覃 敏 尹光天 楊錦昌 李榮生 鄒文濤
(1.中國(guó)林業(yè)科學(xué)研究院熱帶林業(yè)研究所,廣州 510520; 2.涼山州林業(yè)調(diào)查規(guī)劃設(shè)計(jì)院,四川 615000)
米老排種源家系生長(zhǎng)性狀變異分析及早期選擇
覃 敏1,2尹光天1*楊錦昌1李榮生1鄒文濤1
(1.中國(guó)林業(yè)科學(xué)研究院熱帶林業(yè)研究所,廣州 510520;2.涼山州林業(yè)調(diào)查規(guī)劃設(shè)計(jì)院,四川 615000)
為分析米老排生長(zhǎng)性狀在種源和家系間的變異規(guī)律,篩選出速生的米老排優(yōu)良種源和家系。以來(lái)自8個(gè)米老排地理種源的116個(gè)家系為研究對(duì)象,對(duì)米老排生長(zhǎng)性狀進(jìn)行種源間和家系間遺傳變異分析和育種值綜合評(píng)分。結(jié)果表明:不同米老排種源間和家系間生長(zhǎng)性狀的差異均達(dá)到極顯著水平。生長(zhǎng)量最高的GXPX種源的平均樹(shù)高、胸徑和單株材積分別為9.50 m、13.40 cm、0.079 9 m3,是最差種源GXFC的1.28、1.42和2.30倍;生長(zhǎng)最快家系是PX01,其平均樹(shù)高、胸徑和單株材積分別為9.86 m、15.31 cm和0.101 6 m3,其株材積是最差家系FC01的4.01倍,是家系群體均值的1.94倍。通過(guò)單性狀選擇對(duì)種源進(jìn)行選擇,初步選出2個(gè)優(yōu)良種源,其樹(shù)高、胸徑和單株材積的預(yù)期遺傳增益分別達(dá)到8.87%、11.79%和34.70%;運(yùn)用育種值綜合評(píng)分法對(duì)家系進(jìn)行選擇,初步選出12個(gè)優(yōu)良家系,其樹(shù)高、胸徑樹(shù)高和材積的預(yù)期遺傳增益分別達(dá)到11.57%、17.35%和52.06%。GXPX和GXLZ 2個(gè)種源,PX01、LZ03、PX02、DB08、PX10、PX04、PX09、DB07、DB16、LZ05、JX16和PX05等12個(gè)家系是選出的綜合生長(zhǎng)表現(xiàn)最好的優(yōu)良種源和家系,可作為米老排良種材料進(jìn)行申報(bào)并推廣。
米老排;遺傳變異;生長(zhǎng)性狀;育種值;遺傳增益
米老排(MytilarialaosensisLecomte)別名殼菜果、馬蹄荷、米顯靈、三角楓、山油桐等,為金縷梅科(Hamamelidaceae)殼菜果屬(Mytilaria)的常綠大喬木[1],天然分布于我國(guó)云南南部、廣西西南部和廣東西部,越南北部和老撾也有分布[2]。米老排生長(zhǎng)快、成材早、干形通直、材質(zhì)優(yōu)良、適應(yīng)性較廣、抗性強(qiáng),是優(yōu)良的制漿造紙、家具和建筑原料[3];另一方面,米老排能改善土壤的理化性質(zhì),也可以作為防火樹(shù)種[4],具有重要的生態(tài)利用價(jià)值,成為了我國(guó)南方重要的生態(tài)經(jīng)濟(jì)型樹(shù)種。米老排具有多種用途和速生的特性引起了人們的廣泛關(guān)注[2,5],并在引種馴化[6]、苗木繁育[7~9]、栽培技術(shù)[10~11]和效益分析[12~15]等方面開(kāi)展了許多研究,有效促進(jìn)了米老排資源的推廣應(yīng)用;但與一些速生樹(shù)種相比,米老排人工林發(fā)展規(guī)??傮w上偏小,其重要原因之一就是生產(chǎn)上缺乏生長(zhǎng)表現(xiàn)優(yōu)異的繁育材料。
優(yōu)良種源和家系的選擇是林木遺傳改良的有效手段和良種選育的基礎(chǔ)[16]。國(guó)內(nèi)學(xué)者對(duì)鄉(xiāng)土樹(shù)種楓香(Liquidambarformosana)[17]、紅錐(Castanopsishystrix)[18]、榿木(Alnuscremastogyne)[19]、胡桃楸(Juglansmandshurica)[20]和西南樺(Betulaalnoides)[21]等樹(shù)種進(jìn)行種源家系選擇,都取得較好的改良效果。米老排作為南亞熱帶地區(qū)珍貴鄉(xiāng)土闊葉樹(shù)種,其良種選育一直是人們關(guān)注的問(wèn)題之一,但現(xiàn)有優(yōu)良育種材料的缺乏,在一定程度上導(dǎo)致了當(dāng)前米老排種植規(guī)模偏小和推廣應(yīng)用受限。因此為了加快良種的繁育進(jìn)程,促進(jìn)米老排人工林發(fā)展,提高米老排資源開(kāi)發(fā)利用水平,進(jìn)行米老排優(yōu)良種源和家系選擇,具有重要的理論意義和實(shí)用價(jià)值。本文利用6年生的米老排種源及家系試驗(yàn)林生長(zhǎng)量的觀測(cè)資料,對(duì)米老排種源及家系的樹(shù)高、胸徑、材積等生長(zhǎng)性狀進(jìn)行遺傳變異及遺傳參數(shù)估計(jì),結(jié)合育種值綜合評(píng)分法,初步篩選出優(yōu)良的種源和家系,為下一步米老排的遺傳改良和良種選育提供材料。
1.1 試驗(yàn)地概況
研究地點(diǎn)位于廣東省西江林業(yè)局西江林場(chǎng),地處東經(jīng)111°30′、北緯23°27′,林區(qū)立地條件優(yōu)越,屬亞熱帶氣候;年平均氣溫21.6℃,最高氣溫36.2℃,年平均降水量1 600 mm,年平均濕度82%;海拔為480 m;土壤為赤紅壤,pH值4.0、有機(jī)質(zhì)30.11 g·kg-1、全氮1.23 g·kg-1、全磷0.16 g·kg-1、全鉀18.12 g·kg-1、堿解氮79.89 mg·kg-1、有效磷6.26 mg·kg-1、速效鉀30.91 mg·kg-1。
1.2 試驗(yàn)材料與試驗(yàn)設(shè)計(jì)
供試的8個(gè)種源和116個(gè)家系來(lái)自其自然分布區(qū)的廣西和廣東2個(gè)省份,不同種源產(chǎn)地及地理概況見(jiàn)表1。米老排種源/家系試驗(yàn)林于2010年?duì)I造,造林苗木為1年生實(shí)生苗,采用隨機(jī)區(qū)組設(shè)計(jì),116個(gè)家系單株作為一個(gè)區(qū)組,共設(shè)置30個(gè)區(qū)組,株行距為3 m×3 m,試驗(yàn)地的每個(gè)區(qū)組外圍種植1行火力楠作為保護(hù)行。
表1 米老排種源/家系信息表
試驗(yàn)林營(yíng)造后至2015年12月進(jìn)行數(shù)據(jù)調(diào)查,逐株測(cè)量樹(shù)高、胸徑,單株材積的計(jì)算采用米老排人工林二元材積計(jì)算公式[22]:
V=6.832 97×10-5D1.926 256H0.884 061 4
(1)
式中:V為單株材積,D為胸徑,H為樹(shù)高。
試驗(yàn)林由于人為或其他因素影響造成一些米老排植株死亡,這導(dǎo)致一些數(shù)據(jù)缺失,實(shí)際測(cè)量到的米老排僅有2 988棵。
1.4 數(shù)據(jù)處理
方差分析采用種源/家系二因素水平,即種源+不等家系分析模型[23]:
Yijk=μ+Bi+Pj+Fk+Eijk
(2)
式中:Yijk為第i個(gè)重復(fù)第j個(gè)種源第k個(gè)家系的觀測(cè)值,μ為總體均值,Bi為區(qū)組效應(yīng),Pj為種源效應(yīng),F(xiàn)k為種源內(nèi)家系效應(yīng),Eijk為誤差。
家系遺傳力的計(jì)算公式:
(3)
遺傳變異系數(shù):
(5)
表型變異系數(shù):
(6)
家系各性狀的育種值均使用表型觀測(cè)值估算,育種值的計(jì)算公式[24]:
(7)
遺傳增益的計(jì)算公式:
%,R=h2·S
(8)
本文試驗(yàn)調(diào)查數(shù)據(jù)均采用微軟Excel 2007軟件進(jìn)行數(shù)據(jù)整理,采用SAS9.2統(tǒng)計(jì)軟件[25]進(jìn)行方差分析和遺傳力分析。
2.1 生長(zhǎng)性狀的差異分析
對(duì)6年生米老排的樹(shù)高、胸徑和材積進(jìn)行方差分析(表2),結(jié)果表明:來(lái)自8個(gè)地理種源的123個(gè)家系樹(shù)高、胸徑和材積在種源間和家系間的差異均達(dá)到極顯著水平。米老排種源間的差異明顯大于家系間的差異,說(shuō)明在種源層次上的選擇更具潛力。由表3可知,6年生時(shí)米老排樹(shù)高總平均值為8.47 m,樹(shù)高大于平均值的種源有4個(gè);胸徑的總平均值為11.18 cm,胸徑大于平均值的種源有3個(gè);由于樹(shù)高和胸徑與單株材積成正比關(guān)系,因此對(duì)單株材積進(jìn)行選擇時(shí)可以兼顧樹(shù)高和胸徑兩個(gè)指標(biāo),單株材積生長(zhǎng)量最好的種源是GXPX種源,其次是GXLZ種源,最差的種源是GXFC種源。最好的GXPX種源的平均樹(shù)高、胸徑和單株材積是最差種源GXFC的1.28、1.42和2.30倍。
表2 米老排各生長(zhǎng)性狀的方差分析
注:*表示在0.05水平下差異顯著;**表示在0.01水平下差異極顯著
Note:*mean significance at 0.05 probability levels;**mean significance at 0.01 probability levels,respectively.
2.2 生長(zhǎng)性狀的遺傳分析
為了解米老排家系間差異及其與種源的關(guān)系,對(duì)其表型生長(zhǎng)性狀進(jìn)行家系間的遺傳變異分析。由表4可知:不同生長(zhǎng)性狀和不同變異系數(shù)的差異較大,表型和遺傳變異系數(shù)均是單株材積>胸徑>樹(shù)高,而在不同性狀間表型變異系數(shù)均大于遺傳變異系數(shù);樹(shù)高、胸徑和單株材積的家系遺傳力分別為74.42%、71.91%和80.66%,遺傳力水平較高。比較不同性狀種源間(表3)與家系間(表4)表型變異系數(shù)可以看出,種源間的樹(shù)高、胸徑和材積的表型變異系數(shù)分別為18.42%、25.04%和57.36%,分別大于家系間的16.34%、23.56%和48.03%。
表3米老排不同種源的生長(zhǎng)性狀分析
Table3MeanvaluesofgrowthcharactersamongprovenancesofM.laosensiswithDuncan’smultiplerangetest
種源Provenances樹(shù)高Height(m)胸徑Diameteratbreastheight(cm)材積Volume(m3·tree-1)GXPX9.50a13.39a0.0799aGXLZ9.18a12.05b0.0650bGXDB8.82b11.50bc0.0571cGXJX8.54bc11.18c0.0519cdGXRX8.23cd10.94cd0.0477deGDFK8.45c10.52d0.0448eGXSS7.92d10.38d0.0423eGXFC7.45e9.45e0.0347f總平均8.4711.180.0523標(biāo)準(zhǔn)差Standarddeviation1.562.800.03變異系數(shù)Thecoefficientofvariation(%)18.4225.0457.36
注:同一列數(shù)據(jù)后面不同字母表示性狀差異顯著(P<0.05)。
Note:Different letter in the row mean significantly different at 5% level of trait.
表4米老排家系不同生長(zhǎng)性狀的遺傳變異分析
Table4GeneticanalysisofgrowthcharactersofM.laosensisat6yearsold(%)
性狀Characters樹(shù)高Height胸徑Diameteratbreastheight材積Volume表型變異系數(shù)Phenotypicalvariancecoefficient16.3423.5648.03遺傳變異系數(shù)Geneticvariancecoefficient5.297.2817.89家系遺傳力Heritablityatfamily74.4271.9180.66
2.3 綜合性狀育種值評(píng)分
育種值是林木遺傳育種中的重要參數(shù)[26],由群體平均值加上遺傳力與選擇差的積組成。利用米老排家系不同性狀的方差剖分估算其家系遺傳力,進(jìn)一步計(jì)算出不同性狀的育種值,再根據(jù)育種值大小進(jìn)行排序,每個(gè)性狀的育種值排列第1位賦予116分,育種值排列第2位賦予115分,依次類推,育種值排列最后1位賦予1分。最后將不同性狀得分值相加作為每一個(gè)家系的總分值,再根據(jù)總分值進(jìn)行排序。結(jié)果表明:PX01號(hào)家系總得分最高,為364分,說(shuō)明PX01家系各性狀的綜合表現(xiàn)最好;116個(gè)家系平均分值為186分,總得分超過(guò)家系群體得分均值的家系共有61個(gè)。表5為總得分排在前20的家系,其中排在第1位的PX01號(hào)家是家系群得分均值的1.96倍,排在第20位的JX01號(hào)家系是家系群體得分均值的1.63倍。
表5 米老排20個(gè)優(yōu)良家系綜合性狀育種值分析
2.4 米老排的遺傳增益估算
利用種源/家系遺傳力及入選種源—家系均值和總均值的選擇差,計(jì)算米老排選擇后的遺傳增益。米老排種源間單株材積大于平均值的有3個(gè)種源,按25%的入選率進(jìn)行選擇,綜合性狀表現(xiàn)最好的2個(gè)種源為GXPX和GXLZ。家系依據(jù)選育目標(biāo)按10%的入選率進(jìn)行選擇,綜合表現(xiàn)最好的12個(gè)家系分別為PX01、LZ03、PX02、DB08、PX10、PX04、PX09、DB07、DB16、LZ05、JX16和PX05。遺傳增益結(jié)果(表6)表明:由種源選擇獲得的樹(shù)高、胸徑和材積的遺傳增益分別為8.87%、11.79%和34.70%;家系選擇獲得的樹(shù)高、胸徑和材積的遺傳增益分別為11.57%、17.35%和52.06%。
表6米老排種源選擇和家系選擇的遺傳增益
Table6GeneticgainofprovenanceselectionandfamilyselectionofM.laosensis(%)
選擇Selection樹(shù)高Height胸徑Diameteratbreastheight材積Volume種源選擇Provenanceselection8.8711.7934.70家系選擇Familyselection11.5717.3552.06
米老排種源/家系的遺傳變異首先表現(xiàn)在生長(zhǎng)性狀上,種源間和種源內(nèi)家系間的樹(shù)高、胸徑、單株材積均存在極顯著差異,種源間生長(zhǎng)性狀的差異明顯大于家系間性狀的差異;生長(zhǎng)最優(yōu)的GXPX種源樹(shù)高、胸徑和單株材積分別是最差種源GXFC的1.28、1.42和2.30倍,最優(yōu)家系為PX01,其單株材積達(dá)0.101 6 m3,是最差家系FC01的4.01倍,是家系群體均值的1.94倍;通過(guò)單性狀選擇,初步選出最優(yōu)的2個(gè)種源,其樹(shù)高、胸徑和材積的遺傳增益分別為8.87%、11.79%和34.70%;由育種值綜合評(píng)分法選出最優(yōu)的12個(gè)家系,其樹(shù)高、胸徑和材積的遺傳增益分別為11.57%、17.35%和52.06%,這些篩選出的速生性顯著的優(yōu)良種源和家系可作為米老排良種材料進(jìn)行申報(bào)并推廣。
米老排家系間生長(zhǎng)性狀受高強(qiáng)度遺傳控制,具有很強(qiáng)的家系選擇潛力。比較不同性狀種源間與家系間平均表型變異系數(shù)可以看出,不同生長(zhǎng)性狀種源間的表型變異系數(shù)與家系間表型變異系數(shù)相近,這可能是米老排種源間的差異包含了家系間的變異效應(yīng),因此開(kāi)展優(yōu)良種源和家系選擇對(duì)米老排改良都是有效的。遺傳變異系數(shù)能反映由遺傳因素造成的性狀觀測(cè)值變異的程度[27],米老排種源/家系試驗(yàn)林各性狀遺傳變異系數(shù)分別為5.29%、7.28%和7.82%,其中單株材積遺傳變異系數(shù)最大,其表型變異系數(shù)達(dá)到48.03%,說(shuō)明米老排家系間材積存在豐富的變異,這與張偉紅[28]得出的結(jié)論一致。
米老排6年生時(shí)平均樹(shù)高、胸徑和材積分別為8.47 m、11.18 cm和0.052 3 m3,年平均增長(zhǎng)量分別為1.41 m、1.86 cm和0.008 7 m3,大于速生樹(shù)種馬尾松(Pinusmassoniana)的生長(zhǎng)指標(biāo)[29],說(shuō)明米老排具有較好的速生性。米老排材積生長(zhǎng)量比同齡速生鄉(xiāng)土樹(shù)種紅椎(0.021 6 m3)[18]、西南樺(0.030 3 m3)[30]和南酸棗(Choerospondiasaxillaris)(0.034 6 m3)[31]等大;而與引進(jìn)樹(shù)種相思(Acaciacincinnata)(0.058 4 m3)[32]相近;雖然比同齡引進(jìn)樹(shù)種楊樹(shù)(Populus)(0.159 8 m3)[33],桉樹(shù)(Eucalyptustereticornis)(0.163 4 m3)[34]等小,但米老排作為鄉(xiāng)土樹(shù)種對(duì)本地的立地條件有更強(qiáng)的適應(yīng)性[35]。因此,利用米老排人工林生長(zhǎng)量的速生特性,挖掘和開(kāi)發(fā)出生長(zhǎng)表現(xiàn)優(yōu)異的繁育材料,具有廣闊的前景。從選擇的結(jié)果來(lái)看,6年生GXPX和GXLZ是選出的綜合生長(zhǎng)表現(xiàn)最好的2個(gè)優(yōu)良種源。從分子標(biāo)記水平分析,GXPX種源的多態(tài)位點(diǎn)百分率為69.77%[36],GXLZ種源也具有較高的遺傳多樣性水平[37],這說(shuō)明遺傳多樣性水平高的種源適應(yīng)性更強(qiáng)[36]。遺傳多樣性水平高可也能是其生長(zhǎng)表現(xiàn)較好的重要原因,有待今后進(jìn)一步研究。
本文基于6年生米老排種源/家系試驗(yàn)林觀測(cè)的生長(zhǎng)性狀來(lái)分析其遺傳變異并進(jìn)行初選,沒(méi)有涉及木材性狀的測(cè)定與分析;此外,本研究只對(duì)樹(shù)高和胸徑及材積等數(shù)量指標(biāo)進(jìn)行了分析,而作為用材樹(shù)種應(yīng)同時(shí)關(guān)注其干形、通直度和出材率等質(zhì)量指標(biāo)。因此,有待于今后收集更多的觀測(cè)指標(biāo)以綜合分析米老排生長(zhǎng)與收獲性狀,從而更準(zhǔn)確和客觀地評(píng)價(jià)不同種源和家系間的遺傳變異,為篩選出優(yōu)良的米老排繁育材料提供更多的支撐。
1.裘珍飛,曾炳山,李湘陽(yáng),等.米老排的組織培養(yǎng)和快速繁殖[J].植物生理學(xué)報(bào),2013,49(10):1077-1081.
Qiu Z F,Zeng B S,Li X Y,et al.Tissue Culture and Rapid Propagation ofMytilarialaosensisLecomte[J].Plant Physiology Communications,2013,49 (10):1077-1081.
2.黃正暾,王順?lè)?姜儀民,等.米老排的研究進(jìn)展及其開(kāi)發(fā)利用前景[J].廣西農(nóng)業(yè)科學(xué),2009,40(9):1220-1223.
Huang Z T,Wang S F,Jiang Y M,et al.Exploitation and Utilization Prospects of Eximious Native Tree SpeciesMytilarialaosensis[J].Guangxi Agricultural Sciences,2009,40(9):1220-1223.
3.吳莊,李志軍,劉光良,等.速生材制化學(xué)機(jī)械漿(CMP)系列研究Ⅰ:米老排材制化學(xué)機(jī)械漿的研究[J].林產(chǎn)化工通訊,1992,(4):2-5.
Wu Z,Li Z J,Liu G L,et al.A Series of Studies on Fast-growing Material Chemi-mechanical Pulp (CMP)(Ⅰ) Material CMP research ofMytilarialaosensis[J].Journal of Chemical Industry of Forest Products,1992(4):2-5.
4.郭福泰.米老排生長(zhǎng)與土壤條件的關(guān)系及防火林帶生態(tài)效益的研究[J].福建林業(yè)科技,1998,25(2):45-50.
Gou F T.Studies on the relation betweenMytilarialaosensisfire prevention forest growth and soil condition and on the ecological benefit of the forest[J].Journal of Fujian Forestry Science And Technology,1998,25(2):45-50.
5.劉光良,李萍.新速生材—米老排材性及制漿適應(yīng)性研究[C].中國(guó)造紙學(xué)會(huì)第八屆學(xué)術(shù)年會(huì)論文集.北京:中國(guó)造紙學(xué)會(huì),1997.
Liu G L,Li P. Study on The Wood Property and Pulping Adaptability ofMytilarialaosensisof New Fast Growing Material[C].Proceedings of The Eighth Annual Conference of Chinese Technical Association of Paper Industry.Beijing:China Technical Association of Paper Industry,1997.
6.王小燕,薛楊,郭海燕,等.米老排引種栽培技術(shù)研究初報(bào)[J].熱帶林業(yè),2015,43(2):25-28.
Wang X Y,Xue Y,Guo H Y,et al.MytilariaIntroduction and Cultivation Techniques Preliminary Study[J].Tropical Forestry,2015,43(2):25-28.
7.林能慶.米老排嫁接技術(shù)研究[J].防護(hù)林科技,2015(12):14-16.
Lin N Q.Grafting Technology ofMytilarialaosensis[J].Protection Forest Science and Technology,2015(12):14-16.
8.閆彩霞,楊錦昌,尹光天,等.供氮方式及水平對(duì)米老排苗期生長(zhǎng)動(dòng)態(tài)的影響[J].東北林業(yè)大學(xué)學(xué)報(bào),2015,43(5):11-16.
Yan C X,Yang J C,Yin G T,et al.Effects of different nitrogen loading regimes and levels on growth dynamic ofMytilarialaosensisseedlings[J].Journal of Northeast Forestry University,2015,43(5):11-16.
9.Chen L,Zeng J,Jia H Y,et al.Growth and nutrient uptake dynamics ofMytilarialaosensisseedlings under exponential and conventional fertilizations[J].Soil Science and Plant Nutrition,2012,58(5):618-626.
10.胡雪雁,林朝楷,李小紅,等.米老排引種栽培技術(shù)[J].林業(yè)實(shí)用技術(shù),2010,(12):25-26.
Hu X Y,Lin C K,Li X H,et al.Introduction and Cultivation Techniques ofMytilarialaosensis[J].Practical Forestry Technology,2010,(12):25-26.
11.閆彩霞,姜清彬,楊錦昌,等.不同內(nèi)外生菌根菌接種對(duì)米老排苗期的生長(zhǎng)效應(yīng)[J].林業(yè)科學(xué)研究,2015,28(4):577-581.
Yan C X,Jiang Q B,Yang J C,et al.Study on Seedling Growth Respond ofMytilarialaosensisInoculated with Different ECM and VAM Fungi[J].Forest Research,2015,28(4):577-581.
12.白靈海,唐繼新,明安剛,等.廣西大青山米老排人工林經(jīng)濟(jì)效益分析[J].林業(yè)科學(xué)研究,2011,24(6):784-787.
Bai L H,Tang J X,Ming A G,et al.Economic Benefit Analysis of 28-year-oldMytilarialaosensisPlantations in Daqingshan,Guangxi of China[J].Forest Research,2011,24(6):784-787.
13.余再鵬,黃志群,王民煌,等.亞熱帶米老排和杉木人工林土壤呼吸季節(jié)動(dòng)態(tài)及其影響因子[J].林業(yè)科學(xué),2014,50(8):7-14.
Yu Z P,Huang Z Q,Wang M H,et al.Seasonal Dynamics of Soil Respiration and Its Affecting Factors in SubtropicalMytilarialaosensisandCunninghamialanceolataPlantations[J].Scientia Silvae Sinicae,2014,50(8):7-14.
14.周弘愿,龐贊松,何斌,等.南亞熱帶米老排成熟林碳庫(kù)及其分布格局[J].福建林業(yè)科技,2015,42(3):45-49.
Zhou H Y,Pang Z S,He B,et al.Carbon Stock and Distribution of MatureMytilarialaosensisPlantation in South Sub-tropical Area[J].Journal of Fujian Forestry Science and Technology,2015,42(3):45-49.
15.明安剛,劉世榮,農(nóng)友,等.南亞熱帶3種闊葉樹(shù)種人工幼齡純林及其混交林碳貯量比較[J].生態(tài)學(xué)報(bào),2015,35(1):180-188.
Ming A G,Liu S R,Nong Y.Comparison of Carbon Storage in Juvenile Monoculture and Mixed Plantation Stands of Three Common Broadleaved Tree Species in Subtropical China[J].Acta Ecologica Sinica,2015,35(1):180-188.
16.祝列克.新世紀(jì)中國(guó)林木遺傳育種發(fā)展戰(zhàn)略[J].南京林業(yè)大學(xué)學(xué)報(bào),2001,25(1):3-8.
Zhu L K.Developmental Strategies for Forest and Tree Breeding in China Towards to The New Century[J].Journal of Nanjing Forestry University:Natural Sciences Edition,2001,25(1):3-8.
17.陳孝丑.楓香優(yōu)樹(shù)14年生子代遺傳變異及選擇[J].林業(yè)科學(xué)研究,2015,28(2):183-187.
Chen X C.Genetic Variation and Selection of 14-year-oldLiquidambarformosanaProgeny[J].Forest Research,2015,28(2):183-187.
18.朱積余,申文輝,蔣燚,等.紅錐家系遺傳變異與優(yōu)良家系選擇[J].熱帶亞熱帶植物學(xué)報(bào),2014,22(3):270-280.
Zhu J Y,Shen W H,Jiang Y,et al.Genetic Variation and Superior Family Selection ofCastanopsishystrixFamilies[J].Journal of Tropical and Subtropical Botany,2014,22(3):270-280.
19.王軍輝,顧萬(wàn)春,李斌,等.榿木優(yōu)良種源/家系的選擇研究—生長(zhǎng)的適應(yīng)性和遺傳穩(wěn)定性分析[J].林業(yè)科學(xué),2000,36(3):59-66.
Wang J H,Gu W C,Li B,et al.Study on Selection ofAlnuscremastogyneProvenance/Family-Analysis of Growth Adaptation and Genetic Stability[J].Scientia Silvae Sinicae,2015,28(4):577-581.
20.褚憲麗,朱航勇,張含國(guó),等.胡桃楸種源家系變異與選擇[J].東北林業(yè)大學(xué)學(xué)報(bào),2010,38(11):5-6,14.
Chu X L,Zhu H Y,Zhang H G,et al.Variation Among Provenances and Families ofJuglansmandshuricaand Preliminary Selection[J].Journal of Northeast Forestry University,2010,38(3):5-6,14.
21.郭文福,曾杰,黎明.廣西憑祥西南樺種源家系選擇試驗(yàn)Ⅰ.幼林生長(zhǎng)性狀的變異[J].林業(yè)科學(xué)研究,2008,21(5):652-656.
Gou W F,Zeng J,Li M.Provenance and Family Trials forBetulaalnoidesin Pingxiang,Guangxi I.Early Variation of Growth Traits[J].Forest Research,2008,21(5):652-656.
22.陳永富,郭文福,黃鏡光.米老排立木材積表及地位指數(shù)的編制[J].林業(yè)科學(xué)研究,1991,4(增刊):116-119.
Chen Y F,Guo W F,Huang J G.The Establishment of Stand Tree Volume Table and Site Index ofMytilarialaosensis[J].Forest Research,1991,4(Supplement):116-119.
23.Snedecor G W,Cochran W G.Statistical methods[M].7th ed.Ames Iowa:Iowa State University Press,1980:238-255.
24.Kung F H.Improved Estimators for Provenance Breeding Values[J].Silvae Genetica,1979,28(2-3):114-116.
25.黃少偉,謝維輝.實(shí)用SAS編程與林業(yè)試驗(yàn)數(shù)據(jù)分析[M].廣州:華南理工大學(xué)出版社,2001.
Huang S W,Xie W H.Practical Programming of SAS And Data Analysis of Forestry Experiment[M].Guangzhou:South China University of Technology press,2001.
26.White T L,Adams W T,Neale David B.Forest genetics[M].London:Oxford University Press,2007.
27.任華東,姚小華,康文玲,等.黑荊樹(shù)種源和家系的遺傳變異與早期選擇[J].林業(yè)科學(xué),2010,46(3):153-160.
Ren H D,Yao X H,Kang W L,et al.Genetic Variation and Early Selection of Provenances and Families ofAcaciamearnsii[J].Scientia Silvae Sinicae,2010,46(3):153-160.
28.張偉紅,王潤(rùn)輝,鄭會(huì)全,等.樂(lè)昌含笑優(yōu)樹(shù)多點(diǎn)子代測(cè)定及優(yōu)良家系選擇[J].浙江農(nóng)林大學(xué)學(xué)報(bào),2015,32(5):763-769.
Zhang W H,Wang R h,Zheng H Q,et al.Multi-site Family Trials and Selection of Superior Families forMicheliachapensis[J].Journal of Zhejiang A&F University,2015,32(5):763-769.
29.楊章旗,韋元榮,何裕澤.廣西馬尾松速生豐產(chǎn)林綜合標(biāo)準(zhǔn)編制說(shuō)明[J].廣西林業(yè)科學(xué),1998,27(2):86-89,97.
Yang Z Q,Wei Y R,He Y Z.Description of Comprehensive Standard of Fast Growing and High Yield Forest of Guangxi pine[J].Guangxi Forestry Sciences,1998,27(2):86-89,97.
30.蘇付保,李榮珍,馮立新,等.西南樺人工林優(yōu)樹(shù)選擇研究[J].廣東農(nóng)業(yè)科學(xué),2011,38(15):24-25.
Su F B,Li R Z,Feng L X,et al.Study on the Dominant Tree Selection of Alder Birch Plantation[J].Guangdong Agricultural Sciences,2011,28(15):24-25.
31.何貴平,陳益泰,余元華,等.南酸棗人工林早期生長(zhǎng)特性及其與杉木混交效應(yīng)研究[J].林業(yè)科學(xué)研究,2004,17(2):206-212.
He G P,Chen Y T,Yu Y H,et al.Study on Early Growth Characteristics ofChoerospondiasaxillarisPlantation and Effect ofChoerospondiasaxillarisandCunninghamialanceolataMixed Stand[J].Forest Research,2004,17(2):206-212.
32.黃勇,覃靜,李松昌,等.卷莢相思人工林生長(zhǎng)規(guī)律·生物量及生產(chǎn)力研究[J].安徽農(nóng)業(yè)科學(xué),2010,38(22):12050-12053.
Wang Y,Qin J,Li S C,et al.Research on Growth Law,Biomass and Productivity ofAcaciacincinnataPlantation[J].Journa of Anhui Agricultural Sciences,2010,38(22):12050-12053.
33.趙貝貝,翟文元,郝克嘉,等.Richards生長(zhǎng)函數(shù)在107-楊樹(shù)速生豐產(chǎn)林生長(zhǎng)預(yù)測(cè)上的應(yīng)用[J].山東農(nóng)業(yè)大學(xué)學(xué)報(bào):自然科學(xué)版,2010,41(1):23-26.
Zhao B B, Zhai W Y, Hao K J,et al.The Application of Richards Growth Function on Growth Prediction of Fast-Growing and High-Yield 107-Poplar Plantations [J].Journal of Shandong Agricultural University (Natural Science),2010,41(1):23-26.
34.徐建民.尾葉桉紙漿材育種綜合選擇及改良研究[D].廣州:中國(guó)林業(yè)科學(xué)研究院熱帶林業(yè)研究所,2003.
Xu J M.Multiple Selection and Improvement ofEucalyptusurophyllafor Pulpwood Productin[D].Guangzhou:Research Institute of Tropical Forestry,Chinese Academy of Forestry,2003.
35.郝向春,韓麗君,翟瑜,等.山西省優(yōu)良鄉(xiāng)土闊葉樹(shù)種研究初報(bào)[J].山西林業(yè)科技,2014,43(3):1-4.
Hao X C,Han L J,Zhai Y,et al.Preliminary Report on Fine Native Hardwood Species in Shanxi Province[J].Shanxi Forestry Science and Technology,2014,43(3):1-4.
36.彭繼慶,曹福祥,許若嫻.廣西殼菜果遺傳多樣性的ISSR研究[J].湖南師范大學(xué)自然科學(xué)學(xué)報(bào),2012,35(1):61-65.
Peng J Q,Cao F X,Xu R X.Genetic Diversity of theMytilarialaosensisin Guangxi Detected by ISSR Markers[J].Journal of Natural Science of Hunan Normal University,2012,35(1):61-65.
37.袁潔.8個(gè)米老排天然群體的遺傳多樣性研究[D].北京:中國(guó)林業(yè)科學(xué)研究院,2014.
Yuan J.Study on Genetic Diversity of Eight Natural Populations ofMytilarialaosensis[D].Beijing:Chinese Academy of Forestry,2014.
National forestry public welfare industry scientific research(201204307-03);Forestry science and technology innovation project in Guangdong Province(2016KJCX004)
introduction:QIN Min(1989—),male,Master,mainly engaged in silviculture.
date:2016-06-21
GrowthTraitsVariationandEarlySelectionofMytilarialaosensisProvenancesandFamilies
QIN Min1,2YIN Guang-Tian1*YANG Jin-Chang1LI Rong-Sheng1ZOU Wen-Tao1
(1.Research Institute of Tropical Forestry,Chinese Academy of Forestry,Guangdong 510520;2.Forestry Survey Planning and Design Institute of Liangshan Prefecture,Sichuan 615000)
We selected the fast growing provenance-families ofMytilarilaosensisto analyze the variation regularity of growth traits among provenances and among families ofM.laosensis. We chose 116 families within 8 provenances ofM.laosensis, and used genetic variance analysis and breeding value to analyze the growth traits among provenances and among families ofM.laosensis. There were highly significant differences among growth characters at family and provenance level. At the age of 6, the average of height(H), diameter at breast height(D) and volume(V) of provenance GXPX was 9.50 m, 13.40 cm and 0.079 9 m3, and that was 1.28, 1.42 and 2.30 times of worst provenance GXFC, respectively. The average of H, D and V of family FC01 was 9.86 m, 15.31 cm, 0.1 016 m3, respectively. Mean individual volume of family PX01 was 4.01 times of worst family FC01 and 1.94 times of the average of total families by comparison. Using individual trait selection, two superior provenances were selected from eight provenances population tested, and genetic gain of H, D and V of those superior provenances reached as high as 8.87%, 11.79% and 34.70%, respectively. By using grade of breeding value selection, 12 superior families were selected from 123 families population tested, and genetic gain of H, D and V of those superior families reached as high as 11.57%, 17.35% and 52.06%, respectively. At the age of 6, the comprehensive growth of the best excellent provenances were GXPX and GXLZ, and the comprehensive growth of the best excellent families were PX01, LZ03, PX02, DB08, PX10, PX04, PX09, DB07, DB16, LZ05, JX16 and PX05. These superior provenances and families can be used as seed material to declare and promote.
Mytilarialaosensis;genetic variation;growth traits;breeding value;genetic gain
國(guó)家林業(yè)公益性行業(yè)科研專項(xiàng)(201204307-03);廣東省林業(yè)科技創(chuàng)新專項(xiàng)(2016KJCX004)
覃敏(1989—),男,碩士研究生,主要從事森林培育研究。
* 通信作者:E-mail:yinguangtian@126.com
2016-06-21
* Corresponding author:E-mail:yinguangtian@126.com
Q949.751.4
A
10.7525/j.issn.1673-5102.2017.01.018