趙仁勇 ,安 娟 ,崔文航 ,何麗君 *
(河南工業(yè)大學(xué) 1.糧油食品學(xué)院;2.化學(xué)化工與環(huán)境學(xué)院,河南 鄭州 450001)
磁性固相萃取技術(shù)在真菌毒素檢測中的應(yīng)用研究進(jìn)展
趙仁勇1,安 娟1,崔文航2,何麗君2*
(河南工業(yè)大學(xué) 1.糧油食品學(xué)院;2.化學(xué)化工與環(huán)境學(xué)院,河南 鄭州 450001)
真菌毒素具有強(qiáng)烈的毒性,在食品和農(nóng)作物中廣泛存在,對人類和動物的健康造成了極大的安全隱患。快速高效對真菌毒素進(jìn)行定量檢測十分必要,樣品前處理是整個分析環(huán)節(jié)的關(guān)鍵步驟。磁性固相萃取(magnetic solid-phase extraction,MSPE)是一種以磁性材料為吸附劑的新型樣品前處理技術(shù),因操作簡單、萃取時間短、萃取效率高,以及吸附劑易從樣品溶液中分離等優(yōu)點(diǎn)在食品樣品前處理中引起廣泛關(guān)注。介紹了MSPE的萃取過程、磁性吸附劑的種類及其制備方法,綜述了MSPE近年在真菌毒素檢測分析中的應(yīng)用,并對該技術(shù)的發(fā)展趨勢進(jìn)行了展望。
真菌毒素;磁性固相萃??;磁性吸附劑;樣品前處理
真菌毒素是一類由絲狀真菌產(chǎn)生的有毒次級代謝產(chǎn)物,廣泛存在于農(nóng)產(chǎn)品及其制品中,具有強(qiáng)烈的毒性、致癌性、致畸性和致突變性[1]。目前已發(fā)現(xiàn)的真菌毒素有400多種,其中污染廣泛、對人體健康危害較大的真菌毒素有十幾種,主要包括黃曲霉毒素(aflatoxin,AF)、脫氧雪腐鐮刀菌烯醇(deoxynivalenol,DON)、 赭曲霉毒素 A(ochratoxin A,OTA)、玉米赤霉烯酮(zearalenone,ZEN)、伏馬毒素(fumonisin,F(xiàn)B)等[2-3]。考慮真菌毒素在食品及其供應(yīng)鏈中普遍存在以及它們對人類和動物健康的危害,許多地區(qū)和國家都建立了一系列真菌毒素限量標(biāo)準(zhǔn)和檢測方法,以嚴(yán)格控制真菌毒素在食品中的殘留。
目前真菌毒素的測定方法主要有酶聯(lián)免疫吸附法(enzyme-linked immunosorbent assay,ELISA)[4]、色譜法[5-11]及熒光光譜法[12-13]。ELISA法雖然檢測效率高,但重復(fù)性較差、干擾因素多,適用于大量樣品的篩查。近年來色譜法及色譜-質(zhì)譜聯(lián)用技術(shù)等現(xiàn)代儀器分析方法得到了迅速發(fā)展及推廣,這些方法具有靈敏度高、檢測限低、重現(xiàn)性好等優(yōu)點(diǎn),在真菌毒素檢測方面得到了廣泛應(yīng)用。
由于食品樣品基質(zhì)十分復(fù)雜,且真菌毒素在樣品基質(zhì)中的含量極低,在色譜分析前如何準(zhǔn)確、快速、高效地對樣品基質(zhì)中的真菌毒素進(jìn)行前處理至關(guān)重要。樣品前處理是整個分析過程中的重要環(huán)節(jié),而前處理效果往往是決定儀器分析成功與否的關(guān)鍵。目前應(yīng)用于真菌毒素的樣品前處理方法主要有免疫親和層析凈化[14]、分散液液微萃取[15-16]、固相萃取[17-18]、固相微萃取[19-20]、基質(zhì)固相分散萃取[21]和QuEChERS[22-23]技術(shù)等,這些方法通常用于單一或同類真菌毒素的樣品前處理過程,存在操作復(fù)雜、耗時、成本高等缺點(diǎn)。磁性固相萃取技術(shù)是一種新型樣品前處理技術(shù),該技術(shù)以其快速、簡單、高效、綠色等優(yōu)點(diǎn)在有機(jī)污染物[24-25]、金屬離子[26]和生物活性物質(zhì)[27]測定中得到廣泛應(yīng)用。作者綜述了MSPE在測定真菌毒素中的應(yīng)用,包括MSPE的萃取過程、磁性吸附劑的種類及其制備方法,也對MSPE在真菌毒素檢測中的發(fā)展趨勢進(jìn)行了展望。
MSPE技術(shù)是一種以磁性材料作為吸附劑的固相萃取技術(shù)。在MSPE過程(圖1)中,磁性吸附劑與樣品基質(zhì)混合,在振蕩或超聲等輔助條件下,樣品中的目標(biāo)分析物被吸附到磁性吸附劑表面,通過外部磁場作用將含目標(biāo)分析物的磁性吸附劑與樣品基質(zhì)分離,目標(biāo)分析物經(jīng)洗脫劑從磁性吸附劑上洗脫下來后用于儀器檢測[24-25,28]。MSPE技術(shù)克服了傳統(tǒng)固相萃取技術(shù)在過柱或過濾操作中耗時的缺點(diǎn),且萃取過程中磁性吸附劑與目標(biāo)分析物接觸面積足夠大,能夠使目標(biāo)分析物的相轉(zhuǎn)移快速完成,萃取效率較高。另外,MSPE的磁性吸附劑可重復(fù)利用,降低了分析檢測的成本。
圖1 磁性固相萃取過程示意圖Fig.1 The schematic diagram of MSPE procedure
磁性吸附劑在MSPE中起著至關(guān)重要的作用。磁性吸附劑由磁性顆粒及負(fù)載于磁性顆粒表面的功能分子組成,磁性顆粒的磁性使得吸附劑與樣品基質(zhì)在外界磁場下快速分離,而功能分子的種類決定了吸附劑對目標(biāo)分析物的萃取性能。常用的磁性顆粒有四氧化三鐵(Fe3O4)、三氧化二鐵(γ-Fe2O3)、鐵氧體和金屬合金等,在這些磁性材料中,F(xiàn)e3O4以其制備方法簡單、性能穩(wěn)定、成本低等優(yōu)點(diǎn)在MSPE中得到廣泛應(yīng)用[24]。但純的Fe3O4對目標(biāo)分析物沒有萃取性能,且其尺寸小、比表面積大,裸露在空氣中易被氧化從而造成磁性的損失,因此人們通過適當(dāng)?shù)奈锢砘蚧瘜W(xué)方法對Fe3O4顆粒表面進(jìn)行改性,將某些具有特殊結(jié)構(gòu)的物質(zhì)引入顆粒表面,改變磁性顆粒的表面結(jié)構(gòu)和性能,以實(shí)現(xiàn)對某些目標(biāo)分析物的有效萃取[25]。
在真菌毒素檢測中,磁性吸附劑的改性分子有石墨烯、聚多巴胺、碳納米管以及單克隆抗體等。圖2是幾種磁性吸附劑的結(jié)構(gòu)示意圖。Es'Haghi等[29]利用化學(xué)共沉淀法制備了石墨烯-Fe3O4,在Fe3O4合成的同時直接負(fù)載在石墨烯表面,并將其作為磁性吸附劑應(yīng)用于谷物中黃曲霉毒素的萃取。Taherimaslak等[30]通過化學(xué)鍵合法,將二巰基乙酸乙二酯固載于3-甲氧基硅烷基-1-丙硫醇修飾的Fe3O4磁性顆粒表面,制備出磁性吸附劑EGBMAMSPT-Fe3O4,結(jié)構(gòu)如圖 2a 所示。Socas-Rodríguez等[31]利用多巴胺在弱堿性溶液中的自聚合能力,將聚多巴胺修飾在Fe3O4表面(如圖2b),由于磁性吸附劑表面帶有大量的活性基團(tuán),使得吸附劑在樣品基質(zhì)中具有更好的生物相容性和分散性;同時,吸附劑帶有的氨基和鄰苯二酚基團(tuán)可以與目標(biāo)分析物間形成氫鍵,產(chǎn)生π-π相互作用,實(shí)現(xiàn)對目標(biāo)分析物的萃取。Wu等[32]通過一系列化學(xué)反應(yīng),依次將酰胺基團(tuán)、γ-Fe2O3磁性納米顆粒、琥珀酰酐修飾于苯乙烯-丙烯酰胺納米微球表面,減小苯乙烯-丙烯酰胺納米微球的空間位阻并使其帶有磁性后,再引入OTA適體,制備出OTA適體-γ-Fe2O3磁性吸附劑,其結(jié)構(gòu)如圖2c所示。修飾磁性材料的功能物質(zhì)與方法多種多樣,這也為磁性材料及MSPE技術(shù)在真菌毒素檢測中的應(yīng)用提供了很大的可能性,具有廣闊的研究前景。
圖2 磁性吸附劑結(jié)構(gòu)示意圖Fig.2 The structure diagram of representative magnetic adsorbents
目前,MSPE與不同分離檢測技術(shù)聯(lián)用主要可檢測的真菌毒素包括黃曲霉毒素、脫氧雪腐鐮刀菌烯醇、赭曲霉毒素A、玉米赤霉烯酮、伏馬毒素等(表 1)。
表1 MSPE在真菌毒素檢測中的應(yīng)用Table 1 Application of MSPE for determination of mycotoxin
AF是真菌次級代謝產(chǎn)物的一種,其毒性較強(qiáng)、污染較廣泛的是 AFB1、AFB2、AFG1和 AFG2[51-52]。此外,AFM1、AFM2在牛奶中的污染也十分廣泛。
Hashemi等[33]將 2-氨基-5-巰基-1,3,4-噻二唑類席夫堿固載在3-(三甲氧基硅烷基)-1-丙硫醇修飾的Fe3O4磁性納米顆粒表面,將其作為MSPE吸附劑,結(jié)合高效液相色譜-熒光檢測器(HPLC-FD),研究了該磁性吸附劑對谷物中AFB1和AFB2的萃取性能。該吸附劑具有的氨基和巰基基團(tuán)可以和AFB1和AFB2內(nèi)酯環(huán)上的羰基基團(tuán)相互作用,從而達(dá)到對AFB1和AFB2的有效萃取。該方法集樣品提取、凈化和富集過程于一體,分析時間(9 min)比免疫親和層析凈化法(35 min)更短,吸附劑制備簡單,穩(wěn)定性好,可重復(fù)利用。Es'Haghi研究小組[29]制備了石墨烯-Fe3O4磁性吸附劑,采用MSPE技術(shù),結(jié)合HPLC-FD法研究了該吸附劑對大米、 小麥和芝麻中 AFB1、AFB2、AFG1和 AFG2的萃取性能,該方法克服了免疫親和層析凈化法的諸多缺點(diǎn),如操作繁瑣、耗時耗溶劑、成本高等。Mccullum課題組[34]制備了聚多巴胺-Fe3O4磁性納米顆粒,采用MSPE技術(shù),結(jié)合HPLC-MS/MS研究了該吸附劑對紅酒中 AFB1、AFB2、AFG1和 AFG2的萃取性能。Manafi等[35]制備了二巰基乙酸乙二酯修飾的Fe3O4@SiO2磁性納米顆粒,結(jié)合MSPE-熒光光譜法研究了吸附劑對 AFB1、AFB2、AFG1和 AFG2的萃取性能,并應(yīng)用于小麥樣品中AF的分析檢測,富集倍數(shù)為97倍。Tan等[36]采用MSPE-UHPLCMS/MS研究了虛擬分子標(biāo)記聚合物修飾的磁性納米材料對玉米中 AFB1、AFB2、AFG1和 AFG2的萃取性能。
Taherimaslak 等[30]、Hashemi等[37]、Amolidiva 等[38]分別制備了不同種類的磁性吸附劑,采用MSPE-熒光光譜法考察了吸附劑對AFM1的萃取性能,并應(yīng)用于牛奶中AFM1的檢測。Hyunjung等[39]采用MSPE技術(shù)研究了修飾有AFB1單克隆抗體的磁性納米材料對飼料中AFB1的萃取性能。Taherimaslak研究小組[30]制備的吸附劑(EGBMA-MSPT-Fe3O4)具有碳?xì)滏湽羌芎蛶€基基團(tuán)(在萃取體系中以SH2+形式存在),而AFM1由雙呋喃環(huán)和香豆素組成,具有共軛體系和疏水性質(zhì),吸附劑對AFM1的吸附主要取決于其碳?xì)滏湽羌芎虯FM1之間的疏水作用以及吸附劑的巰基基團(tuán)和AFM1的內(nèi)酯環(huán)之間的范德華力。
磁性吸附劑及MSPE技術(shù)在各類樣品基質(zhì)中AF的萃取發(fā)揮了極大的作用,簡化了繁瑣的樣品前處理操作,降低了分析成本。但目前研究AF與磁性吸附劑之間作用機(jī)理的報(bào)道還較少,磁性吸附劑種類也有待進(jìn)一步深入研究。
ZEN及其代謝產(chǎn)物玉米赤霉醇(ZAL)和玉米赤霉烯醇(ZOL)是一類具有類雌激素作用的真菌毒素,其危害次于AF,在小麥、玉米、大麥等農(nóng)作物中廣泛存在[53-54]。
Hashemi等[40]制備了正硅酸乙酯修飾的Fe3O4磁性納米顆粒作為MSPE的吸附劑,并將此樣品前處理技術(shù)與分散液液微萃取聯(lián)用,研究了其對玉米中ZEN的萃取性能,聯(lián)用技術(shù)大大提高了富集倍數(shù)。該方法對ZEN的檢測限為0.28 μg/kg,低于食品安全國家標(biāo)準(zhǔn)中的限量(60 μg/kg),具有回收率高(93.4%~103.1%)、萃取過程有機(jī)溶劑用量少、重復(fù)性好、方法準(zhǔn)確度高等諸多優(yōu)點(diǎn)。Socas-Rodríguez 課題組[31]和 Capriotti課題組[41]制備 了多孔型聚多巴胺修飾的磁性納米吸附劑,并采用MSPE-HPLC-MS/MS研究了吸附劑對水樣中ZEN及 α-ZAL、β-ZAL、α-ZOL 和 β-ZOL 的萃取性能。結(jié)果表明,方法線性良好,檢測限低至0.003 μg/L、回收率高。Hyunjung等[39]制備了ZEN單克隆抗體修飾的磁性納米材料,并將其作為MSPE過程中的吸附劑應(yīng)用于飼料中ZEN的檢測。Moreno研究小組[42]采用MSPE-HPLC-MS,以多層碳納米管-C18SiO2納米復(fù)合物修飾的磁性納米材料為吸附劑,研究了其對玉米樣品中ZEN及ZEL、ZOL的萃取性能。González-Sálamo 等[43]采用 MSPE 技術(shù)將聚多巴胺修飾的多孔型磁性納米材料應(yīng)用于牛奶和酸乳中雌激素類真菌毒素 (ZEN、ZEA、α-ZAL、β-ZAL、α-ZOL和 β-ZOL) 的提取富集, 并結(jié)合HPLC-MS分析檢測。
DON又稱嘔吐毒素,屬于B型單端孢霉烯族毒素,在谷物及其制品和動物飼料中廣泛存在[55]。
Karamiosboo等[44]以Fe3O4為磁性吸附劑,采用MSPE技術(shù)研究了其對小麥粉中DON的萃取性能。該方法將磁性吸附劑、提取劑和樣品混合,使得DON的提取和凈化過程在一步操作中完成,磁性吸附劑主要起凈化作用,并影響目標(biāo)分析物的提取效率。與免疫親和層析凈化方法相比,具有操作簡單、萃取時間短、有機(jī)溶劑用量少、成本低等優(yōu)點(diǎn)。Lee等[45]將DON單克隆抗體修飾在磁性納米顆粒上,應(yīng)用于動物飼料中DON的萃取。該方法整個過程僅需5 min左右,為動物飼料及食品中真菌毒素的檢測提供了一種新途徑。
OTA是赭曲霉毒素中對人類和動植物影響最大、毒性最強(qiáng),在自然界中分布最廣泛的一種,在谷物、咖啡、堅(jiān)果及其制品、干果、豆類、葡萄及葡萄酒中均有發(fā)現(xiàn)[56-57]。
Mashhadizadeh等[46]將二巰基乙酸乙二酯固載于3-甲氧基硅烷基-1-丙硫醇修飾的Fe3O4磁性納米顆粒表面,并將其作為MSPE技術(shù)的磁性吸附劑,與HPLC-FD結(jié)合應(yīng)用于大米、小麥和玉米中OTA的分析,建立了一種新型OTA樣品前處理方法,方法檢測限為0.03 μg/L,富集倍數(shù)為24倍。該研究在考察其他真菌毒素對OTA回收率的影響時發(fā)現(xiàn),磁性吸附劑對AFs、ZEN和DON也有吸附效果,回收率在71%~94%之間。Turan等[47]將OTA的分子印記聚合物修飾于Fe3O4磁性納米顆粒表面,采用MSPE技術(shù)結(jié)合紫外-可見分光光度法應(yīng)用于葡萄汁中OTA的檢測,該方法具有選擇性好、回收率高、吸附效果好等優(yōu)點(diǎn),檢測限為0.374 μg/mL,且吸附劑可重復(fù)使用12次。Wu課題組[32]將 OTA的適體固載于磁性納米微球表面,考察了其對OTA的萃取效果,并結(jié)合HPLC-FD,用于谷物制品、小麥粉和咖啡中OTA的檢測,方法靈敏度高、選擇性好。
MSPE技術(shù)在真菌毒素檢測中的應(yīng)用除上述真菌毒素外,其他真菌毒素也有報(bào)道,如T-2毒素、HT-2毒素、二乙酰鑣草鐮刀菌烯醇(diacetoxyscirpenol,DAS)、 新 茄 病 鐮 刀 菌 烯 醇(neosolaniol,NEO)、桔霉素(citrinin,CIT)等。T-2 毒素、HT-2毒素、DAS、NEO等屬A型單端孢霉烯族毒素,在小麥、玉米、大米等谷物中廣泛存在[58]。CIT常與OTA和AFB1在谷物中同時出現(xiàn)[59]。
Dong等[48]將Fe3O4磁性納米顆粒與多壁碳納米管結(jié)合,制備了磁性多壁碳納米管材料,并采用MSPE-UHPLC-MS/MS研究了其對T-2毒素、HT-2毒素、DAS和NEO的萃取性能,成功應(yīng)用于薏米種子中4種A型單端孢霉烯族毒素的檢測,定量限為 0.3~1.5 μg/kg,回收率為 73.6%~90.6%,該方法具有檢測限低、回收率高、萃取時間短等優(yōu)點(diǎn)。Urraca等[49]合成了磁性分子印記聚合物,采用MSPEHPLC-UV,將其應(yīng)用于大米中CIT的檢測,檢測限為 0.7 μg/kg,回收率為 94%~97%,與 SPE 相比,省去了過濾操作,操作簡單、快速高效。Magro等[50]合成了磁赤鐵礦納米顆粒,研究了其對紅曲霉懸浮液中CIT的脫除效果,脫除率達(dá)70%。
綜上所述,MSPE技術(shù)在真菌毒素分析檢測中的應(yīng)用體現(xiàn)出諸多優(yōu)勢,使得真菌毒素的樣品前處理過程更為簡單,萃取時間縮短,萃取效率和回收率提高,且無明顯樣品基質(zhì)的雜質(zhì)干擾,對液態(tài)樣品基質(zhì)和固態(tài)樣品基質(zhì)均適用,該技術(shù)在真菌毒素檢測中具有十分廣闊的應(yīng)用前景。
本文介紹了MSPE的萃取過程、磁性吸附劑的種類及其制備方法,綜述了其在真菌毒素檢測分析中的應(yīng)用。MSPE技術(shù)以其快速、簡單、綠色及低成本等優(yōu)點(diǎn),在真菌毒素檢測中得以廣泛應(yīng)用,但目前磁性吸附劑種類較少,應(yīng)用受到一定的限制,不能達(dá)到對多種真菌毒素同時萃取的目的。此外,在MSPE過程中,多種真菌毒素的存在也影響著對其他種類真菌毒素的萃取效率,萃取選擇性不高。因此,在保證萃取效率的前提下,研發(fā)更多種類的新型磁性吸附劑,實(shí)現(xiàn)對樣品中多種真菌毒素的萃取分離,又能針對某一種類真菌毒素進(jìn)行選擇性萃取,以及簡化磁性吸附劑制備過程并對磁性吸附劑與真菌毒素間的作用機(jī)理進(jìn)行深入研究是MSPE技術(shù)應(yīng)用于真菌毒素檢測中需要關(guān)注的問題。
[1]GEARY P A,CHEN G,KIMANYA M E,et al.Determination of multi-mycotoxin occurrence in maize based porridges from selected regions of Tanzania by liquid chromatography tandem mass spectrometry (LC-MS/MS),a longitudinal study[J].Food Control,2016,68:337-343.
[2]AIKO V,MEHTA A.Occurrence,detection and detoxification of mycotoxins [J].Journal of Biosciences,2015,40(5):1-12.
[3]FERE F S.Worldwide occurrence of mycotoxins in rice[J].Food Control,2016,62:291-298.
[4]BAKIRDERE S,YAROGLU T,TIRIK N,et al.Determination of trace aflatoxin levels in agricultural products and foodstuffs using ELISA system after immunoaffinity clean-up procedure[J].Minerva Biotecnologica,2014,26(4):235-240.
[5]GHALI R,BELOIAER I,HDIRI S,et al.Simultaneous HPLC determination of aflatoxins B1,B2,G1and G2in Tunisian sorghum and pistachios[J].Journal of Food Composition&Analysis,2009,22(7):751-755.
[6]FAN C,CAO X,LIU M,et al.Determination of Alternaria mycotoxins in wine and juice using ionic liquid modified countercurrent chromatography as a pretreatment method followed by high -performance liquid chromatography[J].Journal of Chromatography A,2016,1436(7):133-140.
[7]RODRíGUEZ-CARRASCO Y,BERRADA H,F(xiàn)ONT G,et al.Multi-mycotoxin analysis in wheatsemolina using an acetonitrile-based extraction procedure and gas chromatography-tandem mass spectrometry [J].Journalof Chromatography A,2012,1270(24):28-40.
[8]JUAN C,COVARELLI L,BECCARI G,et al.Simultaneous analysis of twenty-six mycotoxins in durum wheat grain from Italy [J].Food Control,2015,62:322-329.
[9]BACALONI A,CAVALIERE C,CUCCI F,et al.Determination of aflatoxins in hazelnuts by various sample preparation methods and liquid chromatography-tandem mass spectrometry[J].Journal of Chromatography A,2008,1179(2):182-189.
[10] VACLAVIK L,VACLAVIKOVA M,BEGLEY T H,et al.Determination of multiple mycotoxins in dietary supplements containing green coffee bean extracts using ultrahigh-performance liquid chromatography-tandem mass spectrometry (UHPLC-MS/MS)[J].Journalof Agricultural and Food Chemistry,2013,61(20):4822-4830.
[11]SARTORI A V,MATTOS J S D,MORAES M H P D,et al.Determination of aflatoxins M1,M2,B1,B2,G1,and G2and ochratoxin A in UHT and powdered milk by modified QuEChERS method and ultra high -performance liquid chromatography tandem mass spectrometry [J]. Food Analytical Methods,2015,8(9):2321-2330.
[12] HASHEMIJ,KRAM G A,ALIZADEH N.Enhanced spectrofluorimetric determination of aflatoxin B1in wheat by second-order standard addition method [J].Talanta,2008,75(4):1075-1081.
[13]NASR M R J,ABEDINZADEGAN M.Enhanced synchronous spectrofluorimetric determination of aflatoxin B1in pistachio samples using multivariate analysis [J].Analytica Chimica Acta,2007,582(2):288.
[14]李軍,于一茫,田苗,等.免疫親和柱凈化-柱后光化學(xué)衍生-高效液相色譜法同時檢測糧谷中的黃曲霉毒素、玉米赤霉烯酮和赭曲霉毒素 A[J].色譜,2006,24(6):581-584.
[15] AFZALI D,GHANBARIAN M,MOSTAFAVI A,et al. A novel method for high preconcentration of ultra trace amounts of B1,B2,G1and G2aflatoxins in edible oils by dispersive liquid-liquid microextraction after immunoaffinity column clean-up [J].Journal of Chromatography A,2012,1247(1247):35-41.
[16]RUAN C,DIAO X,LI N,et al.Determination of ochratoxin A and citrinin in fruits using ultrasound-assisted solvent extraction followed by dispersive liquid-liquid microextraction with HPLC with fluorescence detection[J].Analytical Methods,2016,8(7):1586-1594.
[17]ZHU W,REN C,NIE Y,et al.Quantification of ochratoxin A in Chinese liquors by a new solid-phase extraction clean-up combined with HPLC-FLD method [J].Food Control,2015,64:37-44.
[18]WANG M, JIANG N, XIAN H, et al.A single-step solid phase extraction forthe simultaneous determination of 8 mycotoxins in fruits by ultra-high performance liquid chromatography tandem massspectrometry[J].Journal of Chromatography A,2016,1429:22-29.
[19]KHAYOON W S,SAAD B,SALLEH B,et al.Micro-solid phase extraction with liquid chromatography-tandem mass spectrometry for the determination of aflatoxins in coffee and malt beverage[J].Food Chemistry,2014,147:287-294.
[20]ES'HAGHI Z,SORAYAEI H,SAMADI F,et al.Fabrication of a novel nanocomposite based on sol-gel process forhollow fiber-solid phase microextraction of aflatoxins:B1and B2,in cerealscombined with high performane liquid chromatography-diode array detection[J].Journal of Chromatography B Analytical Technologies in the Biomedical & Life Sciences,2011,879(28):3034-3040.
[21]RUBERT J,SOLER C,MAES J.Opti mization of matrix solid-phase dispersion method for simultaneous extraction of aflatoxins and OTA in cereals and its application to commercial samples[J].Talanta,2010,82(2):567-574.
[22]ZHOU Q,LI F,CHEN L,et al.Quantitative analysis of 10 mycotoxins in wheat flour by ultrahigh performance liquid chromatography-tandem massspectrometrywith amodified QuEChERS strategy [J].JournalofFood Science,2016,81(11):T2886-T2890.
[23] KOESUKWIWATU, SANGUANKAEW K,LEEPIPATPIBOON N. Evaluation of a modified QuEChERS method for analysis of mycotoxins in rice [J].Food Chemistry,2014,153(9):44-51.
[24]JIANG Q,LIU Q,CHEN Q,et al.Dicationic polymeric ionic-liquid-based magnetic material as an adsorbent for the magnetic solid-phase extraction of organophosphate pesticides and polycyclic aromatic hydrocarbons[J].Journal of Separation Science,2016,39 (16):3221-3229.
[25]ZHENG X,HE L,DUAN Y,et al.Poly(ionic liquid)immobilized magnetic nanoparticles as new adsorbent for extraction and enrichment of organophosphorus pesticides from tea drinks[J]. Journal of Chromatography A,2014,1358:39-45.
[26] XIANG G,LIL,JIANG X,etal.Thiolmodified magnetic silica sorbent for the determination of trace mercury in environmental water samples coupled with cold vapor atomic absorption spectrometry [J].Analytical Letters,2013,46(4):706-716.
[27]XU K,WANG Y,LI Y,et al.A novel poly(deep eutectic solvent)-based magnetic silica composite for solid-phase extraction of trypsin[J].Analytica Chimica Acta,2016,946:64-72.
[28]劉勤,何麗君,楊君,等.離子液體基磁性固相萃取技術(shù)的研究進(jìn)展[J].分析測試學(xué)報(bào),2015,34(7):860-866.
[29]ES'HAGHIZ,BEHESHTIH R,F(xiàn)EIZY J.Extraction ofaflatoxinsfrom food samples using graphene-based magnetic nanosorbents followed by high-performance liquid chromatography:a simple solution to overcome the problems of immunoaffinity columns [J].Journal of Separation Science,2014,37(18):2566-2573.
[30]TAHERIMASLAK Z,AMOLI-DIVA M,ALLAHYARY M,et al.Magnetically assisted solid phase extraction using Fe3O4nanoparticles combined with enhanced spectrofluorimetric detection foraflatoxin M1determination in milk samples [J].Analytica Chimica Acta,2014,842:63-69.
[31]SOCAS-RODRíGUEZ B,HERNáNDEZBORGES J,SALAZAR P,et al.Core-shell polydopamine magnetic nanoparticles as sorbent in micro-dispersive solid phase extraction for the determination ofestrogenic compounds in water samples prior to highperformance liquid chromatography-mass spectrometry analysis [J].Journal of Chromatography A,2015,1397:1-10.
[32]WU X,HU J,ZHU B,et al.Aptamer-targeted magnetic nanospheres as a solid-phase extraction sorbent for determination of ochratoxin A in food samples [J]. Journal of ChromatographyA,2011,1218 (41):7341-7346.
[33] HASHEMIM,TAHERIMASLAKZ,RASHIDI S. Application of magnetic solid phase extraction for separation and determination of aflatoxins B1and B2in cereal products by high performance liquid chromatographyfluorescence detection [J]. Journal of Chromatography B,2014,960:200-208.
[34] MCCULLUM C,TCHOUNWOU P,DING L S,etal.Extraction ofaflatoxinsfrom liquid foodstuff samples with polydopamine-coated superparamagneticnanoparticlesforHPLCMS/MS analysis[J].Journal of Agricultural&Food Chemistry,2014,62(19):4261-4267.
[35] MANAFI M H,ALLAHYARI M,POURGHAZI K,et al.Surfactant-enhanced spectrofluorimetric determination of total aflatoxins from wheat samples after magnetic solid-phase extraction using modified Fe3O4,nanoparticles[J].Spectrochimica Acta PartA Molecular&Biomolecular Spectroscopy,2015,146:43-49.
[36] TAN L,HE R,CHEN K,et al.Ultra-high performance liquid chromatography combined with mass spectrometry for determination of aflatoxins using dummy molecularly imprinted polymers deposited on silica-coated magnetic nanoparticles [J]. Microchimica Acta,2016,183(4):1469-1477.
[37] HASHEMIM,TAHERIMASLAKZ,RASHIDI S.Enhanced spectrofluorimetric determination of aflatoxin M1in liquid milk after magnetic solid phase extraction[J].Spectrochimica Acta Part A Molecular& Biomolecular Spectroscopy,2014,128C(14):583-590.
[38]AMOLIDIVA M,TAHERIMASLAK Z,ALLAHYARIM,etal.Application ofdispersive liquid-liquid microextraction coupled with vortex-assisted hydrophobic magnetic nanoparticles based solid-phase extraction for determination of aflatoxin M1in milk samples by sensitive micelle enhanced spectrofluori-metry[J].Talanta,2015,134(5):98-104.
[39]HYUNJUNG K,SUNGHEE K,JINKYU L,et al.A novelmycotoxin purification system using magnetic nanoparticles for the recovery of aflatoxin B1and zearalenone from feed[J].Journal of Veterinary Science,2012,13(4):363-9.
[40] HASHEMIM,TAHERIMASLAKZ,PARVIZI S,et al.Spectrofluorimetric determination of zearalenone using dispersive liquid-liquid microextraction coupled to micro-solid phase extraction onto magnetic nanoparticles[J].Rsc Advances,2014,4(85):45065-45073.
[41]CAPRIOTTI A L,CAVALIERE C,BARBERA G L,etal.Polydopamine-coated magnetic nanoparticles for isolation and enrichment of estrogenic compounds from surface water samples followed by liquid chromatographytandem mass spectrometry determination[J].Analytical and Bioanalytical Chemistry,2016,408(15):1-10.
[42] MORENOV,ZOUGAGH M,áNGELRíOS.Hybrid nanoparticles based on magnetic multiwalled carbon nanotube-nanoC18SiO2,composites for solid phase extraction of mycotoxins prior to their determination by LCMS [J].Microchimica Acta,2016,183(2):871-880.
[43]GONZáLEZ-SáLAMO J,SOCAS-RODRíGUEZB,HERNáNDEZ-BORGESJ,etal.Core -shell poly (dopamine) magnetic nanoparticles for the extraction of estrogenic mycotoxins from milk and yogurt prior to LCMS analysis[J].Food Chemistry,2017,215:362-368.
[44] KARAMIOSBOOR,MAHAMM,MIRABOLFATHY M. Magnetic nanoparticle solid phase extraction-HPLC-UV for determination of deoxynivalenol in wheat flour[J].Analytical Methods,2015,7(24):10266-10271.
[45]LEE H M,SONG SO,CHA S H,et al.Development of a monoclonal antibody against deoxynivalenol for magnetic nanoparticlebased extraction and an enzyme-linked immunosorbent assay[J].Journal of Veterinary Science,2013,14(2):143-150.
[46]MASHHADIZADEH M H,AMOLI-DIVA M,POURGHAZI K.Magnetic nanoparticles solid phase extraction for determination of ochratoxin A in cereals using high -performance liquid chromatography with fluorescence detection [J]. Journal of Chromatography A,2013,1320(20):17-26.
[47]TURAN E,SAHIN F.Molecularly imprinted biocompatible magnetic nanoparticles for specific recognition of ochratoxin A [J].Sensors&Actuators B Chemical,2016,227:668-676.
[48] DONG M,SIW,WANG W,etal.Determination of type A trichothecenes in coix seed by magnetic solid-phase extraction based on magnetic multi-walled carbon nanotubes coupled with ultra-high performance liquid chromatography-tandem mass spectrometry[J].Analytical & Bioanalytical Chemistry,2016,408(24):1-9.
[49]URRACA JL,HUERTAS-PéREZ JF,CAZORLA G A,et al.Development of magnetic molecularly imprinted polymers for selective extraction:determination of citrinin in rice samples by liquid chromatography with UV diode array detection [J].Analytical and Bioanalytical Chemistry,2016,408(11):3033-3042.
[50]MAGRO M,MORITZ D E,BONAIUTO E,et al.Citrinin mycotoxin recognition and removal by naked magnetic nanoparticles [J].Food Chemistry,2016,203:505-512.
[51]LEONTOPOULOS D,SIAFAKA A,MARKAKI P.Black olives as substrate for Aspergillus parasiticus,growth and aflatoxin B1,production[J].Food Microbiology,2003,20 (1):119-126.
[52]ZUCKERMAN A J.IARC monographs on the evaluation of carcinogenic risks to humans[J].JournalofClinicalPathology,1995,48(7):161-179.
[53] 章英.建立IAC-HPLC檢測谷物中的玉米赤霉烯酮和赭曲霉毒素A[D].南昌:南昌大學(xué),2007.
[54]ZINEDINE A,SORIANO J J,MANES J.Review on the toxicity,occurrence,metabolism,detoxification,regulations and intake of zearalenone: an oestrogenic mycotoxin[J].Food and Chemical Toxicology,2007,45(1):1-18.
[55]楊俊.脫氧雪腐鐮刀菌烯醇降解菌的篩選、降解酶的純化及其降解效果的初步研究[D].合肥:合肥工業(yè)大學(xué),2014.
[56]SAITO K,IKEUCHI R,KATAOKA H.Determination ofochratoxinsin nutsand grain samples by in-tube solid-phase microextraction coupled with liquid chro-matographymass spectrometry [J]. Journal of Chromatography A,2011,1220(1):1-6.
[57]ZUCKERMAN J A.IARC monographs on the evaluation of carcinogenic risks to humans[J].JournalofClinicalPathology,1995,48(1):229-230.
[58]MAOFENG D,WENSHUAI S,KEQIU J,et al.Multi-walled carbon nanotubes as solid-phase extraction sorbents for simultaneous determination oftype A trichothecenes in maize,w heat and rice by ultra-high performance liquid chromatography-tandem mass spectrometry [J].Journal of Chromatography A,2015,1423:177-182.
[59]FLAJS D,PERAICA M.Toxicological properties of citrinin [J].Archives of Industrial Hygiene&Toxicology,2009,60(4):457-464.
ADVANCES IN APPLICATION OF MAGNETIC SOLID-PHASE EXTRACTION FOR MYCOTOXIN ANALYSIS
ZHAO Renyong1,AN Juan1,CUI Wenhang2,HE Lijun2
(1.School of Food Science and Technology;2.School of Chemistry Chemical and Environmental Engineering,Henan University of Technology,Zhengzhou450001,China)
Mycotoxins are of security risks to human and animals because of their strong toxicity and widespread contamination in food and crops,therefore the rapid and effective analysis of mycotoxins are required. Sample pretreatment plays a key role in the whole analysis process. Magnetic solid-phase extraction (MSPE) is a novel sample pretreatment technique,which uses magnetic materials as adsorbents. Due to its advantages including simple operation,fast extraction,high extraction efficiency,as well as easy separation of adsorbent from sample solution,MSPE has attracted much attention in sample pretreatment of mycotoxins. In this paper,the extraction procedure of MSPE,the type and preparation of magnetic adsorbents and the applications of MSPE in mycotoxin analysis were reviewed,and the future trends of MSPE technique for mycotoxin analysis were also discussed.
mycotoxins;magnetic solid-phase extraction;magnetic adsorbent;sample pretreatment
TS 201.2 文獻(xiàn)標(biāo)志碼:A
1673-2383(2017)05-0118-09
http://kns.cnki.net/kcms/detail/41.1378.N.20171030.0936.044.html
網(wǎng)絡(luò)出版時間:2017-10-30 9:36:44
2017-03-15
國家自然科學(xué)基金河南省聯(lián)合基金重點(diǎn)項(xiàng)目(U1604234);國家自然科學(xué)基金項(xiàng)目(21577031);河南省現(xiàn)代農(nóng)業(yè)玉米產(chǎn)業(yè)技術(shù)體系資助項(xiàng)目(S2010-02-G06)
趙仁勇(1969—),男,湖南澧縣人,教授,研究方向?yàn)榧Z食資源轉(zhuǎn)化與利用。
*通信作者