王慶,陸丹玲,楊勇,劉錦川??,呂堅(jiān)???
①上海大學(xué)材料研究所,微結(jié)構(gòu)中心實(shí)驗(yàn)室,上海 200072;②香港城市大學(xué)機(jī)械與生物醫(yī)學(xué)工程系,深圳研究院先進(jìn)結(jié)構(gòu)材料研究中心,廣東 深圳 518057
塊體金屬玻璃過(guò)冷液相的高熱穩(wěn)定性與非晶形成能力的原子機(jī)制*
王慶①②?,陸丹玲①②,楊勇②,劉錦川②??,呂堅(jiān)②???
①上海大學(xué)材料研究所,微結(jié)構(gòu)中心實(shí)驗(yàn)室,上海 200072;②香港城市大學(xué)機(jī)械與生物醫(yī)學(xué)工程系,深圳研究院先進(jìn)結(jié)構(gòu)材料研究中心,廣東 深圳 518057
過(guò)去幾十年里,從原子尺度理解塊體金屬玻璃形成過(guò)冷液相特性與微結(jié)構(gòu)的關(guān)系吸引了材料學(xué)家和凝聚態(tài)物理學(xué)家極大的關(guān)注,是此類先進(jìn)工程金屬材料得到實(shí)際開(kāi)發(fā)應(yīng)用的關(guān)鍵之所在。本文綜述了前期有關(guān)塊體金屬玻璃有序原子團(tuán)簇結(jié)構(gòu)隨熱處理或微量元素添加,演化及其對(duì)過(guò)冷液相熱穩(wěn)定性、晶化行為和玻璃形成能力影響的研究成果;并聚焦在塊體金屬玻璃過(guò)冷液相中的兩類不同原子團(tuán)簇,即類二十面體原子團(tuán)簇和類晶體原子團(tuán)簇。這兩類原子團(tuán)簇的共同存在是塊體金屬玻璃高熱穩(wěn)定性和納米晶化的重要因素。通過(guò)微合金可以調(diào)控過(guò)冷金屬液相中原子團(tuán)簇的結(jié)構(gòu)和體積分?jǐn)?shù),從而進(jìn)一步推進(jìn)它們的實(shí)際工程或功能性運(yùn)用。
塊體金屬玻璃形成過(guò)冷液相;熱穩(wěn)定性;玻璃形成能力;原子機(jī)制
金屬玻璃具有獨(dú)特的結(jié)構(gòu)特點(diǎn),如長(zhǎng)程無(wú)序和短程有序,不存在位錯(cuò)、晶界等缺陷,兼有金屬和玻璃的特性,能表現(xiàn)出比常規(guī)晶態(tài)合金更為優(yōu)異的力學(xué)、物理和化學(xué)性能。20世紀(jì)80年代末以來(lái),人們?cè)诮饘俨AУ男纬芍苽溲芯糠矫嫒〉昧送黄菩赃M(jìn)展,發(fā)現(xiàn)了許多合金體系具有很高的非晶形成能力,其臨界冷卻速率大部分在100 K/s 以下,從而利用傳統(tǒng)鑄造技術(shù)便能制備出大尺寸的金屬玻璃。這引起了非晶態(tài)物理學(xué)和材料學(xué)家的廣泛關(guān)注[1-4]。
研究塊體金屬玻璃的原子尺度結(jié)構(gòu)演化,尤其是中、短有序原子團(tuán)簇的形成與化學(xué)組成的關(guān)系,以及過(guò)冷金屬液相的熱力學(xué)和動(dòng)力學(xué)行為與有序原子團(tuán)簇的相關(guān)性,對(duì)于理解非晶合金固體和過(guò)冷液相的結(jié)構(gòu)弛豫、玻璃轉(zhuǎn)變、納米晶化、熱穩(wěn)定性和玻璃形成能力、力學(xué)行為等的物理機(jī)制具有重要的意義,也是推動(dòng)金屬玻璃開(kāi)發(fā)應(yīng)用的關(guān)鍵點(diǎn)之一[4-22]??偟膩?lái)講,前期研究表明有序原子團(tuán)簇,包括類二十面體[11-17](icosahedral-like)或類晶體原子團(tuán)簇[8-10]對(duì)金屬玻璃形成過(guò)冷液相的行為起著至關(guān)重要的作用[23]。
在有關(guān)塊體金屬玻璃特性的研究中[24-36],其過(guò)冷液相具有高熱穩(wěn)定性,即有很高抗晶化能力或玻璃形成能力的物理機(jī)制,這一直是材料學(xué)家和凝聚態(tài)物理學(xué)家極為關(guān)注的基礎(chǔ)性科學(xué)問(wèn)題[34,37]。在前期工作中,人們發(fā)現(xiàn)某些大塊金屬玻璃如Zr41.2Ti13.8Cu12.5Ni10Be22.5(Vit1)一方面呈現(xiàn)出很高的玻璃形成能力、熱穩(wěn)定性及很寬過(guò)冷液相區(qū),另一方面其在過(guò)冷液相區(qū)等溫?zé)崽幚磉^(guò)程中又會(huì)析出高密度納米晶,彌散分布于剩余非晶基體上。這兩種近似矛盾的物理現(xiàn)象,用經(jīng)典的形核理論很難解釋[24,38-39]。為此,研究者針對(duì)其可能的晶化進(jìn)程,提出了幾種不同的非經(jīng)典形核理論模型,如與原子團(tuán)簇或雜質(zhì)相關(guān)的非均勻形核理論[40-41]、耦合漲落形核理論[42]以及晶化前相分離理論[24-25]。 然而最近的研究表明,這些理論模型仍不足以完全解釋金屬玻璃過(guò)冷液相熱穩(wěn)定性的機(jī)制問(wèn)題[32,43]。例如,根據(jù)Martin等[44]的實(shí)驗(yàn)結(jié)果,利用相分離理論解釋Zr41.2Ti13.8Cu12.5Ni10Be22.5塊體金屬玻璃具有優(yōu)良熱穩(wěn)定性是不可行的。因此,目前仍然缺乏一種有效的統(tǒng)一理論去合理解釋塊體金屬玻璃的熱穩(wěn)定性、納米晶化及其內(nèi)在相互關(guān)系。
王慶等[45]進(jìn)一步以Zr41.2Ti13.8Cu12.5Ni10Be22.5塊體金屬玻璃為模型材料,通過(guò)系統(tǒng)研究其在過(guò)冷液相區(qū)646 K等溫?zé)崽幚磉^(guò)程中原子結(jié)構(gòu)的演化,揭示其具有優(yōu)異熱穩(wěn)定性、抗晶化能力和納米晶形成的機(jī)制。圖1(a)~1(d)顯示了該Zr基金屬玻璃合金鑄態(tài)以及在646 K等溫?zé)崽幚聿煌瑫r(shí)間(1850 s、3600 s和7200 s)后的高分辨透射電鏡照片和相對(duì)應(yīng)選區(qū)的電子衍射圖。結(jié)構(gòu)數(shù)據(jù)表明合金在646 K等溫處理至3600 s仍然保持著完全非晶態(tài),沒(méi)有明顯的晶格條紋像出現(xiàn);但選區(qū)電子衍射圖顯示,非晶漫射環(huán)隨著等溫時(shí)間的延長(zhǎng)而變得更為明銳,這暗示了其結(jié)構(gòu)在原子尺度上可能已經(jīng)發(fā)生了中、短程有序化。
圖1 Zr41.2Ti13.8Cu12.5Ni10Be22.5塊體金屬玻璃合金鑄態(tài)(a)以及在646 K等溫?zé)崽幚聿煌瑫r(shí)間:1850 s(b)、3600 s(c)和7200 s(d)后的高分辨透射電鏡照片和相對(duì)應(yīng)的選區(qū)電子衍射圖[45]
為更進(jìn)一步地揭示合金的局域原子結(jié)構(gòu)變化,我們對(duì)鑄態(tài)合金以及在646 K等溫退火1850 s、3600 s樣品的三幅高分辨透射電鏡圖片中的所選區(qū)域進(jìn)行傅里葉與反傅里葉變換處理(圖2),結(jié)果清楚地顯示,在鑄態(tài)樣品中,只有較少的類二十面體原子團(tuán)簇存在(圖2中白色圓環(huán)所示),但隨著熱處理時(shí)間的延長(zhǎng),具有相似結(jié)構(gòu)的原子團(tuán)簇越來(lái)越多(圖2(b)~2(c))。這一結(jié)果與選區(qū)電子衍射分析的結(jié)果一致。
圖2 在646 K等溫?zé)崽幚砗?,Zr41.2Ti13.8Cu12.5Ni10Be22.5塊體金屬玻璃合金中二十面體原子團(tuán)簇有序化[45]。(a)~(c)分別為圖1(a)~1(c)中所選取區(qū)域經(jīng)快速傅立葉處理后的圖像
當(dāng)延長(zhǎng)熱處理時(shí)間至7200 s,在此Zr基玻璃合金中,則可觀察到納米晶的形成。如圖1(d)所示,相應(yīng)的選區(qū)電子衍射圖顯示出布拉格衍射斑點(diǎn)疊加在非晶基體的漫射環(huán)上。
上述研究成果清楚地表明,所研究塊體金屬玻璃合金在整體結(jié)構(gòu)有序化過(guò)程中,首先形成了尺度為1~2 nm、具有球狀對(duì)稱結(jié)構(gòu)的二十面體中、短程有序原子團(tuán)簇,并彌散于非晶基體結(jié)構(gòu)中;然后再有尺度大于2 nm的、具有平移對(duì)稱性的有序結(jié)構(gòu)析出。為了更深入了解這一從短程有序到長(zhǎng)程有序的過(guò)渡轉(zhuǎn)變過(guò)程,圖3給出了一系列針對(duì)圖1(d)中不同納米晶化區(qū)域的傅里葉變化與反傅里葉變換后的局域原子結(jié)構(gòu)圖像,它們可以看成對(duì)應(yīng)著塊體金屬玻璃在晶化演變過(guò)程中,處于不同時(shí)間階段的結(jié)構(gòu)。
圖3(a)給出了合金在646 K等溫處理7200 s后納米晶化初期的結(jié)構(gòu)特征,在這個(gè)階段仍可看到許多類二十面體原子團(tuán)簇的存在,這表明這類具有球狀對(duì)稱性的原子團(tuán)簇有較高的穩(wěn)定性。但在對(duì)應(yīng)傅立葉變換圖中(圖3(e)),可觀察到兩個(gè)非常微弱的衍射斑點(diǎn)疊加在漫射環(huán)上,暗示了合金已開(kāi)始后續(xù)的結(jié)構(gòu)有序轉(zhuǎn)變,并與原子幾乎沿一維方向排列有關(guān)。在圖3(b)~3(c)中,這類一維平移對(duì)稱性柵格結(jié)構(gòu)特征變得更加明顯,相對(duì)應(yīng)地疊加在滿射環(huán)上的兩個(gè)衍射斑點(diǎn)變得相對(duì)較明亮(圖3(f)~3(g))。圖3(d)和3(h)則進(jìn)一步顯示出二維平移對(duì)稱有序結(jié)構(gòu)的形成。值得注意的是,在圖3(b)~3(d)中,當(dāng)可以看到一些類二十面體原子團(tuán)簇在具有周期性平移對(duì)稱結(jié)構(gòu)兩端周圍出現(xiàn)時(shí),有另一些類二十面體原子團(tuán)簇則被發(fā)現(xiàn)嵌入其中,并導(dǎo)致形成晶體相晶格畸變。
圖3 Zr41.2Ti13.8Cu12.5Ni10Be22.5過(guò)冷金屬液相在646 K等溫處理7200 s后納米晶化過(guò)程中典型的局域有序化原子結(jié)構(gòu)[45]
更為重要的是,圖3(a)~3(d)也清晰地展現(xiàn)出類二十面體原子團(tuán)簇的析出對(duì)具周期性平移對(duì)稱有序結(jié)構(gòu)的隨后形成、生長(zhǎng)具有明顯的釘扎作用。首先,在晶化初期階段,這類原子團(tuán)簇具有相對(duì)較高的穩(wěn)定性,其結(jié)構(gòu)能基本保持不變(圖3中實(shí)線環(huán)所標(biāo)出,這可能是其能起到釘扎作用的必要條件);當(dāng)它們出現(xiàn)在一維或二維長(zhǎng)程有序結(jié)構(gòu)的兩端周圍時(shí),相應(yīng)的平移對(duì)稱性原子結(jié)構(gòu)特征則被終止,并過(guò)渡到無(wú)序結(jié)構(gòu)。其次,對(duì)于嵌入到有序結(jié)構(gòu)的類二十面體原子團(tuán)簇,在合金結(jié)構(gòu)轉(zhuǎn)變過(guò)程中,它們的結(jié)構(gòu)也可能會(huì)隨著轉(zhuǎn)變進(jìn)程發(fā)生變化,如圖3(c)橢圓內(nèi)所示,觀察到的原子團(tuán)簇非常清楚地呈現(xiàn)出從球形對(duì)稱性結(jié)構(gòu)向平移對(duì)稱性結(jié)構(gòu)的轉(zhuǎn)變。此外,相對(duì)于正常的一維周期性平移對(duì)稱結(jié)構(gòu),近乎半扭曲的晶格也提供了很好證據(jù)。由此可以預(yù)見(jiàn),由于這類二十面體原子團(tuán)簇具有較高的穩(wěn)定性,它們向平移對(duì)稱性結(jié)構(gòu)的轉(zhuǎn)變過(guò)程需要一個(gè)較高的能量來(lái)驅(qū)動(dòng)。
總之,盡管以前的研究[44,46-47]普遍認(rèn)為金屬玻璃中存在的原子團(tuán)簇是晶化早期階段的形核點(diǎn),而我們的實(shí)驗(yàn)結(jié)果生動(dòng)有力地表明了塊體金屬玻璃過(guò)冷金屬液相中相對(duì)較穩(wěn)定的原子團(tuán)簇的出現(xiàn)能導(dǎo)致晶化相晶格畸變,阻礙非晶結(jié)構(gòu)中晶胚的長(zhǎng)大,延遲晶化形核,并對(duì)晶化初期形成的周期性平移對(duì)稱結(jié)構(gòu)起到釘扎效應(yīng)。也正是由于這樣的釘扎效應(yīng),有效抑制了形成的晶粒長(zhǎng)大,從而促成在具有高熱穩(wěn)性的Zr基塊體金屬玻璃中高密度納米晶形成。
關(guān)于原子有序團(tuán)簇的形成與化學(xué)組成的關(guān)系也是深入理解不同體系金屬玻璃形成過(guò)冷液相的熱穩(wěn)定性和玻璃形成能力的關(guān)鍵問(wèn)題之一。在前期研究中,人們發(fā)現(xiàn)微量元素能顯著提高塊體金屬玻璃合金的熱穩(wěn)定性和非晶形成能力[48-54]。盡管迄今為止已有不同的理論解釋,但就其原子結(jié)構(gòu)起源來(lái)看,實(shí)驗(yàn)證據(jù)仍然缺乏[48]。比如,Cu-Zr-Al 塊體金屬玻璃形成臨界尺寸約為3 mm,但加入原子數(shù)分?jǐn)?shù)為2%~5%的Y元素后,這一尺寸明顯提高到8 mm[52]。為了解釋這類微合金效應(yīng),有不同的理論被提出。如:Y元素的添加能有效清除雜質(zhì)氧,進(jìn)而抑制過(guò)冷相中的晶體異質(zhì)形核[52,55-56];亦或是Y元素的加入使合金體系成分更靠近深共晶點(diǎn),使過(guò)冷液相更為穩(wěn)定[52]。此外,也有人指出,微合金化會(huì)導(dǎo)致過(guò)冷液相晶化時(shí),原子尺度應(yīng)變能增大,使得晶化相變的熱力學(xué)驅(qū)動(dòng)能降低[54]。然而,在上述理論中,微合金化效應(yīng)的原子尺度結(jié)構(gòu)起源并不清楚。
在揭示塊體金屬玻璃形成過(guò)冷液相的熱穩(wěn)定性和非晶形成能力與原子有序結(jié)構(gòu)的關(guān)系中,王慶等[57]利用高分辨透射電子顯微分析并結(jié)合示差掃描量熱儀和黏度分析,將Cu46Zr47-xAl7Yx(x=0,2)鑄態(tài)塊體金屬玻璃的微觀原子結(jié)構(gòu)和其過(guò)冷液相的晶化和黏滯流變行為作比較。結(jié)果顯示,添加了原子數(shù)分?jǐn)?shù)為2%的Y元素后,可提高Cu-Zr-Al非晶形成能力,與其過(guò)冷液相黏度增大、初始晶化孕育時(shí)間延長(zhǎng)相關(guān)[57]。為理解含Y的Cu-Zr-Al過(guò)冷液相晶動(dòng)力學(xué)顯著減緩的結(jié)構(gòu)起源,研究者進(jìn)一步分析了所獲得的高分辨透射電子顯微結(jié)構(gòu)數(shù)據(jù),并發(fā)現(xiàn)被研究的兩個(gè)樣品中都含有尺度在1~2 nm且具有平移對(duì)稱結(jié)構(gòu)的類晶(crystal-like)原子團(tuán)簇(圖4)。值得注意的是,在不同金屬玻璃中,此類有序原子團(tuán)簇結(jié)構(gòu)都存在[9,46,58-59]。然而更有趣的發(fā)現(xiàn)是,含Y合金中此類晶原子團(tuán)簇有長(zhǎng)大的趨勢(shì),但其尺度都限制在2~4 nm,從整體上并未改變合金的結(jié)構(gòu)非晶特性。
這類類晶原子團(tuán)簇的生長(zhǎng)限制可歸因于伴隨其產(chǎn)生的原子尺度應(yīng)變能,從而導(dǎo)致晶體形核能壘增大;亦或與該體系中大量存在類二十面體原子團(tuán)簇[50]有關(guān),它們能有效阻挫相鄰的類晶原子團(tuán)簇的長(zhǎng)大而使樣品晶化[45]。值得注意的是,根據(jù)Cheng等[50]的研究成果,金屬玻璃合金中的類二十面體原子團(tuán)簇體積含量與其化學(xué)組成相關(guān)。另一方面,納米束能譜分析顯示含Y合金中獨(dú)特的類晶原子團(tuán)簇與Y元素的引入相關(guān)。進(jìn)一步對(duì)高分辨透射電子顯微照片進(jìn)行納米尺度自相關(guān)性統(tǒng)計(jì)分析發(fā)現(xiàn),原子數(shù)分?jǐn)?shù)為2%的Y元素的微量添加會(huì)導(dǎo)致Cu-Zr-Al塊體金屬玻璃中的納米尺度類晶有序結(jié)構(gòu)的含量明顯地從約26%增大到約35%(圖5)。
上述研究表明,通過(guò)Y元素的微量添加能有效調(diào)控Cu-Zr-Al塊體金屬玻璃形成過(guò)冷液相的局域原子結(jié)構(gòu),誘導(dǎo)形成更多的類晶有序原子團(tuán)簇。再則,由于周圍類二十面體原子團(tuán)簇的阻挫效應(yīng),這些納米尺度類晶原子團(tuán)簇相對(duì)穩(wěn)定。它們的形成使系統(tǒng)的有序度增大,能有效降低其過(guò)冷金屬液相原子動(dòng)性,使其具有更高黏度和晶化驅(qū)動(dòng)能,從而提高合金的熱穩(wěn)定性和玻璃形成能力(圖6)。
圖5 Cu46Zr47Al7塊體金屬玻璃高分辨透射電子顯微圖像的自相關(guān)分析網(wǎng)格圖。每個(gè)網(wǎng)格尺度是1.915 nm×1.915 nm,紅框標(biāo)識(shí)的有序結(jié)構(gòu)單元[57]
圖6 由于微量Y元素添加導(dǎo)致的結(jié)構(gòu)有序化對(duì)Cu46Zr47-xAl7Yx(x=0,2) 塊體金屬玻璃形成液體自由能壘影響的示意圖[57]
有序原子團(tuán)簇如類二十面體和類晶原子團(tuán)簇對(duì)塊體金屬玻璃形成過(guò)冷液相的熱穩(wěn)定性、晶化行為和玻璃形成能力起著至關(guān)重要的作用。相對(duì)穩(wěn)定的原子團(tuán)簇如類二十面體原子團(tuán)簇能有效阻挫晶核的形成或長(zhǎng)大,從而導(dǎo)致金屬玻璃形成過(guò)冷液相,在具有很高熱穩(wěn)定性的同時(shí)呈現(xiàn)出納米晶化。穩(wěn)定類晶原子團(tuán)簇的存在能使金屬玻璃合金系統(tǒng)的有序度增大,有效降低其過(guò)冷金屬液相原子動(dòng)性,使其具有更高黏度和晶化驅(qū)動(dòng)能,從而提高合金的熱穩(wěn)定性和玻璃形成能力。需要指出的是,這兩類原子團(tuán)簇在金屬玻璃過(guò)冷液相中的原子團(tuán)簇結(jié)構(gòu)與體積含量受體系成分控制,可通過(guò)微合金化來(lái)調(diào)控。上述研究成果對(duì)進(jìn)一步開(kāi)發(fā)具有優(yōu)異性能的工程或功能應(yīng)用塊體金屬玻璃材料具有重要的理論和實(shí)際意義。
(2017年9月11日收稿)■
[1] KLEMENT K, WILLENS R H, DUWEZ P. Non-crystalline structure in solidi fi ed gold-silicon alloys [J]. Nature, 1960, 187: 869-870.
[2] INOUE A. Stabilization of metallic supercooled liquid and bulk amorphous alloys [J]. Acta Mater, 2000, 48: 279-306.
[3] GREER A L. Metallic glasses [J]. Science, 1995, 267: 1947-1953.
[4] JOHSON W L. Bulk glass-forming metallic alloys: science and technology [J]. MRS Bulletin, 1999, 24: 42-56.
[5] SCHROERS J. Processing of bulk metallic glass [J]. Adv Mater, 2010,22: 1566-1597.
[6] CHEN M W. A brief overview of bulk metallic glasses [J]. NPG Asia Materials, 2011, 3: 82-90.
[7] HIRATA A, GUAN P, FUJITA T, et al. Direct observation of local atomic order in a metallic glass [J]. Nature Materials, 2010, 10: 28-33.
[8] HWANG J, MELGAREJO Z H, KALAY Y E, et al. Nanoscale structure and structural relaxation in Zr50Cu45Al5bulk metallic glass [J].Physical Review Letters, 2012, 108: 195505.
[9] HIRATA A, HIROTSU Y, OHKUBO T, et al. Local atomic structure of Pd-Ni-P bulk metallic glass examined by high-resolution electron microscopy and electron diffraction [J]. Intermetallics, 2006, 14: 903-907.
[10] HIROTSU Y, NIEH T, HIRATA A, et al. Local atomic ordering and nanoscale phase separation in a Pd-Ni-P bulk metallic glass [J].Physical Review B, 2006, 73: 012205.
[11] CHENG Y, MA E, SHENG H. Atomic level structure in multicomponent bulk metallic glass [J]. Physical Review Letters, 2009,102(24): 245501.
[12] COZZINI S, RONCHETTI M. Local icosahedral structures in binaryalloy clusters from molecular-dynamics simulation [J]. Physical Review B, 1996, 53: 12040-12049.
[13] SAIDA J, MATSUSHITA M, INOUE A. Direct observation of icosahedral cluster in Zr70Pd30binary glassy alloy [J]. Applied Physics Letters, 2001, 79: 412.
[14] TAKAGI T, OHKUBO T, HIROTSU Y, et al. Local structure of amorphous Zr70Pd30alloy studied by electron diffraction [J]. Applied Physics Letters, 2001, 79: 485.
[15] SAKSL K, FRANZ H, JóVáRI P, et al. Evidence of icosahedral shortrange order in Zr70Cu30and Zr70Cu29Pd1metallic glasses [J]. Applied Physics Letters, 2003, 83: 3924.
[16] LUO W K, SHENG H W, ALAMGIR F M, et al. Icosahedral shortrange order in amorphous alloys [J]. Physical Review Letters, 2004,92(14):145502.
[17] FUJITA T, KONNO K, ZHANG W, et al. Atomic-scale heterogeneity of a multicomponent bulk metallic glass with excellent glass forming ability [J]. Physical Review Letters, 2009, 103: 075502.
[18] CHENG Y Q, MA E. Atomic-level structure and structure–property relationship in metallic glasses [J]. Progress in Materials Science,2011, 56: 379-473.
[19] XING L Q, HUFNAGEL T C, ECKERT J, et al. Relation between short-range order and crystallization behavior in Zr-based amorphous alloys [J]. Applied Physics Letters, 2000, 77(13): 1970-1972.
[20] SHENG H W, LIU H Z, CHENG Y Q, et al. Polyamorphism in a metallic glass [J]. Nature Materials, 2007, 6(3): 192-197.
[21] SHENG H W, LUO W K, ALAMGIR F M, et al. Atomic packing and short-to-medium-range order in metallic glasses [J]. Nature, 2006, 439:419-425.
[22] JAKSE N, PASTUREL A. Glass forming ability and short-range order in a binary bulk metallic glass by ab initio molecular dynamics [J].Applied Physics Letters, 2008, 93: 113104.
[23] PEKARSKAYA E, L?FFLER J F, JOHNSON W L. Microstructural studies of crystallization of a Zr-based bulk metallic glass [J]. Acta Materialia, 2003, 51: 4045-4057.
[24] SCHNEIDER S, THIYAGARAJAN P, JOHNSON W L. Formation of nanocrystals based on decomposition in the amorphous Zr41.2Ti13.8Cu12.5Ni10Be22.5alloy [J]. Applied Physics Letters, 1996, 68:493.
[25] LOFFLER J F, JOHNSON W L. Model for decomposition and nanocrystallization of deeply undercooled Zr41.2Ti13.8Cu12.5Ni10Be22.5[J].Applied Physics Letters, 2000, 76: 3394
[26] WANG W H, WEI Q, FRIEDRICH S. Microstructure, decomposition,and crystallization in Zr41Ti14Cu12.5Ni10Be22.5bulk metallic glass [J].Physical Review B, 1998, 57: 8211-8217.
[27] ZHUANG Y X, WANG W H, ZHANG Y, et al. Crystallization kinetics and glass transition of Zr41Ti14Cu12.5Ni10-xFexBe22.5bulk metallic glasses[J]. Applied Physics Letters, 1999, 75: 2392-2394.
[28] XING L Q, HUFNAGEL T C, ECKERT J, et al. Relation between short-range order and crystallization behavior in Zr-based amorphous alloys [J]. Applied Physics Letters, 2000, 77: 1970-1972.
[29] TANG X P, L?FFLER J F, JOHNSON W L, et al. Devitri fi cation of the Zr41.2Ti13.8Cu12.5Ni10.0Be22.5bulk metallic glass studied by XRD,SANS, and NMR [J]. Journal of Non-Crystalline Solids, 2003, 317:118-122.
[30] MARTIN I, OHKUBO T, OHNUMA M, et al. Nanocrystallization of Zr41.2Ti13.8Cu12.5Ni10.0Be22.5metallic glass [J]. Acta Materialia, 2004, 52:4427-4435.
[31] KUNDIG A A, OHNUMA M, OHKUBO T, et al. Early crystallization stages in a Zr-Cu-Ni-Al-Ti metallic glass [J]. Acta Materialia, 2005,53: 2091-2099.
[32] TANAKA H. Relationship among glass-forming ability, fragility and short-range bond ordering of liquids [J]. Journal of Non-Crystalline Solids, 2005, 351: 678-690.
[33] LIU X J, CHEN G L, HOU H Y, et al. Atomistic mechanism for nanocrystallization of metallic glasses [J]. Acta Materialia, 2008, 56:2760-2769.
[34] INOUE A. Stabilization of metallic supercooled liquid and bulk amorphous alloys [J]. Acta Materialia, 2000, 48: 279-360.
[35] HIRATA A, HIROTSU Y, AMIYA K, et al. Crystallization process and glass stability of an Fe48Cr15Mo14C15B6Tm2bulk metallic glass [J].Physical Review B, 2008, 78: 144205.
[36] VENKATARAMAN S, HERMANN H, MICKEL C, et al. Calorimetric study of the crystallization kinetics of Cu47Ti33Zr11Ni8Si1metallic glass[J]. Physical Review B, 2007, 75: 104206.
[37] LU Z P, LIU C T, DONG Y D. Effects of atomic bonding nature and size mismatch on thermal stability and glass-forming ability of bulk metallic glasses [J]. Journal of Non-Crystalline Solids, 2004, 341: 93-100.
[38] TURNBULL D, Under what conditions can a glass be formed? [J].Contemporary Physics, 1969, 10: 473.
[39] LU K. Nanocrystalline metals crystallized from amorphous solids:nanocrystallization, structure, and properties [J]. Mater Sci Eng R-Rep,1996, 16: 161-221.
[40] FAN C, LI C F, INOUE A, et al. Effects of Nb addition on icosahedral quasicrystalline phase formation and glass-forming ability of Zr-Ni-Cu-Al metallic glasses [J]. Applied Physics Letters, 2001, 79: 1024-1026.
[41] LIU C T, CHISHOLM M F, MILLER M K. Oxygen impurity and microalloying effect in a Zr-based bulk metallic glass alloy [J].Intermetallics, 2002, 10: 1105-1112.
[42] KELTON K F. A new model for nucleation in bulk metallic glasses [J].Philosophical Magazine Letters, 1998, 77: 337-343.
[43] ASSADI H, SCHROERS J. Crystal nucleation in deeply undercooled melts of bulk metallic glass forming systems [J]. Acta Mater, 2002, 50:89-100.
[44] MARTIN I, OHKUBO T, OHNUMA M, et al. Nanocrystallization of Zr41.2Ti13.8Cu12.5Ni10.0Be22.5metallic glass [J]. Acta Mater, 2004, 52:4427-4435.
[45] WANG Q, LIU C T, YANG Y, et al. Atomic-scale structural evolution and stability of supercooled liquid of a zr-based bulk metallic glass [J].Physical Review Letters, 2011, 106 (21): 215505.
[46] LIU X J, CHEN G L, HOU H Y, et al. Atomistic mechanism for nanocrystallization of metallic glasses [J]. Acta Materialia, 2008, 56:2760-2769.
[47] CHEN G L, LIU X J, HUI X D, et al. Molecular dynamic simulations and atomic structures of amorphous materials [J]. Applied Physics Letters, 2006, 88: 203115.
[48] WANG W H. Roles of minor additions in formation and properties of bulk metallic glasses [J]. Progress in Materials Science, 2007, 52: 540-596.
[49] LIU C T, LU Z P. Effect of minor alloying additions on glass formation in bulk metallic glasses [J]. Intermetallics, 2005, 13: 415-418.
[50] CHENG Y Q, MA E, SHENG H W. Alloying strongly in fl uences the structure, dynamics, and glass forming ability of metallic supercooled liquids [J]. Applied Physics Letters, 2008, 93: 111913.
[51] CHEN N, MARTIN L, LUZGUINE-LUZGIN D V, et al. Role of alloying additions in glass formation and properties of bulk metallic glasses [J]. Materials, 2010, 3: 5320-5339.
[52] XU D H, DUAN G, JOHNSON W L. Unusual glass-forming ability of bulk amorphous alloys based on ordinary metal copper [J]. Physics Review Letters, 2004, 92: 245504.
[53] PARK E, KIM D. Phase separation and enhancement of plasticity in Cu-Zr-Al-Y bulk metallic glasses [J]. Acta Materialia, 2006, 54: 2597-2604.
[54] ZHANG Y, CHEN J, CHEN G L, et al. Glass formation mechanism of minor yttrium addition in Cu-Zr-Al alloys [J]. Applied Physics Letters,2006, 89: 131904.
[55] ZHANG Y, PAN M X, ZHAO D Q, et al. Formation of Zr-based bulk metallic glasses from low purity of materials by Yttrium addition [J].Mater Tran JIM, 2000, 41: 1410-1414.
[56] LU Z P, LIU C T, THOMPSON J R, et al. Structural amorphous steels[J]. Physical Review Letters, 2004, 92: 245503.
[57] WANG Q, LIU C T, YANG Y, et al. The atomic-scale mechanism for the enhanced glass-forming-ability of a Cu-Zr based bulk metallic glass with minor element additions [J]. Scientific Reports, 2014, 4:4648.
[58] HIROTSU Y, NIEH T, HIRATA A, et al. Local atomic ordering and nanoscale phase separation in a Pd-Ni-P bulk metallic glass [J].Physical Review B, 2006, 73(1): 012205.
[59] LIU X J, CHEN G L, HUI X D, et al. Growth mechanism from nanoordered clusters to nanocrystals in a deeply undercooled melt of Zr-Ni-Ti metallic glass [J]. Journal of Applied Physics, 2007, 102: 063515.
The atomic scale mechanism for the enhanced thermal stability and glass forming ability of bulk metallic glass forming supercooled liquids
WANG Qing①②, LU Danling①②, YANG Yong②, LIU Chain Tsuan②, Lü Jian②
①Laboratory for Structures, Institute of Materials, Shanghai University, Shanghai 200072, China; ②Department of Mechanical and Biomedical Engineering, Center for Advanced Structural Materials, Research Institute (Shenzhen), City University of Hong Kong,Hong Kong SAR, Shenzhen 518057, Goangdong Province, China
Over past decades, large efforts have been devoted to understand the properties of bulk metallic glass (BMG) forming supercooled metallic liquids at atomic level, which is of technological and fundamental importance for the development of advanced engineering metallic material. In this paper, we summarize the previous studies on the structural evolutions of atomic clusters with thermal annealing or minor element addition, which strongly affect the thermal stability, crystallization behavior and glass forming ability of supercooled metallic liquids. The focus is centered on two kinds of atomic clusters, i.e., icosahedral-like and crystallike atomic clusters. The coexistence of these different atomic clusters is found to be a very important factor for both high thermal stability and nanocrystallization of BMG-forming supercooled liquids. Moreover, through minor element addition, one could tailor the structure and volume fraction of atomic clusters in BMG-forming liquids, furthering their development for practical engineering and/or functional applications.
bulk metallic glass forming supercooled liquid, thermal ability, glass forming ability, atomic-scale mechanism
10.3969/j.issn.0253-9608.2017.05.002
*國(guó)家基礎(chǔ)研究計(jì)劃 (2015CB856800)和國(guó)家自然科學(xué)基金面上項(xiàng)目(51171099)資助
?通信作者,E-mail:qing-wang@hotmail.com
??美國(guó)工程院院士,中國(guó)工程院外藉院士。研究方向:金屬、合金、納米材料、金屬間化合物及塊體非晶合金物理冶金及力學(xué)行為;微結(jié)構(gòu)與相變;高溫結(jié)構(gòu)材料、貴金屬、鈦合金、金屬基復(fù)合材料設(shè)計(jì)及先進(jìn)工藝
???法國(guó)國(guó)家技術(shù)科學(xué)院院士,香港工程科學(xué)院院士。研究方向:生物材料與生物力學(xué);先進(jìn)材料與工藝集成及計(jì)算模擬和輔助設(shè)計(jì);納米材料、先進(jìn)結(jié)構(gòu)材料制備工藝及力學(xué)表征;實(shí)驗(yàn)力學(xué)與殘余應(yīng)力
(編輯:溫文)