)重,設(shè)施栽培下的蔬菜作物不可避免的遭受干旱脅迫,干旱脅迫能夠間接導(dǎo)致葉片光抑制的發(fā)生,降低光合運(yùn)轉(zhuǎn)效率并對作物造成傷害。近年來研究表明褪黑素能夠提高植物抗逆性[1-4],但對逆境下植物光合作用的調(diào)節(jié)研究還很少,開展應(yīng)用外源褪黑素調(diào)節(jié)干旱脅迫下番茄葉片光合作用的研究具有重要的理論和實(shí)踐意義?!厩叭搜芯窟M(jìn)展】植物在生長發(fā)育過程中不斷面臨環(huán)境脅迫的挑戰(zhàn),如強(qiáng)光、干旱、低溫及重金屬毒害。干旱脅迫是影響植物光合作用和生長發(fā)育的重要逆境因子,干旱脅迫極易引起吸收光能過剩,加強(qiáng)凈光抑制的程度,造成光合損傷[5-7]。一些研究表明干旱脅迫顯著降低植物葉片光合色素含量和葉片相對含水量,加強(qiáng)活性氧(ROS)的積累和膜脂質(zhì)過氧化程度,導(dǎo)致葉片葉綠素?zé)晒鈪?shù)Fv/Fm、光合電子傳遞速率ETR的下降,非光化學(xué)淬滅NPQ的上升,葉綠體結(jié)構(gòu)明顯破壞,D1蛋白的含量顯著降低[8-10]。褪黑素是生物進(jìn)化過程中一種保守的小分子物質(zhì),具有很強(qiáng)的抗氧化作用,廣泛存在于植物體中[11]。植物褪黑素的積累具有一定的組織特異性且與光信號(hào)密切相關(guān),在一些品種中呈現(xiàn)晝夜節(jié)律,并且許多研究表明逆境能上調(diào)褪黑素的含量, 而這與植物體內(nèi)褪黑素合成與代謝之間的平衡關(guān)系密切。近年來的一些研究揭示了褪黑素的合成與分解途徑,證實(shí)了多個(gè)相關(guān)酶基因,由色氨酸生成褪黑素需要經(jīng)過4個(gè)連續(xù)的酶促反應(yīng),而褪黑素也能被催化為2-羥基褪黑素和3-羥基褪黑素[12-14]。褪黑素在植物中具有廣泛的生理功能,目前已經(jīng)開展了許多外源褪黑素調(diào)節(jié)植物生長發(fā)育和抗逆性的研究,Wang等[15]研究表明長期在土壤中添加100 μmol?L-1褪黑素延遲了干旱誘導(dǎo)的蘋果葉片衰老。而外源100 μmol?L-1褪黑素處理提高了低溫脅迫下狼尾草的光合作用,尤其是耐低溫基因型[16]。SzafraNska等[17]發(fā)現(xiàn)褪黑素處理緩解了百草枯介導(dǎo)的脅迫對豌豆光合機(jī)構(gòu)的損傷。Liu等[18]研究表明褪黑素處理加強(qiáng)了干旱脅迫下番茄幼苗的光合性能并提高了抗氧化能力,褪黑素可能通過抑制葉綠體中ROS的產(chǎn)生以及調(diào)節(jié)光合電子傳遞和D1蛋白的合成提高植物耐逆性[19-20]?!颈狙芯壳腥朦c(diǎn)】葉綠體是光合作用進(jìn)行的場所,也是氧自由基產(chǎn)生的主要場所,在植物中褪黑素主要在葉綠體和細(xì)胞質(zhì)中合成[13-14,21],褪黑素能高效的清除自由基,這對緩解光抑制對植物造成的損傷具有重要意義,因此,褪黑素可能對葉片光合作用尤其是光化學(xué)反應(yīng)的進(jìn)行起著重要的作用,干旱脅迫極易導(dǎo)致活性氧的產(chǎn)生進(jìn)而加重抑制光合效率。根施和葉片噴施褪黑素如何調(diào)節(jié)干旱脅迫下番茄幼苗的光合作用有待研究?!緮M解決的關(guān)鍵問題】利用光合熒光同步測量技術(shù),通過分析氣體交換參數(shù)、PSII和PSI的光能分配和電子傳遞速率以及類囊體膜的完整性和ATP酶活性,篩選出適宜調(diào)節(jié)干旱脅迫的最佳施用濃度,明確根施和葉片噴施褪黑素對干旱脅迫下番茄幼苗光合機(jī)構(gòu)的調(diào)節(jié)作用,為深入探索褪黑素調(diào)節(jié)光合作用的機(jī)制提供參考,為設(shè)施蔬菜栽培管理提供理論依據(jù)。
試驗(yàn)于2015年6—10月在沈陽農(nóng)業(yè)大學(xué)園藝學(xué)院設(shè)施蔬菜科研基地的日光溫室內(nèi)進(jìn)行。
1.1 材料及處理
供試番茄(L.)品種為‘遼園多麗’。采用番茄專用育苗基質(zhì)育苗,挑選均勻一致的種子播種于50孔的穴盤中,待長至2葉1心時(shí)分苗至塑料缽中(13 cm×13 cm),長至6葉1心時(shí)進(jìn)行試驗(yàn)。首先采用葉片噴施和根施不同濃度褪黑素(都萊生物,南京,分析純,純度為99%)進(jìn)行預(yù)處理:葉片噴施清水、根施50 mL清水(CK);R5、R50、R100、R150、R250:葉片噴清水,分別根施50 mL 5、50、100、150、250 μmol?L-1褪黑素;L5、L50、L100、L150、L250:根施50 mL清水,葉片分別噴施5、50、100、150、250 μmol?L-1褪黑素。噴施以葉片滴水為準(zhǔn),早晚各處理1次,連續(xù)處理3 d后將植株移至溫室中,以不澆水作為干旱處理,在干旱處理的第5天通過比較暗適應(yīng)下PSII最大光化學(xué)量子產(chǎn)量Fv/Fm和PSI最大氧化狀態(tài)Pm,確定根施和葉片噴施的最佳濃度處理。之后進(jìn)行干旱處理:CK0:葉片噴施清水、根施50 mL清水預(yù)處理后正常澆水;CK1:葉片噴施清水、根施50 mL清水后干旱處理;R100:葉片噴施清水、根施50 mL 100 μmol?L-1褪黑素后干旱處理;L100:葉片噴施100 μmol?L-1褪黑素、根施50 mL清水后干旱處理。干旱處理的第5天進(jìn)行指標(biāo)測定。
1.2 氣體交換參數(shù)、慢速葉綠素?zé)晒庹T導(dǎo)動(dòng)力學(xué)和P700活性測定
利用GFS-3000和Dual-pam-100(Heinz Walz,Effeltrich,Germany)光合熒光同步測量系統(tǒng)對活體番茄幼苗葉片的氣體交換參數(shù)、葉綠素?zé)晒夂蚉700氧化還原狀態(tài)進(jìn)行測定[22-23]。每棵植株均以第4片葉為測量對象,測量前進(jìn)行30 min的暗適應(yīng),測量葉室的面積為1.3 cm2,以大氣CO2濃度為參比,飽和脈沖光光強(qiáng)為10 000 μmol?m-2?s-1,光化光的光強(qiáng)為630 μmol?m-2?s-1,流速為400 μmol?s-1,在室溫(25±2)℃條件下測定。氣體交換參數(shù)包括:凈光合速率Pn、氣孔導(dǎo)度GH2O、大氣CO2濃度Ca、胞間CO2濃度Ci、蒸騰速率E,葉片氣孔限制值Ls(Ls=1-Ci/Ca)與水分利用率WUE(WUE=Pn/E)。PSII熒光參數(shù)主要包括:暗適應(yīng)下PSII最大光化學(xué)量子產(chǎn)量Fv/Fm[Fv/Fm=(Fm-Fo)/Fm]、PSII量子產(chǎn)量Y(II)、非調(diào)節(jié)性能量耗散的量子產(chǎn)量Y(NO)、調(diào)節(jié)性能量耗散的量子產(chǎn)量Y(NPQ)。PSI熒光參數(shù)包括:P700最大氧化狀態(tài)Pm、PSI量子產(chǎn)量Y(I)、由于供體側(cè)限制引起的PSI處非光化學(xué)能量耗散的量子產(chǎn)量Y(ND)、由于受體側(cè)限制引起的PSI處非光化學(xué)能量耗散的量子產(chǎn)量Y(NA)。
1.3 快速光響應(yīng)曲線測定
慢速葉綠素?zé)晒庹T導(dǎo)動(dòng)力學(xué)測定完后即在快速光響應(yīng)曲線測定模式下測定光響應(yīng)曲線(光響應(yīng)曲線的光強(qiáng)梯度分別設(shè)置為29、37、55、113、191、233、349、520、778、1 197、1 474 μmol?m-2?s-1),每個(gè)光強(qiáng)持續(xù)時(shí)間為30 s,飽和脈沖為10 000 μmol?m-2?s-1,照射300 ms[22,24]。以下參數(shù)用于光響應(yīng)曲線分析:光化學(xué)淬滅系數(shù)qP、光適應(yīng)下PSII最大光化學(xué)量子產(chǎn)量Fv'/Fm'=(Fm'-Fo)/Fm'、光系統(tǒng)Ⅰ電子傳遞速率ETR(I)、光系統(tǒng)II電子傳遞速率ETR(II),并用以下參數(shù)來評估環(huán)式電子傳遞:Y(CEF)=Y(I)-Y(II)、Y(CEF)/Y(II)=[Y(I)-Y(II)]/Y(II)。
1.4 P515信號(hào)測定
將P515/535模塊與Dual-pam-100相連接,利用Dual-PAM v1.19軟件控制操作,調(diào)平衡后通過檢測550—515 nm吸收信號(hào)的變化來測量P515活性[22,25]。暗適應(yīng)1 h后測定單周轉(zhuǎn)飽和閃光誘導(dǎo)的P515信號(hào)變化,之后光照6 min(光強(qiáng)為630 μmol?m-2?s-1),再暗適應(yīng)4 min測定單周轉(zhuǎn)飽和閃光誘導(dǎo)的P515信號(hào)變化,分別能反映類囊體膜的完整性和ATP酶活性。樣品暗適應(yīng)后,P515誘導(dǎo)曲線表現(xiàn)為慢速下降,這說明膜的完整性很高;經(jīng)過照光之后,P515誘導(dǎo)曲線表現(xiàn)為信號(hào)快速下降,說明ATP酶活性很高。
1.5 數(shù)據(jù)分析
采用SPSS 22.0軟件對數(shù)據(jù)進(jìn)行統(tǒng)計(jì)分析,取4次重復(fù)進(jìn)行LSD方差分析,用SigmaPlot 12.0軟件作圖。
2.1 褪黑素處理濃度篩選
Fv/Fm反映有活性的PSII反應(yīng)中心最大光化學(xué)效率,F(xiàn)v/Fm下降是PSII光抑制的典型指標(biāo),Pm表示PSI反應(yīng)中心P700的最大氧化狀態(tài),是反映PSI光抑制的一個(gè)靈敏指標(biāo)[26-27],本研究利用這兩個(gè)指標(biāo)進(jìn)行濃度篩選試驗(yàn)。干旱處理后,以噴施、根施清水后進(jìn)行干旱脅迫的CK植株P(guān)SII最大光化學(xué)效率Fv/Fm最低,為0.762;而與CK相比,根施和葉片噴施不同濃度褪黑素均提高了Fv/Fm,并且隨濃度增加均表現(xiàn)出先升高后降低的趨勢,其中L100、L150、R100、R150增幅較大,分別為0.779、0.773、0.776、0.772,均顯著高于對照(圖1-a)。隨著不同濃度褪黑素的處理,Pm也表現(xiàn)出與Fv/Fm相似的趨勢,CK處理最低,只有1.56,而L100、L150、L250、R100、R150處理Pm分別為1.71、1.67、1.65、1.69、1.67、1.65,均極顯著高于對照(圖1-b)。PSII對環(huán)境脅迫十分敏感,另外,番茄幼苗PSI對環(huán)境脅迫也十分敏感,并且褪黑素處理均能加強(qiáng)番茄幼苗PSI和PSII對干旱脅迫下光抑制的緩解作用。在不同濃度褪黑素處理中,L100 和R100處理下的Fv/Fm和Pm最大,因此,初步確定L100、R100分別為葉片噴施褪黑素和根施褪黑素的最佳濃度處理。
CK:葉片噴施清水、根施50 mL清水;L5、L50、L100、L150、L250:根施50 mL清水,葉片分別噴施5、50、100、150、250 μmol?L-1褪黑素;R5、R50、R100、R150、R250:葉片噴清水,分別根施50 mL 5、50、100、150、250 μmol?L-1褪黑素。*和**分別表示在P<0.05 和P<0.01水平差異顯著。下同
2.2 氣體交換參數(shù)
如表1所示,與CK0相比,干旱脅迫(CK1)顯著降低了番茄幼苗的凈光合速率Pn,而L100和R100處理番茄幼苗Pn分別達(dá)到2.04 μmol?m-2?s-1和1.71 μmol?m-2?s-1,均顯著高于CK1(0.52 μmol?m-2?s-1);干旱脅迫顯著降低了蒸騰速率E,而L100和R100處理下E(分別為0.66和0.54 mmol?m-2?s-1)均顯著高于CK1(0.25 mmol?m-2?s-1);干旱脅迫顯著降低了Ci,CK1、L100和R100之間差異不顯著;干旱脅迫顯著降低了氣孔導(dǎo)度GH2O,與CK1相比,L100和R100顯著提高了氣孔導(dǎo)度;CK1氣孔限制值Ls顯著高于CK0,而L100和R100處理顯著低于CK1;CK0處理的番茄幼苗最大水分利用效率WUE最高,而CK1最低,L100和R100處理均顯著高于CK1,表明L100和R100處理緩解了干旱脅迫對番茄幼苗葉片光合氣體交換參數(shù)的影響,而L100處理對干旱脅迫下番茄葉片光合性能的加強(qiáng)作用表現(xiàn)為優(yōu)于R100處理。
2.3 PSII光化學(xué)效率
從快速光響應(yīng)曲線可以看出,在光下PSII最大光化學(xué)效率Fv'/Fm'以及PSII光化學(xué)淬滅系數(shù)qP均隨著光強(qiáng)的變化先升高后降低,在任何光強(qiáng)下,干旱脅迫處理Fv'/Fm'和qP均顯著低于對照CK0,而褪黑素處理L100和R100下的番茄幼苗Fv'/Fm'和qP均高于CK1(圖2-a、b),表明褪黑素處理更利于干旱脅迫下番茄葉片PSII光化學(xué)反應(yīng)的高效進(jìn)行,具有緩解干旱脅迫對PSII光抑制的作用。
表1 外源褪黑素對干旱脅迫下番茄幼苗光合氣體交換參數(shù)的影響
CK0:早、晚分別噴施清水、根施50 mL清水預(yù)處理后正常澆水;CK1:噴施清水、根施50 mL清水,預(yù)處理后進(jìn)行干旱處理;L100:葉片噴施100 μmol?L-1褪黑素、根施50 mL清水,預(yù)處理后進(jìn)行干旱處理;R100:葉片噴施清水、根施50 mL 100 μmol?L-1褪黑素,預(yù)處理后進(jìn)行干旱處理。同列數(shù)字后不同字母代表處理間差異在<0.05水平顯著。下同
CK0: normal water management after pretreatment by spraying water on leaves and applying 50 mL water on roots; CK1: plants were grown at drought stress after pretreatment by spraying water on leaves and applying 50 mL water on roots; R100: plants were grown at drought stress after pretreatment by spraying water on leaves and applying 50 mL 100 μmol?L-1melatonin on roots; L100: plants were grown at drought stress after pretreatment by leaf spraying 100 μmol?L-1melatonin on leaves and applying 50mL water on roots. Different letters (a, b, c) in the same column indicate significant difference between treatments at<0.05. The same as below
圖2 外源褪黑素對干旱脅迫下番茄幼苗Fv'/Fm'和qP快速光響應(yīng)曲線的影響
2.4 PSI和 PSII的光能分配
由于植株缺少光合作用的底物水,干旱脅迫對光能分配的影響很大。由圖3-a和b可以看出,與CK0相比,干旱脅迫顯著降低了Y(I)和Y(II),并且Y(II)降幅較大,表明干旱脅迫嚴(yán)重抑制了PSII的光化學(xué)反應(yīng)過程,Y(NO)、Y(NPQ)及Y(ND)均顯著提高,這表明干旱脅迫降低PSI和PSII吸收光能中分配至光化學(xué)反應(yīng)的能量,而加強(qiáng)了吸收光能向非光化學(xué)反應(yīng)分配的比例;與CK1相比,L100、R100處理降低了番茄葉片Y(ND)、Y(NO)和Y(NPQ),但提高了Y(I)、Y(II),這表明褪黑素對PSI和PSII吸收光能的分配具有一定的影響,在脅迫下褪黑素處理有利于吸收光能向光化學(xué)反應(yīng)的方向分配。
圖3 外源褪黑素對干旱脅迫下番茄幼苗PS I和PS II光能分配的影響
2.5 線性和環(huán)式電子傳遞
光合電子傳遞速率與光照和環(huán)境因素密切相關(guān)。ETRI和ETRII以及Y(CEF)/Y(II)均隨光強(qiáng)的增加而不斷增加,在較強(qiáng)光下ETRII增速減慢并趨于穩(wěn)定,而ETRI在較高光強(qiáng)下才趨于穩(wěn)定。與CK0相比,干旱處理顯著降低了ETRII和ETRI,而L100和R100處理顯著緩解了這種降低,表明褪黑素處理具有提高ETRII和ETRI的作用,從圖中可以看出,L100處理下番茄葉片ETRII和ETRI均高于R100處理(圖4-a、b)。干旱脅迫下番茄幼苗的Y(CEF)/Y(II)均顯著高于對照,這說明干旱脅迫加強(qiáng)了環(huán)式電子傳遞速率,而R100、L100處理的幼苗環(huán)式電子傳遞均低于CK1(圖4-c)。這些結(jié)果表明根施和葉片噴施外源褪黑素能夠加強(qiáng)干旱脅迫下番茄幼苗的光合電子傳遞速率。
2.6 類囊體膜的完整性和ATP酶活性
位于類囊體膜上的光合電子傳遞鏈包含多種復(fù)合物,因此,類囊體膜的完整性對于光合作用十分重要。充分暗適應(yīng)后,CK0處理番茄葉片P515誘導(dǎo)曲線表現(xiàn)為慢速下降,均高于脅迫處理,這說明干旱脅迫降低了類囊體膜的完整性,而L100和R100處理均高于CK1,這表明褪黑素具有緩解干旱脅迫對類囊體膜傷害的作用(圖5-a)。經(jīng)過照光后,CK0處理番茄幼苗P515信號(hào)快速下降,其次是L100和R100處理,而CK1處理降低較慢,這說明干旱脅迫降低了ATP酶的活性,褪黑素緩解了這種降低(圖5-b)。這些結(jié)果表明外源施用褪黑素具有保護(hù)類囊體膜和ATP酶免受干旱脅迫傷害的作用。
圖4 外源褪黑素對干旱脅迫下番茄幼苗電子傳遞的影響
在植物中發(fā)現(xiàn)褪黑素后,大多數(shù)研究集中于褪黑素在植物組織中含量的檢測和積累規(guī)律的分析,近些年關(guān)于其在植物中的合成與分解、生理功能以及作用機(jī)理的研究已成為熱點(diǎn)。褪黑素的抗氧化能力高于抗壞血酸、生育酚、谷胱甘肽等抗氧化劑,通過與自由基的級(jí)聯(lián)互作,一個(gè)褪黑素可以清除10個(gè)ROS[28-29]。褪黑素能夠調(diào)節(jié)植物多種生育過程,還能直接或間接調(diào)控抗氧化酶系統(tǒng)和其他抗氧化劑的水平,緩解環(huán)境脅迫及生物脅迫對高等植物造成的損傷,加強(qiáng)植物抗逆性[30-31]。在水稻中分別沉默褪黑素合成的最后兩個(gè)關(guān)鍵酶基因和均降低了內(nèi)源褪黑素的含量,突變體延遲了水稻幼苗的生長,而噴施外源褪黑素后這種延遲得到恢復(fù),突變體加速水稻葉片衰老并降低了產(chǎn)量[32]。催化褪黑素分解產(chǎn)生2-羥基褪黑素和環(huán)3-羥基褪黑素的酶M2H和的克隆和分析將進(jìn)一步加快對植物褪黑素生理功能的研究[33-34]。目前,關(guān)于褪黑素在植物中作用的信號(hào)傳導(dǎo)途徑研究的還不是很多,研究表明褪黑素能夠通過MAPK途徑影響植物免疫,MAPK的上游信號(hào)MAPKKK3和OXI1激酶也響應(yīng)褪黑素誘導(dǎo)的防御信號(hào)途徑,并且這種誘導(dǎo)依賴于ROS和NO信號(hào)物質(zhì)[35-36]。
研究表明外源褪黑素處理顯著提高了蘋果幼苗抗壞血酸和谷胱甘肽水平[37]。褪黑素處理顯著延遲了水稻葉片衰老并加強(qiáng)了抗鹽性[38],延遲了干旱脅迫下蘋果葉片的衰老[15],加強(qiáng)了番茄抗堿性[31]。在本試驗(yàn)中,不同濃度褪黑素根施和葉片噴施均不同程度提高了干旱脅迫下番茄葉片的Fv/Fm和Pm,其中100 μmol?L-1褪黑素處理下番茄葉片的Fv/Fm和Pm最高。低溫脅迫誘導(dǎo)黃瓜幼苗中積累過多的ROS,嚴(yán)重?fù)p傷葉綠體結(jié)構(gòu),外源200 μmol?L-1褪黑素預(yù)處理加強(qiáng)了ASA-GSH循環(huán)和抗氧化酶活性,提高了清除ROS的能力,并且有利于平衡光合電子流的分布[19]。150 μmol?L-1褪黑素預(yù)處理有利于維持鹽脅迫下番茄的生長和光合作用,這與加快鹽脅迫下D1蛋白的合成和降低ROS的含量有關(guān)[20]。100 μmol?L-1褪黑素處理提高了低溫脅迫下狗牙根的葉綠素?zé)晒?,提高了一些糖和酸的含量,表明褪黑素具有緩解低溫對PSII及物質(zhì)代謝的損傷[39],Liu等[18]發(fā)現(xiàn)100 μmol?L-1褪黑素預(yù)處理顯著緩解了干旱脅迫對番茄幼苗PSII的影響,本試驗(yàn)用100 μmol?L-1褪黑素葉片噴施和根施處理提高了番茄葉片光合電子傳遞速率,加強(qiáng)了光能向光化學(xué)反應(yīng)方向的分配,保護(hù)了類囊體膜免受干旱脅迫的傷害并加強(qiáng)了ATP酶的活性,從而緩解了干旱脅迫下番茄幼苗葉片PSI和PSII光抑制的發(fā)生,加強(qiáng)了光合性能。
在生產(chǎn)中,合理選擇一些外源物質(zhì)(激素、滲透調(diào)節(jié)物質(zhì)和抗氧化劑類等)對栽培作物進(jìn)行浸種、葉面噴施、根際施用等可以調(diào)節(jié)植物代謝過程、緩解或減輕逆境對園藝作物造成的脅迫、提高植株抗逆性進(jìn)而提高產(chǎn)量、改善品質(zhì)。這些物質(zhì)普遍具有用量小、見效快、效果顯著等特點(diǎn)[40-41]。本研究表明100 μmol?L-1褪黑素根施和葉片噴施兩種處理方式均能顯著緩解干旱脅迫對番茄幼苗造成的傷害,加強(qiáng)葉片的光合性能,而由于處理簡單且有更多的褪黑素直接到達(dá)靶位點(diǎn)。適量的褪黑素對人體和動(dòng)物都是安全的,較強(qiáng)的生物學(xué)活性、在植物中多樣的生理功能以及環(huán)境友好型的作用特點(diǎn),使褪黑素在農(nóng)作物生產(chǎn)中具有重要的應(yīng)用潛力[42]。利用褪黑素緩解光抑制的發(fā)生來提高作物抗逆性是一種重要的農(nóng)業(yè)調(diào)節(jié)措施,而褪黑素處理的作用機(jī)理和模式仍需要進(jìn)行廣泛而深入的研究。
a:暗適應(yīng)1 h后單周轉(zhuǎn)飽和閃光誘導(dǎo)的P515信號(hào)變化;b:光照6 min(光強(qiáng)為630 μmol?m-2?s-1)再暗適應(yīng)4 min后單周轉(zhuǎn)飽和閃光誘導(dǎo)的P515信號(hào)變化
利用Fv/Fm和Pm兩個(gè)指標(biāo)對褪黑素施用濃度進(jìn)行了篩選,確定100 μmol?L-1外源褪黑素為葉片噴施和根施的最佳濃度。干旱脅迫嚴(yán)重降低了光合作用的高效運(yùn)行,葉片噴施和根施100 μmol?L-1褪黑素處理均緩解了這種降低,并提高了干旱脅迫下番茄葉片凈光合速率和蒸騰速率,提高了PSII和PSI的電子傳遞速率,加強(qiáng)了光能向光化學(xué)反應(yīng)方向的分配,保護(hù)了類囊體膜免受干旱脅迫的傷害并加強(qiáng)了ATP酶的活性,從而增強(qiáng)了干旱脅迫下番茄幼苗的光合性能。與根施相比,葉片噴施是一種更簡單高效的調(diào)節(jié)方式。
[1] Wei W, Li Q T, Chu Y N, Reiter R J, Yu X M, Zhu D H, Zhang W K, Ma B, Lin Q, Zhang J S, Chen S Y. Melatonin enhances plant growth and abiotic stress tolerance in soybean plants., 2015, 66(3): 695-707.
[2] Nawaz M A, Huang Y, Bie Z, Ahmed W, Reiter R J, Niu M, Hameed S. Melatonin: current status and future perspectives in plant science., 2015, 6: 1230. DOI: 10.3389/fpls.2015.01230.
[3] ZHANG N, SUN Q, ZHANG H, CAO Y, WEEDA S, REN S, GUO Y D. Roles of melatonin in abiotic stress resistance in plants., 2015, 66(3): 647-656.
[4] Reiter R J, Tan D X, Zhou Z, Cruz M H C, Fuentes- Broto L, Galano A. Phytomelatonin: assisting plants to survive and thrive., 2015, 20(4): 7396-7437.
[5] ZHANG Z S, YANG C, GAO H Y, ZHANG L T, FAN X L, LIU M J. The higher sensitivity of PSI to ROS results in lower chilling–light tolerance of photosystems in young leaves of cucumber., 2014, 137: 127-134. DOI: 10.1016/j.jphotobiol.2013.12.012.
[6] JOHNSON G N, LAWSON T, MURCHIE E H, RAINES C. Photosynthesis in variable environments., 2015, 66(9): 2371-2372.
[7] GURURANI M A, VENKATESH J, TRAN L S P. Regulation of photosynthesis during abiotic stress-induced photoinhibition., 2015, 8(9): 1304-1320.
[8] 須暉, 高潔, 王蕊, 李天來, 馬健, 劉滿昌. 番茄幼苗葉綠素?zé)晒鈪?shù)對水分脅迫的響應(yīng). 中國農(nóng)學(xué)通報(bào), 2011, 27(10): 189-193.
XU H, GAO J, WANG R, LI T L, MA J, LIU M C. Response of water stress on chlorophyll fluorescence parameters of tomato seedlings., 2011, 27(10): 189-193. (in Chinese)
[9] 曹逼力, 李煒?biāo)N, 徐坤. 干旱脅迫下硅對番茄葉片光合熒光特性的影響. 植物營養(yǎng)與肥料學(xué)報(bào), 2016, 22(2): 495-501.
CAO B L, LI W Q, XU K. Effects of silicon on photosynthetic and fluorescence characteristics of tomato leaves under drought stress., 2016, 22(2): 495-501. (in Chinese)
[10] 邵瑞鑫, 李蕾蕾, 鄭會(huì)芳, 張寄陽, 楊慎嬌, 馬野, 信龍飛, 蘇小雨, 冉午玲, 毛俊, 鄭博元, 楊青華. 外源一氧化氮對干旱脅迫下玉米幼苗光合作用的影響. 中國農(nóng)業(yè)科學(xué), 2016, 49(2): 251-259.
SHAO R X, LI L L, ZHENG H F, ZHANG J Y, YANG S J, MA Y, XIN L F, SU X Y, RAN W L, MAO J, ZHENG B Y, YANG Q H. Effects of exogenous nitric oxide on photosynthesis of maize seedlings under drought stress., 2016, 49(2): 251-259. (in Chinese)
[11] HARDELAND R. Melatonin in plants-diversity of levels and multiplicity of functions., 2015, 7: 198. DOI: 10.3389/fpls.2016.00198.
[12] ARNAO M B, HERNANDEZ-RUIZ J. Functions of melatonin in plants: A review., 2015, 59(2): 133-150.DOI: 10.1111/jpi.12253.
[13] BACK K, TAN D X, REITER R J. Melatonin biosynthesis in plants: multiple pathways catalyze tryptophan to melatonin in the cytoplasm or chloroplasts., 2016, 61(4): 426-437.
[14] 王蕊, 楊小龍, 須暉, 李天來. 高等植物褪黑素的合成和代謝研究進(jìn)展. 植物生理學(xué)報(bào), 2016, 52(5): 615-627.
WANG R, YANG X L, XU H, LI T L. Research progress of melatonin biosynthesis and metabolism in higher plants., 2016, 52(5): 615-627. (in Chinese)
[15] WANG P, SUN X, LI C, WEI Z W, LIANG D, MA F W. Long-term exogenous application of melatonin delays drought-induced leaf senescence in apple., 2013, 54(3): 292-302.
[16] HU Z, FAN J, XIE Y, AMOMBO E, LIU A, GITAU M M, KHALDUN A B M, CHEN L, FU J. Comparative photosynthetic and metabolic analyses reveal mechanism of improved cold stress tolerance in bermudagrass by exogenous melatonin., 2016, 100: 94-104. DOI: 10.1016/j.plaphy.2016.01. 008.
[17] SZAFRANSKA K, REITER R J, POSMYK M M. Melatonin Application toL. Seeds positively influences the function of the photosynthetic apparatus in growing seedlings during paraquat-induced oxidative stress., 2016, 7: 1663. DOI: 10.3389/fpls.2016.01663.
[18] LIU J, WANG W, WANG L, SUN Y. Exogenous melatonin improves seedling health index and drought tolerance in tomato., 2015, 77(3): 317-326.
[19] ZHAO H, YE L, WANG Y, WANG Y, ZHOU X, YANG J, WANG J, CAO K, ZOU Z. Melatonin increases the chilling tolerance of chloroplast in cucumber seedlings by regulating photosynthetic electron flux and the ascorbate-glutathione cycle., 2016, 7: 1814. DOI: 10.3389/fpls.2016.01814.
[20] ZHOU X, ZHAO H, CAO K, HU L, DU T, BALUSKA F, ZOU Z. Beneficial roles of melatonin on redox regulation of photosynthetic electron transport and synthesis of D1 protein in tomato seedlings under salt stress., 2016, 7: 1823.DOI: 10.3389/fpls.2016.01823.
[21] ARNAO M B, HERNANDEZ-RUIZ J, D'MELLO J P F. Melatonin: synthesis from tryptophan and its role in higher plant., 2015: 390-435.
[22] ZHANG G X, LIU YF, NI Y, MENG Z J, LU T, LI T L. Exogenous calcium alleviates low night temperature stress on the photosynthetic apparatus of tomato leaves., 2014, 9(5): e97322. DOI: 10.1371/journal.pone.0097322.
[23] PFUNDEL E, KLUGHAMMER C, Schreiber U. Monitoring the effects of reduced PS II antenna size on quantum yields of photosystems I and II using the Dual-PAM-100 measuring system., 2008, 1: 21-24.
[24] SCHREIBER U, KLUGHAMMER C. Non-photochemical fluorescence quenching and quantum yields in PS I and PS II: analysis of heat-induced limitations using Maxi-Imaging-PAM and Dual-PAM- 100., 2008, 1: 15-18.
[25] SCHREIBER U, KLUGHAMMER C. New accessory for the Dual-PAM-100: The P515/535 module and examples of its application., 2008, 1: 1-10.
[26] 張守仁. 葉綠素?zé)晒鈩?dòng)力學(xué)參數(shù)的意義及討論. 植物學(xué)通報(bào), 1999, 16(4): 444-448.
ZHANG S R. A discussion on chlorophyll fluorescence kinetics parameters and their significance., 1999, 16(4): 444-448. (in Chinese)
[27] KONO M, TERASHIMA I. Elucidation of photoprotective mechanisms of PSI against fluctuating light photoinhibition., 2016, 57(7): 1405-1414.
[28] TAN D X, REITER R J, MANCHESTER L C, YAN M T, EL-SAWI M, SAINZ R M, MAYO J C, KOHEN R, ALLEGRA M C, HARDELAND R. Chemical and physical properties and potential mechanisms: melatonin as a broadspectrum antioxidant and free radical scavenger., 2002, 2(2): 181-197.
[29] TAN D X, MANCHESTER L C, ESTEBAN-ZUBERO E, ZHOU Z, REITER R J. Melatonin as a potent and inducible endogenous antioxidant: synthesis and metabolism., 2015, 20(10): 18886-18906.
[30] PELAGIO-FLORES R, MUNOZ-PARRA E, ORTIZ-CASTRO R, LOPEZ-BUCIO J. Melatonin regulatesroot system architecture likely acting independently of auxin signaling., 2012, 53(3): 279-288.
[31] LIU N, JIN Z Y, WANG S S, GONG B, WEN D, WANG X F, WEI M, SHI Q H. Sodic alkaline stress mitigation with exogenous melatonin involves reactive oxygen metabolism and ion homeostasis in tomato., 2015, 181: 18-25. DOI: 10.1016/j.scienta.2014. 10.049.
[32] BYEON Y, BACK K. Low melatonin production by suppression of either serotonin N-acetyltransferase or N-acetylserotonin methyltransferase in rice causes seedling growth retardation with yield penalty, abiotic stress susceptibility, and enhanced coleoptile growth under anoxic conditions., 2016, 60(3): 348-359.
[33] LEE K, ZAWADZKA A, CZARNOCKI Z, RUSSEL J R, BACK K. Molecular cloning of melatonin 3-hydroxylase and its production of cyclic 3-hydroxymelatonin in rice ()., 2016, 61(4): 470-478.
[34] BYEON Y, BACK K. Molecular cloning of melatonin 2-hydroxylase responsible for 2-hydroxymelatonin production in rice ()., 2015, 58(3): 343-351.
[35] LEE H Y, BACK K. Mitogen-activated protein kinase pathways are required for melatonin-mediated defense responses in plants., 2016, 60(3): 327-335.
[36] LEE H Y, BACK K. Melatonin is required for H2O2-and NO-mediated defense signaling through MAPKKK3 and OXI1 in., 2017: e12379. DOI: 10.1111/jpi. 12379.
[37] WANG P, YIN L H, LIANG D, LI C, MA F W, YUE Z Y. Delayed senescence of apple leaves by exogenous melatonin treatment: toward regulating the ascorbate-glutathione cycle., 2012, 53(1): 11-20.
[38] LIANG C, ZHENG G, LI W, WANG Y, HU B, WANG H, WU H, QIAN Y, ZHU X G, TAN D X, CHEN S Y, CHU C. Melatonin delays leaf senescence and enhances salt stress tolerance in rice., 2015, 59(1): 91-101.
[39] FAN J, HU Z, XIE Y, CHAN Z, CHEN K, AMOMBO E, CHEN L, FU J. Alleviation of cold damage to photosystem II and metabolisms by melatonin in bermudagrass., 2015, 6: 925. DOI: 10.3389/fpls.2015.00925.
[40] ZIOGAS V, TANOU G, BELGHAZI M, FILIPPOU P, FOTOPOULOS V, GRIGORIOS D, MOLASSIOTIS A. Roles of sodium hydrosulfide and sodium nitroprusside as priming molecules during drought acclimation in citrus plants., 2015, 89(4/5): 433-450.
[41] BORGES A A, JIMENEZ-ARIAS D, EXPOSITO-RODRIGUEZ M, SANDALIO L M, PEREZ J A. Priming crops against biotic and abiotic stresses: MSB as a tool for studying mechanisms., 2014, 5: 642. DOI: 10.3389/fpls.2014.00642.
[42] JANAS K M, POSMYK M M. Melatonin, an underestimated natural substance with great potential for agricultural application., 2013, 35(12): 3285-3292.
(責(zé)任編輯 趙伶俐)
Effects of Exogenous Melatonin on Photosynthesis of Tomato Leaves Under Drought Stress
YANG XiaoLong, XU Hui, LI TianLai, WANG Rui
(College of Horticulture, Shenyang Agricultural University / Key Laboratory of Protected Horticulture of Education Ministry and Liaoning Province/Key Laboratory of Protected Horticulture of Liaoning Province, Shenyang 110866)
【Objective】Melatonin is a small molecules widely exist in higher plants which is regarded as a new plant growth regulator and biological stimulant. Melatonin plays an important role in improving plant resistance, but research about melatonin involved in regulation of plant photosynthesis under adversity stress is rarely reported. The objective of this study is to explore the influence of exogenous melatonin on photosynthesis of tomato leaves under drought stress. 【Method】Tomato cultivar ‘LiaoYuanDuoLi’ was used as the experimental materials, concentration screening tests were firstly carried out: CK: Leaf spray with water and root application with 50 mL water. R5, R50, R100, R150, R250: leaf spray with water and root application with 50 mL 5, 50, 100, 150, 250 μmol?L-1melatonin. L5, L50, L100, L150, L250: root application with 50 mL water and leaf spray with 5, 50, 100, 150, 250 μmol?L-1melatonin. This process was repeated in the morning and afternoon for three consecutive days and the drought stress treatment was conducted for subsequent three days (CK0: normal water after leaf spray with water and root application with 50 mL water, CK1: drought treatment after leaf spray with water and root application with 50 mL water). The optimal melatonin concentration was screened comparing the maximum photochemical quantum yield of PSII (Fv/Fm) and a parameter representing the quantity of efficient PSI complex (Pm). Then the influence of root application and leaf spray with exogenous melatonin on gas exchange parameters, light energy distribution and electron transfer rate of PSI and PSII and the integrity of the thylakoid membrane and ATP enzyme activity of tomato leaves under drought stress were analyzed by using photosynthetic fluorescence synchronous measurement technology. 【Result】Root application and leaf spray with different concentrations of melatonin both increased the Fv/Fm and Pm of tomato leaves under drought stress, and all showed a trend of increase at first and then decreased with the increase of concentration, the values of Fv/Fm and Pm were the highest under L100 and R100, both significantly higher than that of control, thus it was determined that L100 and R100 were the optimal concentration treatments for leaf spray and root application, respectively. L100 and R100 significantly alleviated the inhibition of drought stress on the gas exchange parameters, and the leaf net photosynthetic rate (Pn) was 2.04 μmol?m-2?s-1and 1.71 μmol?m-2?s-1, respectively, which both significantly higher than the control (CK1) (0.52 μmol?m-2?s-1); transpiration rate (E) was 0.66 mmol?m-2?s-1and 0.54 mmol?m-2?s-1, respectively, and both significantly higher than that of CK1 (0.25 mmol?m-2?s-1). L100 and R100 treatments significantly increased the stomatal conductance (GH2O) and the maximum water use efficiency (WUE) and significantly reduced stomatal limitation (Ls) of tomato leaves under drought stress, it was also found that L100 treatment was superior to R100. The results of rapid light response curve showed that L100 and R100 enhanced Fv'/Fm' and qP of tomato leaves, indicated melatonin is beneficial to improve photochemical reaction efficiency of PSII of tomatoes under drought stress. Cyclic electron flow of tomato seedlings under drought stress was significantly enhanced, while melatonin treatment reduced on cyclic electron flow, but strengthened ETRI and ETRII, and they were both higher under L100 compared with R100. Y (I) and Y (II) both improved under L100 and R100 compared with CK1, indicate melatonin treatment strengthened light energy distribution to the direction of photochemical reaction of PSI and PSII under drought stress. P515 induction curves of L100 and R100 were higher than that of CK1 after dark adaptation, and after illumination, P515 signal of CK0 fell fast, followed by L100 and R100, CK1 treatment decreased slowest, showed that exogenous melatonin protected the thylakoid membrane from damage caused by drought stress and strengthened the ATP-synthase activity. 【Conclusion】Root application and leaf spraying with exogenous melatonin can relieve the inhibition of drought stress on photosynthetic performance of tomato leaves, strengthen the photosynthetic efficiency, leaf spraying is a more simple and efficient measure compared with root application. Melatonin can enhance crop photosynthesis adaptability to the environment stresses and has an regulatory role in crop growth and development.
melatonin; drought stress; tomato; photosynthesis; chlorophyll fluorescence
2017-01-04;接受日期:2017-06-15
“十三五”國家重點(diǎn)研發(fā)計(jì)劃(2016YFD0201004)
楊小龍,E-mail:xiaolongyang0214@163.com。通信作者王蕊,E-mail:ruiwangsyau@126.com