丁晨浩,謝建武
(浙江師范大學(xué)化學(xué)與生命科學(xué)學(xué)院,浙江 金華321004)
綠色合成苯并吡喃并四氫噻吩衍生物
丁晨浩,謝建武
(浙江師范大學(xué)化學(xué)與生命科學(xué)學(xué)院,浙江 金華321004)
以2-苯基-3-硝基-2H-苯并吡喃和2,5-二羥基-1,4-二噻烷為原料,在乙醇中,無(wú)催化劑條件下,加熱回流,通過(guò)sulfa-Michael/aldol串聯(lián)反應(yīng),提供了一條簡(jiǎn)單高效、原子經(jīng)濟(jì)性高的方法合成苯并吡喃并四氫噻吩衍生物。該無(wú)催化劑綠色合成方法以高收率得到了一系列苯并吡喃并四氫噻吩衍生物。
2,5-二羥基-1,4-二噻烷;無(wú)催化劑;綠色合成;苯并吡喃并四氫噻吩衍生物
噻吩雜環(huán)是有機(jī)合成中引人注目的目標(biāo)分子,其結(jié)構(gòu)廣泛存在于天然產(chǎn)物中,并且表現(xiàn)出高度的生物活性,因此常被應(yīng)用于藥物[1]、農(nóng)藥[2]、染料[3]等非天然化合物的合成中,例如含有手性噻吩環(huán)結(jié)構(gòu)的Salacinol[4-5]是印度傳統(tǒng)醫(yī)學(xué)中記載的一種有效的天然α-葡萄糖苷酶抑制劑;Biotin[6]作為一種水溶性維生素B,在脂肪酸合成,支鏈氨基酸分解代謝和糖質(zhì)新生中,都起到了重要的作用。正是噻吩環(huán)的這些應(yīng)用,其合成方法也得到了廣泛的研究[7-10]。目前,合成噻吩環(huán)的方法眾多,但這些方法基本都是基于有機(jī)堿或金屬催化劑催化反應(yīng),而且大部分反應(yīng)溶劑均為二氯甲烷。本文提供了一種綠色合成四氫噻吩稠環(huán)化合物的方法,該方法具有以下優(yōu)點(diǎn):無(wú)催化劑,溶劑綠色環(huán)保,反應(yīng)時(shí)間短且收率高。
1.1 藥品儀器說(shuō)明
本文所使用試劑均為CP或AR級(jí)。TLC監(jiān)測(cè)使用薄層硅膠板GF254。分離提純產(chǎn)物使用硅膠(200~300目),洗脫劑使用石油醚和乙酸乙酯以不同比例配合。NMR的測(cè)定使用德國(guó)Broker DRX-600MHz(四甲基硅烷為內(nèi)標(biāo),DMSO-d6作為溶劑);熔點(diǎn)測(cè)定使用熔點(diǎn)儀(YRT-3)。
1.2 苯并吡喃并四氫噻吩衍生物的合成
2-芳基-3-硝基-2H-苯并吡喃2a(0.2 mmol)與2,5-二羥基-1,4-二噻烷3(0.1 mmol)置于1 mL無(wú)水乙醇中,加熱回流2 h。反應(yīng)結(jié)束后,將體系旋干,柱層析分離產(chǎn)物得到白色固體4a。
4a:白色固體,產(chǎn)率85%,m.p.188.0℃~190.1℃。1H NMR(600 MHz,DMSO) δ 7.49~7.44(m,3H),7.44~7.39(m,2H),7.32(dd,J=7.7,1.3 Hz,1H),7.26~7.21(m,1H),7.06~7.04(m,1H),6.98(d,J=8.1 Hz,1H),6.46(d,J=5.2 Hz,1H),5.71(s,1H),5.36(s,1H),4.50(t,J=4.0 Hz,1H),3.75(dd,J=12.0,3.8 Hz,1H),2.95(d,J=11.9 Hz,1H);13C NMR(151 MHz,DMSO) δ 152.6,134.8,129.9,129.6,128.9,128.5,127.8,122.9,122.8,117.3,98.6,76.0,75.5,43.1,35.0。
4b:淡黃色固體,產(chǎn)率76%,m.p.204.1℃~205.0℃。1H NMR(600 MHz,DMSO)δ 7.49~7.43(m,4H),7.39(dd,J=6.6,2.9 Hz,2H),7.28(dd,J=8.7,2.6 Hz,1H),7.01(d,J=8.7 Hz,1H),6.46(d,J=5.1 Hz,1H),5.71(s,1H),5.35(s,1H),4.49(t,J=4.2 Hz,1H),3.74(dd,J=12.0,3.8 Hz,1H),2.95(d,J=11.8 Hz,1H);13C NMR(151 MHz,DMSO) δ 151.4,134.4,129.7,129.3,128.8,128.6,127.7,126.3,125.0,119.2,98.2,75.9,75.6,42.7,35.0。
4c:淡黃色固體,產(chǎn)率80%,m.p.209.8℃~210.5℃。1H NMR(600 MHz,DMSO)δ 7.57(d,J=2.3 Hz,1H),7.46(dd,J=5.1,1.6 Hz,3H),7.41(d,J=2.4 Hz,1H),7.39(dd,J=6.5,3.0 Hz,2H),6.96(d,J=8.7 Hz,1H),6.47(d,J=5.0 Hz,1H),5.70(s,1H),5.35(s,1H),4.48(t,J=4.2 Hz,1H),3.74(dd,J=12.0,3.8 Hz,1H),2.95(d,J=12.0 Hz,1H);13C NMR(151 MHz,DMSO) δ 151.9,134.4,132.1,131.7,129.8,128.6,127.7,125.5,119.6,114.0,98.2,75.9,75.6,42.7,35.0。
4d:白色固體,產(chǎn)率61%,m.p.170.3℃~171.5℃。1H NMR(600 MHz,DMSO) δ 7.49~7.44(m,3H),7.43~7.38(m,2H),7.22(d,J=8.6 Hz,1H),6.64(dd,J=8.5,2.5 Hz,1H),6.56(d,J=2.5 Hz,1H),6.42(d,J=5.2 Hz,1H),5.69(s,1H),5.30(s,1H),4.48(t,J=4.3 Hz,1H),3.76~3.71(m,4H),2.93(d,J=11.9 Hz,1H);13C NMR(151 MHz,DMSO) δ 159.8,153.5,134.8,130.4,129.6,128.5,127.8,114.8,109.7,102.2,98.5,76.0,75.6,55.8,42.9,34.9。
4e:白色固體,產(chǎn)率85%,m.p.175.4℃~176.8℃。1H NMR(600 MHz,DMSO)δ 7.57~7.54(m,1H),7.51(t,J=7.8 Hz,1H),7.43(d,J=1.6 Hz,1H),7.39(d,J=7.7 Hz,1H),7.32(dd,J=7.6,1.4 Hz,1H),7.26~7.22(m,1H),7.07~7.04(m,1H),7.00(d,J=7.6 Hz,1H),6.48(d,J=5.1 Hz,1H),5.75(s,1H),5.35(s,1H),4.49(t,J=4.0 Hz,1H),3.77(dd,J=12.1,3.8 Hz,1H),2.95(d,J=11.9 Hz,1H);13C NMR(151 MHz,DMSO)δ 152.3,137.3,133.3,130.5,129.9,129.7,128.9,127.4,126.7,123.0,122.7,117.3,98.7,76.0,74.6,43.0,34.9。
4f:白色固體,產(chǎn)率83%,m.p.164.1℃~165.3℃。1H NMR(600 MHz,DMSO) δ 7.57~7.51(m,2H),7.46~7.39(m,2H),7.32(dd,J=7.7,1.5 Hz,1H),7.26~7.21(m,1H),7.0~7.04(m,1H),6.98(d,J=8.2 Hz,1H),6.45(d,J=4.9 Hz,1H),5.75(s,1H),5.33(s,1H),4.46(t,J=4.0 Hz,1H),3.74(dd,J=12.0,3.8 Hz,1H),2.94(d,J=12.0 Hz,1H);13C NMR(151 MHz,DMSO)δ 152.4,134.3,133.8,129.9,129.7,128.9,128.6,122.9,122.8,117.3,98.6,76.0,74.7,42.9,34.9。
4g:白色固體,產(chǎn)率88%,m.p.198.5℃~199.8℃。1H NMR(600 MHz,DMSO)δ 7.70~7.67(m,1H),7.55(s,1H),7.45~7.42(m,2H),7.32(dd,J=7.7,1.4 Hz,1H),7.27~7.22(m,1H),7.07~7.04(m,1H),7.00(d,J=8.2 Hz,1H),6.46(d,J=4.8 Hz,1H),5.74(s,1H),5.34(s,1H),4.48(t,J=4.1 Hz,1H),3.76(dd,J=12.0,3.8 Hz,1H),2.94(d,J=11.9 Hz,1H);13C NMR(151 MHz,DMSO)δ 152.3,137.5,132.6,130.7,130.2,129.9,128.9,127.1,123.90,122.7,121.8,117.3,98.7,76.0,74.5,42.9,34.9。
4h:白色固體,產(chǎn)率84%,m.p.163.9℃~1 65.0℃。1H NMR(600 MHz,DMSO)δ 7.67(d,J=8.5 Hz,2H),7.36(d,J=8.5 Hz,2H),7.32(dd,J=7.7,1.4 Hz,1H),7.25~7.21(m,1H),7.06~7.03(m,1H),6.97(d,J=7.4 Hz,1H),6.46(d,J=5.1 Hz,1H),5.73(s,1H),5.33(s,1H),4.46(t,J=4.0 Hz,1H),3.73(dd,J=12.0,3.8 Hz,1H),2.93(d,J=11.9 Hz,1H);13C NMR(151 MHz,DMSO)δ 152.3,134.2,131.5,130.0,129.9,128.9,123.0,122.9,122.7,117.3,98.6,76.0,74.8,43.0,34.9。
4j:淡黃色固體,產(chǎn)率72%,m.p.180.6℃~181.5℃。1H NMR(600 MHz,DMSO)δ 7.32~7.21(m,6H),7.05~7.02(m,1H),6.96(d,J=8.1 Hz,1H),6.40(s,1H),5.65(s,1H),5.32(s,1H),4.47(t,J=4.1 Hz,1H),3.72(dd,J=12.0,3.8 Hz,1H),2.93(d,J=11.9 Hz,1H),2.36(s,3H);13C NMR(151 MHz,DMSO)δ 152.6,139.1,131.8,129.9,129.1,128.8,127.7,123.0,122.7,117.3,98.6,76.0,75.4,43.1,34.9,21.3。
4k:淡黃色固體,產(chǎn)率70%,m.p.134.1℃~135.6℃。1H NMR(600 MHz,DMSO)δ 7.47~7.43(m,1H),7.31(dd,J=7.7,1.3 Hz,1H),7.24~7.20(m,1H),7.19~7.14(m,2H),7.07~7.02(m,2H),6.93(d,J=8.1 Hz,1H),6.38(d,J=5.3 Hz,1H),5.99(s,1H),5.35(s,1H),4.42(t,J=4.5 Hz,1H),3.87(s,3H),3.67(dd,J=11.6,4.2 Hz,1H),2.89(d,J=11.5 Hz,1H);13C NMR(151 MHz,DMSO) δ 156.3,152.6,130.9,129.7,128.8,128.7,122.8,122.6,120.9,117.2,111.4,99.7,76.1,69.4,56.0,43.5,34.9。
4l:淡黃色固體,產(chǎn)率67%,m.p.150.6℃~151.5℃。1H NMR(600 MHz,DMSO)δ 7.38(t,J=8.0 Hz,1H),7.31(dd,J=7.7,1.4 Hz,1H),7.26~7.21(m,1H),7.05~7.03(m,2H),7.00~6.95(m,2H),6.93(d,J=1.9 Hz,1H),6.41(d,J=5.2 Hz,1H),5.65(s,1H),5.31(s,1H),4.51(t,J=4.0 Hz,1H),3.79(s,3H),3.74(dd,J=12.0,3.8 Hz,1H),2.93(d,J=11.8 Hz,1H);13C NMR(151 MHz,DMSO) δ 159.4,152.5,136.2,129.8,129.7,128.9,122.9,122.8,120.0,117.3,114.7,113.8,98.5,76.0,75.3,55.7,43.1,34.9。
4m:淡黃色固體,產(chǎn)率68%,m.p.156.8℃~157.9℃。1H NMR(600 MHz,DMSO)δ 7.30(dd,J=11.1,5.0 Hz,3H),7.24~7.20(m,1H),7.04(dd,J=7.5,1.0 Hz,1H),7.01(dd,J=8.3,4.9 Hz,2H),6.95(d,J=8.1 Hz,1H),6.38(d,J=5.1 Hz,1H),5.62(s,1H),5.30(s,1H),4.43(t,J=4.0 Hz,1H),3.81(s,3H),3.70(dd,J=11.9,3.8 Hz,1H),2.91(d,J=11.8 Hz,1H);13C NMR(151 MHz,DMSO) δ 160.3,152.7,129.9,129.1,128.8,126.5,122.9,122.7,117.3,113.9,98.6,76.0,75.3,55.7,43.1,34.9。
苯并吡喃并四氫噻吩衍生物溶劑及溫度篩選見(jiàn)表1。
表1 苯并吡喃并四氫噻吩衍生物溶劑及溫度篩選
首先,我們對(duì)該反應(yīng)的溶劑進(jìn)行了篩選。在室溫?zé)o堿條件下,該反應(yīng)在極性溶劑乙醇和乙腈中都生成了痕量的4a,但在非極性溶劑二氯甲烷和甲苯中沒(méi)有發(fā)生任何轉(zhuǎn)化。我們猜測(cè)乙醇作為質(zhì)子型溶劑,可以解離出活潑質(zhì)子,進(jìn)而提高了苯并吡喃硝基烯烴的親電性,故促進(jìn)了反應(yīng)的進(jìn)行。而在水相中,由于底物的溶解性能極差,反應(yīng)沒(méi)有檢測(cè)到理想產(chǎn)物4a。因此,我們選擇了極性質(zhì)子型溶劑乙醇作為該反應(yīng)的最佳溶劑進(jìn)行進(jìn)一步的研究。當(dāng)反應(yīng)在乙醇中升高至回流溫度反應(yīng)2 h,該反應(yīng)便可分離提純得到85%產(chǎn)率的4a,于是,我們確定該反應(yīng)的最優(yōu)反應(yīng)條件:無(wú)催化劑,乙醇加熱回流2 h。
苯并吡喃并四氫噻吩衍生物底物拓展見(jiàn)表2。
表2 苯并吡喃并四氫噻吩衍生物底物拓展
在確定了最佳反應(yīng)條件后,我們通過(guò)改變R1和Ar2基團(tuán)來(lái)研究該反應(yīng)對(duì)2-芳基-3-硝基-2H-苯并吡喃2a的適用性。經(jīng)研究發(fā)現(xiàn)3與不同的苯并吡喃硝基烯烴反應(yīng)時(shí),取代基性質(zhì)和位置對(duì)該反應(yīng)都有一定的影響。當(dāng)Ar2基團(tuán)為Ph,改變R1基團(tuán)為吸電子基團(tuán)-Cl和-Br時(shí),對(duì)該反應(yīng)產(chǎn)率并沒(méi)有產(chǎn)生太大的影響,都可以取得高的產(chǎn)率。但是當(dāng)改變R1為供電子基團(tuán)-OMe時(shí),該反應(yīng)的產(chǎn)率明顯下降,只有達(dá)到61%。當(dāng)R1為H,改變Ar2基團(tuán),相同取代基無(wú)論是鄰位、間位還是對(duì)位對(duì)該反應(yīng)產(chǎn)率的影響都是極小的。但Ar2取代基的性質(zhì)對(duì)該反應(yīng)收率影響較大,吸電子基團(tuán)-Cl,-Br的產(chǎn)率優(yōu)于供電子基團(tuán)-Me,-OMe,但反應(yīng)整體都可以達(dá)到中等以上收率。
本文報(bào)道了苯并吡喃并四氫噻吩的綠色合成方法。該方法以乙醇作為溶劑,無(wú)堿條件下,2-苯基-3-硝基-2H-苯并吡喃和2,5-二羥基-1,4-二噻烷加熱回流,通過(guò)sulfa-Michael/aldol串聯(lián)反應(yīng),得到了一系列高產(chǎn)率苯并吡喃并四氫噻吩衍生物。該方法操作簡(jiǎn)單,條件溫和,原子經(jīng)濟(jì)性高,完全符合綠色有機(jī)合成的要求,為合成多官能團(tuán)四氫噻吩稠環(huán)化合物提供了一條新的途徑。
[1]Wei P S,Wang M X,Xu D C,et al.Synthesis of 2,3-dihydrothieno(2,3-b)quinolines and thieno(2,3-b)-quinolines via an unexpected domino Aza-MBH/Alkylation/Aldol Reaction[J].J.Org.Chem.,2016,81:1216-1222.
[2]Tsygankova V A,Blume Y B.Screening and peculiarity of the biological action of synthetic plant growth regulators[J].Biopolim.Kletka.,1997,13:484-492.
[3]Hallas G,Towns A D.Synthesis of Some nitro-substituted thiophene-based Azo disperse dyes[J].Dyes&Pigments,1997,33:319-336.
[4]Yoshikawa M,Murakami T,Shimada H,et al.potent antidiabetic principle with unique thionsugar sulfonium sulfate structure from the ayurvedic traditional medicine salacia reticulate in Srilanka and India[J].Tetrahedron Lett.,1997,38:8367-8370.
[5]Yuasa H,Takada J,Hashimoto H.Glycosidase inhibition by cyclic sulfonium compounds[J].Bioorg.Med.Chem.Lett.,2001,11:1137-1139.
[6]Benetti S,Risi C D,Pollini G P,et al.Synthetic routes to chiral nonracemic and racemic dihydro-and tetrahydrothiophenes[J].Chem.Rev.,2012,112:2129-2163.
[7]Dzhemilev U M,Ibragimov A G,Gilyazev R R,et al.Zirconium-catalyzed preparation of aluminacyclopentanes and synthesis of five-membered carbo-and heterocycles[J].Tetrahedron.,2004,60:1281-1286.
[8]Barco A,Baricordi N,Benetti S R,et al.Convenient‘one pot’synthesis of 3,4-substituted tetrahydrothiophenes through tandem Michael-Henry and Michael-Michael reactions[J].Tetrahedron Lett.,2006,47:8087-8090.
[9]Connor C,Roydhouse M D,Przybyl A M,et al.Facile synthesis of 3-nitro-2-substituted thiophenes[J].J.Org.Chem.,2010,75:2534–2538.
[10]Xu C,Du J,Ma L,et al.Tertiary amine functionalized polyacrylonitrile fiber catalyst for the synthesis of tetrahydrothiophenes[J].Tetrahedron.,2013,69:4749-4757.
Green Synthesis of Benzopyrano tetrahydrothiophene Derivatives
DING Chen-hao,XIE Jian-wu
(College of Chemistry and Life Science,Zhejiang Normal University,Jinhua,Zhejiang 321004,China)
A simple,highly efficient and atom economical green protocol has been developed for the catalyst-free synthesis of benzopyrano tetrahydrothiophene derivatives by sulfa-Michael/aldol reaction in EtOH at reflux temperature.This catalyst-free green approach provided a series of the addition products in high yields.
1,4-dithiane-2,5-diol;catalyst-free;green synthesis;benzopyrano tetrahydrothiophene derivatives
1006-4184(2017)10-0027-04
2017-05-14
丁晨浩(1991-),男,浙江紹興人,碩士,研究方向:不對(duì)稱合成。E-mail:373659576@qq.com。