趙曉菊 秦 薇 陳華峰*
(1.東北林業(yè)大學(xué),哈爾濱 150040; 2.大慶師范學(xué)院生物工程學(xué)院,大慶 163712)
土壤銅對鳳丹籽油含量和成分的影響
趙曉菊1,2秦 薇1陳華峰1*
(1.東北林業(yè)大學(xué),哈爾濱 150040;2.大慶師范學(xué)院生物工程學(xué)院,大慶 163712)
高含量不飽和脂肪酸,特別是高含量亞麻酸是牡丹籽油品質(zhì)的主要體現(xiàn),但到目前為止,在鳳丹傳統(tǒng)栽培區(qū)(銅礦區(qū))土壤銅含量是否影響牡丹籽油品質(zhì)并沒有被調(diào)查。本研究通過調(diào)查安徽省鳳凰山—丫山30個鳳丹(Paeoniaostii)栽培區(qū)土壤Cu元素含量和鳳丹籽油組成,顯示鳳丹栽培區(qū)土壤銅含量為18.98~298.82 mg·kg-1,變異系數(shù)為83.06%;鳳丹籽油中棕櫚酸、硬脂酸、油酸、亞油酸和亞麻酸5種主要脂肪酸含量分別為5.62%、1.89%、24.59%、29.76%、38.13%,變異系數(shù)在5.66~9.72,其中亞油酸變異系數(shù)最高為9.72;土壤和葉片中Cu含量與亞油酸和不飽和脂肪酸含量均存在明顯的負(fù)相關(guān)性,與亞麻酸含量沒有顯著相關(guān)性;土壤和葉片中Cu含量呈顯著正相關(guān),r=0.778。以上表明以油用為目的的鳳丹栽培應(yīng)該避免土壤中銅含量過高影響牡丹籽油品質(zhì)。
鳳丹;籽油;脂肪酸;不飽和脂肪酸;Cu污染
牡丹(PaeoniasuffruticosaAndr.)原產(chǎn)中國為芍藥科(Paeoniaceae)芍藥屬(PaeoniaL.)落葉灌木,分布廣泛,具有觀賞、藥用和油用價值[1]。其中,鳳丹(Paeoniaostii)原產(chǎn)安徽銅陵,種子較大,胚乳中油脂含量豐富,含油率可達(dá)24.12%~37.83%,主要成分為亞麻酸、油酸、亞油酸等17種脂肪酸,其中亞麻酸含量高達(dá)31.56%~66.85%,近橄欖油的40倍,不飽和脂肪酸含量90%以上,是一種蘊含重要營養(yǎng)價值的新型木本植物油資源[2~4],2011年前作為藥用植物廣泛栽培于銅陵一帶(包括南陵縣丫山),規(guī)模全國第一[5],2011年我國衛(wèi)生部批準(zhǔn)牡丹籽油為新資源食品,鳳丹栽培面積擴大并在全國推廣。
安徽銅陵又是我國重要的產(chǎn)銅基地之一,銅礦開采歷史悠久,被稱為中國古銅都[6],以前的調(diào)查顯示礦區(qū)土壤和地下水都存在不同程度的銅污染[6~7],鳳丹栽培區(qū)也存在較高的土壤銅元素含量[8]。銅是植物、動物和人體生長必須元素,但也是一種重金屬元素,環(huán)境中銅過量會對生物體產(chǎn)生毒害作用[9~10],但到目前為止,銅是否會對鳳丹籽油品質(zhì)產(chǎn)生影響仍然不清楚。
本文調(diào)查鳳丹原產(chǎn)區(qū)土壤銅含量和鳳丹籽油組成,探索銅與鳳丹籽油之間可能存在的相關(guān)關(guān)系,為擴大鳳丹栽培、提高鳳丹籽油品質(zhì)提供參考。
1.1 研究地點與材料
本研究在安徽省南部銅陵一帶(包括鳳凰山區(qū)域和丫山山區(qū))進行,地理坐標(biāo)為:30°49′~30°52′N,117°59′~118°02′E,該區(qū)域位于長江南岸,屬亞熱帶濕潤氣候區(qū),海拔200~280 m,土壤以黃紅壤為主,年平均氣溫為16.2℃、降水量1 370 mm、蒸發(fā)量1 517 mm,相對濕度77%,全年無霜期230 d,光照充足,日照2 000~2 050 h。采樣時間為2013年7~8月。
隨機選取30個樣地(表1),每個樣地取十個點混合收集作為一個樣品,包括成熟的蒴果、葉片和土壤。所有土壤樣品自然風(fēng)干后,去除砂礫,根系等過2.00 mm的尼龍篩;葉片80℃烘干至恒重;蒴果在60℃烘干48 h至恒重,低溫保存,供提取測試。
表1 研究樣地分布和土壤特征
1.2 銅元素含量測定
土壤中Cu元素含量經(jīng)HCl-HNO3-HF-HClO4消解后,用火焰原子吸收光譜儀(NOVAA350)測定。稱取0.3 g土壤樣品放于聚四氟乙烯坩堝中,加入8 mL王水加熱至190℃,10 min,溫度上升至240℃,蒸至將干,使樣品初步分解,然后再加入3 mL HF,3 mL HClO4,240℃蒸至粘稠,用1% HNO3溶解,定容至25 mL備用。葉片中Cu含量的測定方法大體同土壤中測定方法,用0.5 g葉片,省略HF消解的過程。
1.3 GC-MS分析籽油含量和成分
采用Phippen改良方法[11],取壓榨油4.0 g加入0.5 mol·L-1氫氧化鉀—甲醇溶液40 mL于圓底燒瓶,60℃水浴回流10 min,冷卻后加入20 mL正己烷和40 mL H2O轉(zhuǎn)入分液漏斗,震蕩萃取分離,用玻璃吸管吸取上層正乙烷相,按氣相色譜—質(zhì)譜(gas chromatography-mass,GC-MS)條件進行分析。
HP6890-5973N氣相色譜—質(zhì)譜連用儀;色譜柱:HP-5MS(30 m×0.25 mm×0.25 μm)彈性石英毛細(xì)管柱;載氣:高純氦氣;升溫程序:70℃保持1 min,以5℃·min-1的速率升至100℃,停留2 min,以10℃·min-1速率升至175℃,停留40 min,再以15℃·min-1速率升至225℃,停留40 min;進樣量:1.0 μL;進樣口溫度:250℃。
1.4 數(shù)據(jù)處理
相同提取條件下,每個樣品3次重復(fù),應(yīng)用SPSS18.0對土壤和葉片中Cu含量及籽油成分含量進行Pearson相關(guān)分析。
2.1 鳳丹栽培區(qū)土壤和葉片銅含量分布特征
由表2可知,土壤銅含量為18.98~298.82 mg·kg-1,變異系數(shù)為5.68%,屬于中等程度變異,平均值為4.73 mg·kg-1,顯著高于全球非銅污染土壤的平均值(30 mg·kg-1)[12]。由圖1可知,76.67%的樣地銅含量低于中國土壤環(huán)境質(zhì)量二級標(biāo)準(zhǔn)(100 mg·kg-1,土壤環(huán)境質(zhì)量標(biāo)準(zhǔn)GB 15618-1995),所有樣地土壤銅含量均低于中國土壤環(huán)境質(zhì)量標(biāo)準(zhǔn)中的三類標(biāo)準(zhǔn)值400 mg·kg-1。
鳳丹葉片銅含量為3.80~6.49 mg·kg-1,變異系數(shù)為5.68,平均值為4.73。由圖1可知,葉片銅含量頻率屬于正偏態(tài)分布。土壤銅含量和鳳丹葉片銅含量存在顯著正相關(guān)關(guān)系(圖2),相關(guān)系數(shù)達(dá)到0.606 1,表明土壤銅含量對葉片銅含量存在顯著影響。
表2鳳丹栽培區(qū)土壤銅含量和鳳丹葉銅含量分布特征
Table2DistributioncharacteristicsofcoppercontentinP.ostiiculturalregions
采樣部位Samplingpart范圍Range(mg·kg-1)均值Mean標(biāo)準(zhǔn)差Standarddeviation變異系數(shù)Coefficientofvariation(%)土壤Soil(mg·kg-1)18.98~298.8284.6870.3483.06葉片Leaf(mg·kg-1)3.80~6.494.730.275.68
圖1 鳳丹傳統(tǒng)栽培區(qū)土壤和鳳丹葉片銅含量分布頻率Fig.1 The distribution frequency of copper content about the soil and the leaves of P.ostii in traditional cultivation regions
圖2 土壤銅含量與鳳丹葉片銅含量的相關(guān)性Fig.2 The linear correlation of soil copper content and leaf copper content
2.2 鳳丹籽油脂肪酸組成特征
鳳丹籽油脂肪酸組成豐富,主要成分為亞麻酸、油酸、亞油酸等17種脂肪酸,其中相對含量超過0.1%為棕櫚酸(C16:0)硬脂酸(C18:0)、油酸(C18:1)、亞油酸(C16:2)和亞麻酸(C18:3),5種脂肪酸含量平均值分別為9.41、3.17、41.12、49.76和63.75 g·kg-1,不飽和脂肪酸含量平均為92.48%,與前人測定結(jié)果基本一致[13~17]。5種脂肪酸中油酸變異系數(shù)最小是5.66,其中亞油酸變異系數(shù)最高9.72,變化從41.68~57.92 g·kg-1(25.97%~36.82%),平均值為49.76 g·kg-1(表3)。
2.3 Cu元素對鳳丹籽油脂肪酸含量的影響
對銅含量與鳳丹籽油組成進行Pearson相關(guān)分析,并進行雙尾檢驗,結(jié)果如表4。亞油酸含量與土壤銅和葉片銅含量均存在極顯著負(fù)相關(guān)關(guān)系,硬脂酸含量與葉片銅含量存在顯著負(fù)相關(guān)關(guān)系。將鳳丹籽油脂肪酸分成兩類,飽和脂肪酸和不飽和脂肪酸,結(jié)果表明不飽和脂肪酸含量與土壤銅含量和葉片銅含量存在極顯著負(fù)相關(guān)關(guān)系,相關(guān)系數(shù)分別為0.478和0.514。土壤銅和葉片銅含量與其他脂肪酸相關(guān)性不明顯。
表3鳳丹籽油主要脂肪酸組成特征
Table3Thecompositivecharacteristicsofmainfattyacidsintraditionalcultivationregions
類型Type范圍Range(g·kg-1)均值Mean標(biāo)準(zhǔn)差Standarddeviation變異系數(shù)Coefficientofvariation(%)棕櫚酸C16:0(g·kg-1)8.31~11.219.41(5.62%)0.798.43硬脂酸C18:0(g·kg-1)2.77~3.563.17(1.89%)0.288.75油酸C18:1(g·kg-1)37.22~45.9841.12(24.59%)2.335.66亞油酸C16:2(g·kg-1)41.68~57.9249.76(29.76%)4.839.72亞麻酸C18:3(g·kg-1)54.87~72.1563.75(38.13%)5.578.73飽和脂肪酸Saturatedfattyacid(g·kg-1)11.13~14.4312.58(7.52%)1.007.97不飽和脂肪酸Unsaturatedfattyacids(g·kg-1)139.69~168.50154.63(92.48%)9.436.1
表4 土壤和葉片銅含量與鳳丹籽油脂肪酸組成的相關(guān)性
注:*在0.05水平上顯著相關(guān);**在0.01水平上顯著相關(guān)。
Note:*and**indicate significant correlation at the 0.05 and 0.01 level.
銅在植物代謝中發(fā)揮重要作用,通過多種氧化還原酶直接參與植物氧化還原反應(yīng),例如酪氨酸酶、多酚氧化酶、抗壞血酸氧化酶、細(xì)胞色素氧化酶等[18]。同時銅在植物體內(nèi)具有積累性,銅過量將影響植物新陳代謝過程,對植物產(chǎn)生毒害[19]。種子油和膜脂共同起源于細(xì)胞前體[20]。質(zhì)體是脂肪酸合成的主要細(xì)胞器[21],并且也是高等植物中Cu積累的主要位點[22]。前期研究已經(jīng)發(fā)現(xiàn)銅過量抑制植物光合作用、色素合成,導(dǎo)致脂質(zhì)過氧化,破壞類囊體膜,進而影響脂肪酸的積累[22~24]。本研究也表明銅含量和脂肪酸含量存在一定負(fù)相關(guān)關(guān)系,但并沒有達(dá)到顯著性水平。Jones等首先報道了重金屬影響脂肪酸合成可能與金屬毒害滅活含巰基的酶和輔因子有關(guān)[25]。Sinha等研究表明氧化還原金屬Cu、As和Cr過量,植物脂肪酸合成存在下降趨勢,可能是檸檬酸裂解酶催化合成脂肪酸前體乙酰輔酶A時ATP供應(yīng)被阻斷[22],更多的研究認(rèn)為銅脅迫導(dǎo)致活性氧過量產(chǎn)生,引起脂質(zhì)過氧化[26]。但是關(guān)于重金屬脅迫導(dǎo)致哪種脂肪酸含量變化的研究較少,Chaffai研究表明Cu脅迫導(dǎo)致玉米根部總脂肪酸中不飽和脂肪酸水平從1.42下降到1.28[27],Baryla研究表明亞油酸和亞麻酸與植物中Cu濃度存在明顯相關(guān)性[28]。本研究發(fā)現(xiàn)Cu積累與不飽和脂肪酸和亞油酸含量存在相關(guān)性。這些可能反應(yīng)出Cu過量首先影響不飽和脂肪酸合成,尤其是不飽和脂肪酸中的亞油酸合成。
鳳丹在安徽銅陵銅尾礦區(qū)有悠久的栽培歷史,已有研究表明,鳳丹可耐受一定濃度的Cu脅迫[29~31],并且,鳳丹對Cu污染土壤具有明顯的修復(fù)效果[8]。本研究顯示土壤Cu含量和鳳丹葉Cu含量存在明顯的正相關(guān)關(guān)系,表明Cu在葉片中存在積累,而未發(fā)現(xiàn)18.98~298.82 mg·kg-1土壤銅對鳳丹生長產(chǎn)生明顯抑制作用,表明以上銅含量在鳳丹的耐受范圍之內(nèi)。本研究在鳳丹種子中沒有檢測到Cu的積累,一個可能原因是胚胎在種子干重中占據(jù)非常小的部分,果實和種子被看做是一個低蒸騰速率的儲藏器官而不積累重金屬元素[22]。
近幾年,鳳丹栽培范圍逐漸從北緯30°擴展到北緯38°,光照、溫度和濕度等環(huán)境因子一直是栽培中主要考慮的因素[32]。作為油料作物,其體內(nèi)脂肪酸含量尤其是不飽和脂肪酸含量是其質(zhì)量控制的關(guān)鍵,鳳丹籽油中不飽和酸脂肪酸明顯受到土壤Cu元素和植物體內(nèi)Cu積累的影響,盡管植物對金屬可利用性還受pH和其它多種因素的影響[33],但以油用為目的的鳳丹栽培仍需要避免土壤中銅含量過高,建議土壤銅含量在100 mg·kg-1以下。
1.洪德元,潘開玉.芍藥屬牡丹組的分類歷史和分類處理[J].植物分類學(xué)報,1999,37(4):351-368.
Hong D Y,Pan K Y.Taxonomical history and revision ofPaeoniasect.Moutan(Paeoniaceae)[J].Acta Phytotaxonomica Sinica,1999,37(4):351-368.
2.李曉青,韓繼剛,劉炤,等.不同地區(qū)鳳丹經(jīng)濟性狀及其籽油脂肪酸成分分析[J].糧食與油脂,2014,27(4):43-46.
Li X Q,Han J G,Liu Z,et al.Economic characteristics investigation and seed oil fatty acid composition analysis ofPaeoniaostiiplants in different areas[J].Cereals & Oils,2014,27(4):43-46.
3.韓繼剛,李曉青,劉炤,等.牡丹油用價值及其應(yīng)用前景[J].糧油與油脂,2014,27(5):21-25.
Han J G,Li X Q,Liu Z,et al.Potential applications of tree peony as an oil plant[J].Cereals & Oils,2014,27(5):21-25.
4.Zhang Z H,Wang H,Liu J,et al.The effects of soil metals on the composition of oil ofPaeoniaostiiseeds[J].Journal of Plant Interactions,2015,10(1):288-295.
5.劉登義,沈章軍,嚴(yán)密,等.銅陵銅礦區(qū)鳳丹根際和非根際土壤酶活性[J].應(yīng)用生態(tài)學(xué)報,2006,17(7):1315-1320.
Liu D Y,Shen Z J,Yan M,et al.Enzyme activities inPaeoniaostiirhizosphere and non-rhizosphere soil of Tongling copper mining[J].Chinese Journal of Applied Ecology,2006,17(7):1315-1320.
6.Xu D C,Zhou P,Zhan J,et al.Assessment of trace metal bioavailability in garden soils and health risks via consumption of vegetables in the vicinity of Tongling mining area,China[J].Ecotoxicology and Environmental Safety,2013,90:103-111.
7.王少華,楊劼,劉蘇明,等.銅陵獅子山楊山?jīng)_尾礦庫重金屬元素釋放的環(huán)境效應(yīng)[J].高校地質(zhì)學(xué)報,2011,17(1):93-100.
Wang S H,Yang J,Liu S M,et al.Environmental effects of heavy metal elements release in Yangshanchong tailing pool,Shizishan,Tongling,Anhui province[J].Geological Journal of China Universities,2011,17(1):93-100.
8.沈章軍,王友保,王廣林,等.銅陵銅尾礦鳳丹種植基地重金屬污染初探[J].應(yīng)用生態(tài)學(xué)報,2005,16(4):673-677.
Shen Z J,Wang Y B,Wang G L,et al.Heavy metals pollution ofPaeoniaostiiland at copper-tailings reservoir of Tongling city:a preliminary study[J].Chinese Journal of Applied Ecology,2005,16(4):673-677.
9.陳懷滿.土壤中化學(xué)物質(zhì)的行為與環(huán)境質(zhì)量[M].北京:科學(xué)出版社,2002.
Chen H M.Behavior of chemicals in soils and its relation to environmental quality[M].Beijing:Science Press,2002.
10.沈昌高,高超,王登峰,等.銅陵礦區(qū)土壤和油菜中銅的分布特征[J].應(yīng)用生態(tài)學(xué)報,2007,18(10):2374-2378.
Shen C G,Gao C,Wang D F,et al.Distribution characteristics of copper in soil and rape around Tongling mining area[J].Chinese Journal of Applied Ecology,2007,18(10):2374-2378.
11.Phippen W B,Isbell T A,Phippen M E.Total seed oil and fatty acid methyl ester contents ofCupheaaccessions[J].Industrial Crops and Products,2006,24(1):52-59.
12.Adriano D C.Trace elements in terrestrial environments:biogeochemistry,bioavailability and risks of metals[M].2nd ed.New York:Springer-Verlag,2001.
13.韓雪源,張延龍,牛立新,等.不同產(chǎn)地‘鳳丹’牡丹籽油主要脂肪酸成分分析[J].食品科學(xué),2014,35(22):181-184.
Han X Y,Zhang Y L,Niu L X,et al.Fatty acid composition of ‘Fengdan’ peony seed oils from different growing regions[J].Food Science,2014,35(22):181-184.
14.史國安,郭香鳳,金寶磊,等.牡丹籽油超臨界CO2萃取工藝優(yōu)化及抗氧化活性的研究[J].中國糧油學(xué)報,2013,28(4):47-50,107.
Shi G A,Guo X F,Jin B L,et al.Optimization of supercritical CO2extraction and analysis of antioxidation activity of peony seed oil[J].Journal of the Chinese Cereals and Oils Association,2013,28(4):47-50,107.
15.高婷婷,王亞蕓,任建武.GC-MS法分析牡丹籽油的成分及其防曬效果的評定[J].食品科技,2013,38(6):296-299.
Gao T T,Wang Y Y,Ren J W.Analysis of the composition in peony seed oil by GC/MS and evaluation in the sunscreen effect[J].Food Science and Technology,2013,38(6):296-299.
16.周海梅,馬錦琦,苗春雨,等.牡丹籽油的理化指標(biāo)和脂肪酸成分分析[J].中國油脂,2009,34(7):72-74.
Zhou H M,Ma J Q,Miao C Y,et al.Physicochemical indexes and fatty acid composition of peony seed oil[J].China Oils and Fats,2009,34(7):72-74.
17.王昌濤,張萍,董銀卯.超臨界CO2提取牡丹籽油的工藝以及成分分析[J].中國糧油學(xué)報,2009,24(8):96-99,107.
Wang C T,Zhang P,Dong Y M.The technique of the extraction of oil from peony seed with supercritical CO2extraction method and the analysis of the composition[J].Journal of the Chinese Cereals and Oils Association,2009,24(8):96-99,107.
18.Khurana N,Singh M V,Chatterjee C.Copper stress alters physiology and deteriorates seed quality of rapeseed[J].Journal of Plant Nutrition,2006,29(1):93-101.
19.De Vos C H R,Vonk M J,Vooijs R,et al.Glutathione depletion due to copper-induced phytochelatin synthesis causes oxidative stress inSilenecucubalus[J].Plant Physiology,1992,98(3):853-858.
20.Ohlrogge J,Browse J.Lipid biosynthesis[J].The Plant Cell,1995,7(7):957-970.
21.Hills M J.Control of storage-product synthesis in seeds[J].Current Opinion in Plant Biology,2004,7(3):302-308.
22.Sinha S,Sinam G,Mishra R K,et al.Metal accumulation,growth,antioxidants and oil yield ofBrassicajunceaL.exposed to different metals[J].Ecotoxicology and Environmental Safety,2010,73(6):1352-1361.
23.Fernandes J C,Henriques F S.Biochemical,physiological,and structural effects of excess copper in plants[J].The Botanical Review,1991,57(3):246-273.
24.Lidon F C,Henriques F S.Changes in the thylakoid membrane polypeptide patterns triggered by excess Cu in rice[J].Photosynthetica,1993,28:109-117.
25.Jones G L,Nichols P D,Johns R B,et al.The effect of mercury and cadmium on the fatty acid and sterol composition of the marine diatomAsterionellaglacialis[J].Phytochemistry,1987,26(5):1343-1348.
26.田生科,李廷軒,楊肖娥,等.植物對銅的吸收運輸及毒害機理研究進展[J].土壤通報,2006,37(2):387-394.
Tian S K,Li T X,Yang X E,et al.Mechanisms of copper uptake,transportation and detoxification in plants[J].Chinese Journal of Soil Science,2006,37(2):387-394.
27.Chaffai R,Elhammadi M A,Seybou T N,et al.Altered fatty acid profile of polar lipids in maize seedlings in response to excess copper[J].Journal of Agronomy and Crop Science,2007,193(3):207-217.
28.Baryla A,Laborde C,Montillet J L,et al.Evaluation of lipid peroxidation as a toxicity bioassay for plants exposed to copper[J].Environmental Pollution,2000,109(1):131-135.
29.劉雁麗,史萍,夏妍,等.Cu和丹皮酚磺酸鈉處理對鳳丹根系生長、丹皮酚含量及H+-ATPase活性的影響[J].植物資源與環(huán)境學(xué)報,2012,21(1):20-27.
Liu Y L,Shi P,Xia Y,et al.Effects of Cu and sodium paeonol sulfonate treatments on growth,paeonol content and H+-ATPase activity in root ofPaeoniasuffruticosa‘Feng Dan’ seedling[J].Journal of Plant Resources and Environment,2012,21(1):20-27.
30.張敏,江建華,徐潔.銅礦尾礦庫復(fù)墾種植牡丹可行性研究[J].上海環(huán)境科學(xué),2000,19(12):585-587.
Zhang M,Jiang J H,Xu J.Feasibility study of reclamation of copper-ore-tailings reservoir for planting peony[J].Shanghai Environmental Science,2000,19(12):585-587.
31.周燕,張桂花,徐迎春,等.銅對鳳丹生長、生理及體內(nèi)礦質(zhì)元素吸收分配的影響[J].生態(tài)學(xué)雜志,2011,30(3):415-423.
Zhou Y,Zhang G H,Xu Y C,et al.Effects of Cu onPaeoniaostiigrowth,physiology,and element absorption and allocation[J].Chinese Journal of Ecology,2011,30(3):415-423.
32.張衷華,唐中華,楊逢建,等.兩種主要油用牡丹光合特性及其微環(huán)境影響因子分析[J].植物研究,2014,34(6):770-775.
Zhang Z H,Tang Z H,Yang F J,et al.Photosynthetic characteristics and its micro-environmental limiting factors of two main oil peony[J].Bulletin of Botanical Research,2014,34(6):770-775.
33.鄒佳佳,孟梅,張云,等.農(nóng)田土壤銅污染評價和油菜銅積累特征研究[J].土壤通報,2015,46(3):621-627.
Zou J J,Meng M,Zhang Y,et al.Evaluation on copper pollution status of soil and copper accumulation features of rapes in farm land[J].Chinese Journal of Soil Science,2015,46(3):621-627.
This study was financially supported by Natural Science Foundation of Heilongjiang province(QC2015042);The Special Fund for Forest Scientific Research in the Public Welfare(20140470102);The Fundamental Research Funds for the Central Universities(2572015CA05)
introduction:ZHAO Xiao-Ju(1978—),female,Associate professor,major in Plant Physiology and Molecular Biology research.
date:2016-08-30
EffectofCuonCompositionsofSeedOilinPaeoniaostii
ZHAO Xiao-Ju1,2QIN Wei1CHEN Hua-Feng1*
(1.Northeast Forestry University,Harbin 150040;2.Bioengineering Institute,Daqing Normal University,Daqing 163712)
The unsaturated fatty acids, especially linolenic acid are the main embodiment of the quality of peony seed oil. But so far, in traditional cultivation area ofPaeoniaostii, it has not been investigated whether the soil copper content affected the quality of peony seed oil. In this study, we investigated copper content in soil and the composition of the seed oil in 30P.ostiicultivation areas in Anhui Province. The copper content in the soil was 18.98-298.82 mg·kg-1, and the variation coefficient was 83.06%. The contents of palm acid, stearic acid, oleic acid, linoleic acid and linoleic acid were 5.62%, 1.89%, 24.59%, 29.76% and 38.13%, respectively. The variation coefficient was between 5.66 and 9.72, among which the highest one was linoleic acid. There was a significantly negative correlation between copper content and unsaturated fatty acid content, linoleic acid content, and there was no significant correlation between the content of copper and linolenic acid content. And there was a significantly positive correlation between soil copper content and leaf copper content,r=0.778. The cultivation ofP.ostiifor oil production should avoid the high copper content in the soil to keep the quality of peony seed oil.
Paeoniaostii;seed oil;fatty acid;unsaturated fatty acids;copper pollution
黑龍江省青年科學(xué)基金(QC2015042);林業(yè)公益性行業(yè)科研專項經(jīng)費(20140470102);中央高?;究蒲袠I(yè)務(wù)費專項資金資助(2572015CA05)
趙曉菊(1978—),女,副教授,主要從事植物生理與分子生物學(xué)方面的研究。
* 通信作者:E-mail:biginsect@163.com
2016-08-30
* Corresponding author:E-mail:biginsect@163.com
Q945.79;S567.1+5
A
10.7525/j.issn.1673-5102.2017.01.020