范沖竹, 李 安, 黃翠芹, 甘丹卉, 李 勤, 趙佳儀, 王 珍, 朱麗紅, 陸大祥
(暨南大學(xué)醫(yī)學(xué)院病理生理學(xué)系, 腦科學(xué)研究所, 國(guó)家中醫(yī)藥管理局三級(jí)科研實(shí)驗(yàn)室, 廣東 廣州 510632)
·論著·
BMSCs腦內(nèi)移植改善AD小鼠學(xué)習(xí)記憶功能的分子機(jī)制研究*
范沖竹, 李 安▲, 黃翠芹, 甘丹卉, 李 勤, 趙佳儀, 王 珍, 朱麗紅, 陸大祥△
(暨南大學(xué)醫(yī)學(xué)院病理生理學(xué)系, 腦科學(xué)研究所, 國(guó)家中醫(yī)藥管理局三級(jí)科研實(shí)驗(yàn)室, 廣東 廣州 510632)
目的觀察骨髓間充質(zhì)干細(xì)胞(BMSCs)腦內(nèi)移植對(duì)阿爾茨海默病(AD)小鼠學(xué)習(xí)記憶能力及病理改變的影響,并對(duì)其分子機(jī)制進(jìn)行探討。方法將C57/BL6野生型(WT)小鼠和C57/BL6APP/PS1轉(zhuǎn)基因(Tg)小鼠隨機(jī)分為4組:WT/PBS組、WT/BMSCs組、Tg/PBS組及Tg/BMSCs組,側(cè)腦室注射法將PBS或BMSCs注入小鼠腦內(nèi)。術(shù)后第3天起進(jìn)行持續(xù)8 d的Morris水迷宮實(shí)驗(yàn)以檢測(cè)小鼠認(rèn)知能力。術(shù)后第10天取材,組織免疫熒光染色檢測(cè)小鼠腦內(nèi)小膠質(zhì)細(xì)胞的激活;real-time PCR檢測(cè)CX3C趨化因子配體1(CX3CL1)、CX3C趨化因子受體1(CX3CR1)、IL-1β、TNF-α、Nurr1、YM1、胰島素降解酶(IDE)和基質(zhì)金屬蛋白酶9(MMP9)的mRNA表達(dá);ELISA檢測(cè)腦組織勻漿CX3CL1和Aβ42的含量;Western blot檢測(cè)突觸后致密蛋白95(PSD95)、突觸小泡蛋白(SYP)、p85和p110蛋白表達(dá)以及Akt磷酸化水平的變化。結(jié)果術(shù)后第10天,在APP/PS1小鼠海馬區(qū)附近觀察到移植的BMSCs。水迷宮實(shí)驗(yàn)結(jié)果顯示,與WT/PBS組小鼠相比,Tg/PBS組小鼠逃避潛伏期明顯延長(zhǎng)(P<0.01),BMSCs移植治療后APP/PS1小鼠逃避潛伏期明顯縮短(P<0.05);與Tg/PBS組相比,Tg/BMSCs組CX3CL1在海馬區(qū)的mRNA水平(P<0.01)及皮質(zhì)區(qū)的蛋白水平(P<0.05)明顯增加;BMSCs移植可以促進(jìn)WT和Tg小鼠腦內(nèi)小膠質(zhì)細(xì)胞的激活,同時(shí)M2型小膠質(zhì)細(xì)胞表面標(biāo)志物YM1的mRNA表達(dá)上調(diào)(P<0.05)。Tg/PBS組與WT/PBS組相比,皮質(zhì)區(qū)和海馬區(qū)TNF-α的mRNA表達(dá)明顯升高(P<0.05),皮質(zhì)區(qū)Nurr1的mRNA表達(dá)降低(P<0.01);而與Tg/PBS組相比,Tg/BMSCs組皮質(zhì)區(qū)的TNF-α(P<0.01)mRNA表達(dá)降低,CX3CR1和Nurr1的mRNA表達(dá)明顯上調(diào)(P<0.05),海馬區(qū)TNF-α和IL-1β的mRNA明顯下調(diào)(P<0.05),CX3CR1和Nurr1的mRNA表達(dá)明顯增加(P<0.05)。此外,Tg/BMSCs組的PSD95、p85和p110蛋白表達(dá)及Akt的磷酸化水平均較Tg/PBS組明顯增加(P<0.05)。與Tg/PBS組比,BMSCs移植降低了APP/PS1小鼠腦內(nèi)Aβ42蛋白的水平(P<0.05),增加了海馬區(qū)Aβ清除相關(guān)酶IDE和MMP9的表達(dá)(P<0.05)。結(jié)論BMSCs移植可以調(diào)控神經(jīng)炎癥因子分泌,促進(jìn)神經(jīng)保護(hù)因子和突觸蛋白的表達(dá),從而改善APP/PS1小鼠的學(xué)習(xí)記憶能力,其分子機(jī)制可能是BMSCs移植上調(diào)CX3CL1后激活了PI3K/Akt通路。
骨髓間充質(zhì)干細(xì)胞; CX3C趨化因子配體1; 阿爾茨海默病; 神經(jīng)炎癥; 神經(jīng)保護(hù)
阿爾茨海默病(Alzheimer disease,AD)是一種認(rèn)知和記憶能力進(jìn)行性下降的慢性神經(jīng)系統(tǒng)退行性疾病,病理特征包括胞外β-淀粉樣蛋白(β-amyloid protein,Aβ)沉積、胞內(nèi)神經(jīng)纖維纏結(jié)和神經(jīng)元丟失[1]。目前已確定的與AD相關(guān)的常染色體顯性遺傳突變基因包括淀粉樣前體蛋白(amyloid precursor protein,APP)、早老素1(presenilin-1,PS1)和PS2,這些基因缺陷可導(dǎo)致AD患者和轉(zhuǎn)基因小鼠的Aβ42沉積以及突觸功能障礙[2]。目前臨床上治療AD的藥物只能緩解癥狀,不能延緩或阻止AD患者中神經(jīng)元的丟失和退化。干細(xì)胞移植治療AD除了能分化為神經(jīng)元整合入宿主腦網(wǎng)絡(luò)中外,還能分泌神經(jīng)營(yíng)養(yǎng)因子、免疫調(diào)控因子以及促進(jìn)Aβ清除;而干細(xì)胞修復(fù)受損的中樞神經(jīng)系統(tǒng)主要是源于其調(diào)節(jié)免疫應(yīng)答的能力和在宿主中的旁分泌效應(yīng)[3-5]。在中樞神經(jīng)系統(tǒng)內(nèi),CX3C趨化因子配體1(CX3C chemokine ligand 1, CX3CL1)/fractalkine主要表達(dá)于神經(jīng)元上,它與特異性表達(dá)于小膠質(zhì)細(xì)胞表面的相應(yīng)受體CX3C趨化因子受體1(CX3C chemokine receptor 1, CX3CR1)具有高度親和力[6]。Giunti等[7]通過(guò)體外研究表明,骨髓間充質(zhì)干細(xì)胞(bone marrow mesenchymal stem cells,BMSCs)能夠通過(guò)分泌CX3CL1調(diào)控細(xì)菌脂多糖(lipopolysaccharide,LPS)誘導(dǎo)激活的小膠質(zhì)細(xì)胞的形態(tài)和功能。但BMSCs體內(nèi)移植是否也能通過(guò)對(duì)CX3CL1的調(diào)控進(jìn)而改善AD尚未得到證實(shí)。為了進(jìn)一步探討骨髓間充質(zhì)干細(xì)胞移植對(duì)AD模型小鼠的神經(jīng)炎癥、神經(jīng)保護(hù)及突觸塑形等的影響及機(jī)制,我們將BMSCs分別移植入野生型小鼠和AD模型小鼠腦內(nèi),檢測(cè)BMSCs移植治療后小鼠的行為學(xué)改變,并探討B(tài)MSCs在不同環(huán)境下的旁分泌作用及其治療AD可能的分子機(jī)制。
1動(dòng)物
C57/BL6APP/PS1雙轉(zhuǎn)基因(transgenic, Tg)雄性小鼠9只和C57/BL6野生型(wild-type, WT)雌性小鼠20只(購(gòu)于廣東省動(dòng)物中心,動(dòng)物合格證編號(hào)為44007200030473和44007200030475)。飼養(yǎng)于SPF環(huán)境中,室溫(22±2) ℃,12 h 晝/夜交替照明。動(dòng)物適應(yīng)環(huán)境后,轉(zhuǎn)基因小鼠與野生型小鼠配種,擴(kuò)群,后代長(zhǎng)至3周時(shí)取尾部組織做基因型鑒定,鑒定完成后將野生型與轉(zhuǎn)基因型分籠飼養(yǎng)。待小鼠長(zhǎng)至18周齡時(shí)進(jìn)行體內(nèi)實(shí)驗(yàn)。
2主要試劑
鼠尾直接PCR試劑盒購(gòu)自Biotool;Dulbecco’s modified Eagle medium (DMEM)/F12及胎牛血清(fetal bovine serum,F(xiàn)BS)購(gòu)自Life technologies;綠色熒光蛋白(green fluorescent protein,GFP)腺病毒載體購(gòu)自上海吉?jiǎng)P基因化學(xué)技術(shù)有限公司;總RNA提取、逆轉(zhuǎn)錄及TaqDNA聚合酶試劑購(gòu)于TaKaRa;EILSA試劑盒購(gòu)自BioLegend和Cloud-Clone Corp.;抗突觸相關(guān)蛋白突觸后致密蛋白95(postsynaptic density protein 95, PSD95)、突觸小泡蛋白(synaptophysin, SYP)、β-tubulin及離子鈣結(jié)合接頭分子1(ionized calcium-binding adaptor molecule-1,IBA-1)抗體購(gòu)自Abcam;引物由英濰捷基上海貿(mào)易有限公司根據(jù)設(shè)計(jì)合成。
3主要方法
3.1BMSCs的培養(yǎng)及鑒定 取3周齡C57/BL6小鼠股骨及脛骨骨髓,制備成單細(xì)胞懸液,采用全骨髓培養(yǎng)法進(jìn)行培養(yǎng),培養(yǎng)基為DMEM/F12+12%FBS。當(dāng)細(xì)胞長(zhǎng)滿培養(yǎng)瓶80%時(shí)進(jìn)行傳代(用含0.25% EDTA的胰酶消化)。多次傳代法對(duì)骨髓干細(xì)胞進(jìn)行純化。利用茜素紅染色法和油紅O染色法對(duì)提取純化的第4代BMSCs進(jìn)行成骨分化和成脂分化誘導(dǎo);流式細(xì)胞術(shù)檢測(cè)BMSCs細(xì)胞表面特異性標(biāo)志物CD105、CD29和Sca1以及造血細(xì)胞表面標(biāo)志物CD45的表達(dá)。
3.2動(dòng)物分組及綠色熒光蛋白標(biāo)記BMSCs側(cè)腦室注射后的腦內(nèi)示蹤 利用攜帶GFP的腺病毒感染BMSCs:感染復(fù)數(shù)為100,稀釋液為基礎(chǔ)培養(yǎng)基,病毒作用1 h 后換為完全培養(yǎng)基繼續(xù)培養(yǎng);48 h后鏡下觀察熒光表達(dá)。側(cè)腦室注射(intracerebroventricular injection,icv):首先用1.25%三溴乙醇對(duì)小鼠腹腔注射(15 μL/kg)進(jìn)行麻醉,后將其固定于腦立體定位儀上,碘伏消毒頭頂部皮膚,頭頂正中由前向后作長(zhǎng)約 1 cm 手術(shù)切口,參照小鼠腦立體定位圖譜,以前囟向后2.0 mm、矢狀縫(mediolateral, ML)左右1.5 mm為注射點(diǎn),進(jìn)針深度(dorsoventral,DV)2.5 mm。準(zhǔn)確定位后,先用鈍性針頭作一小孔,見(jiàn)腦脊液溢出,再用微量進(jìn)樣針向側(cè)腦室內(nèi)緩慢注入8 μL PBS或BMSCs細(xì)胞懸液,每注射2 μL停針2 min。注射完畢后留針5 min,緩慢退針,碘伏消毒,縫合術(shù)區(qū)切口,對(duì)皮,再次碘伏消毒。同窩出生Tg或WT小鼠隨機(jī)分為4組,每組5只:(1)WT/PBS組:icv法將PBS液注入WT小鼠腦內(nèi),每只8 μL;(2)WT/BMSCs組:icv法將攜帶GFP的BMSCs單細(xì)胞懸液注入WT小鼠腦內(nèi),每只8 μL(1.5×105cells);(3)Tg /PBS組:icv法將PBS注入Tg小鼠腦內(nèi),每只8 μL;(4)Tg /BMSCs組:icv法將攜帶綠色熒光蛋白的BMSCs單細(xì)胞懸液注入Tg小鼠腦內(nèi),每只8 μL(1.5×105cells)。術(shù)程順利,術(shù)中無(wú)小鼠死亡。側(cè)腦室注射后第10天,麻醉處死小鼠,取出全腦,常規(guī)方法制備冰凍切片,避光。熒光顯微鏡下觀察注入腦內(nèi)的BMSCs。整個(gè)實(shí)驗(yàn)過(guò)程通過(guò)暨南大學(xué)實(shí)驗(yàn)動(dòng)物倫理委員會(huì)審查。
3.3Morris水迷宮實(shí)驗(yàn)檢測(cè)小鼠空間學(xué)習(xí)及記憶能力 術(shù)后休息2 d后,小鼠進(jìn)行Morris水迷宮實(shí)驗(yàn)。水深約20 cm,平臺(tái)隱藏于水下,水溫22 ℃~24 ℃。(1)第1天~第7天的定位航行實(shí)驗(yàn)檢測(cè)小鼠學(xué)習(xí)能力: 水迷宮分為4個(gè)象限,隨機(jī)將小鼠從任一象限以臉部面向池壁放入水中,記錄小鼠找到隱藏平臺(tái)所需時(shí)間,作為潛伏期;探尋總時(shí)長(zhǎng)為60 s,若小鼠未能在規(guī)定時(shí)間內(nèi)找到平臺(tái),則引導(dǎo)其游上平臺(tái)并在平臺(tái)停留10 s,其潛伏期記為 60 s。(2)第8天的空間探索實(shí)驗(yàn)檢測(cè)小鼠記憶能力:實(shí)驗(yàn)第8天撤去水下平臺(tái),選取平臺(tái)所在象限的對(duì)角象限為小鼠入水點(diǎn),記錄小鼠在 60 s內(nèi)穿過(guò)平臺(tái)區(qū)的次數(shù)及在平臺(tái)象限內(nèi)停留的時(shí)間。
3.4Real-time PCR檢測(cè)腦組織中相關(guān)因子的表達(dá) 手術(shù)后第10天提取小鼠皮質(zhì)及海馬組織的RNA,利用Roche LC480熒光定量PCR儀通過(guò)real-time PCR檢測(cè)相關(guān)因子的mRNA表達(dá)量。RNA提取、反轉(zhuǎn)錄和real-time PCR均嚴(yán)格按試劑說(shuō)明書操作。以GAPDH作為內(nèi)參照。擴(kuò)增反應(yīng)分為98 ℃解鏈10 s、55 ℃退火30 s、72 ℃延伸(1 min/kb)3步,共35個(gè)循環(huán)。引物序列見(jiàn)表1。
表1 Real-time PCR引物序列
3.5組織免疫熒光染色檢測(cè)小膠質(zhì)細(xì)胞的激活 將腦組織冰凍切片室溫復(fù)溫15 min,PBS 洗3次;0.3% Triton X-100通透10 min,0.025% Triton X-100/PBS 洗 3 次;1% BSA 室溫封閉 1 h,棄封閉液,加入抗IBA-1抗體(1∶100),濕盒中4 ℃孵育過(guò)夜。去除Ⅰ抗,PBS 洗 3 次,加入相應(yīng)的熒光Ⅱ抗室溫孵育 1 h ,PBS 洗3 次,DAPI 室溫孵育5 min,封片,熒光顯微鏡下觀察并拍照保存。
3.6ELISA法檢測(cè)CX3CL1及Aβ42的蛋白含量 低溫勻漿將小鼠腦組織研磨制成勻漿液。4 ℃、12 000×g離心10 min,取上清,后續(xù)實(shí)驗(yàn)按照CX3CL1和Aβ42的ELISA說(shuō)明書嚴(yán)格操作。
3.7Western blot 檢測(cè)突觸相關(guān)蛋白的表達(dá) 提取各組小鼠腦組織蛋白,BCA定量試劑盒進(jìn)行蛋白定量。行8% SDS-PAGE,根據(jù) Marker 指示切取目的條帶,半干電轉(zhuǎn)移法將蛋白轉(zhuǎn)移至 PVDF 膜,5% 脫脂奶粉室溫封閉 1 h;分別加入相應(yīng)Ⅰ抗(1∶1 000 稀釋)后,搖床上4 ℃孵育過(guò)夜,TBST清洗3次,每次10 min;加入相應(yīng)Ⅱ抗(1∶5 000稀釋),室溫孵育1 h,TBST清洗 4次每次10 min,ECL 發(fā)光液發(fā)光顯色,X 線底片曝光; GAPDH或β-tubulin作為內(nèi)參照。實(shí)驗(yàn)重復(fù) 3 次。
4統(tǒng)計(jì)學(xué)處理
采用SPSS 13.0 統(tǒng)計(jì)軟件進(jìn)行統(tǒng)計(jì)學(xué)分析,數(shù)據(jù)以均數(shù)±標(biāo)準(zhǔn)誤(mean±SEM) 表示,組間比較用單因素方差分析(one-way ANOVA),方差齊時(shí)組間兩兩比較用Bonferroni校正的t檢驗(yàn),若方差不齊,則組間兩兩比較用Tamhane’s T2檢驗(yàn)。以P<0.05為差異有統(tǒng)計(jì)學(xué)意義。
1骨髓間充質(zhì)干細(xì)胞的培養(yǎng)及鑒定
提取的BMSCs傳至第4代時(shí)呈均勻的成纖維細(xì)胞樣生長(zhǎng)(圖1A),茜素紅染色法和油紅O染色法誘導(dǎo)后,分別可見(jiàn)大量鈣化結(jié)節(jié)和脂滴形成(圖1B、C)。流式細(xì)胞術(shù)檢測(cè)發(fā)現(xiàn),BMSCs細(xì)胞表面的特異性標(biāo)志物CD105、CD29和Sca 1呈高表達(dá),陽(yáng)性率分別為78.0%、81.7%和95.8%,而造血細(xì)胞表面標(biāo)志物CD45的陽(yáng)性率為3.4%,呈低表達(dá)(圖1D)。誘導(dǎo)分化結(jié)果表明提取的干細(xì)胞多向分化能力好,可用于后續(xù)實(shí)驗(yàn)。
Figure 1. Culture and identification of primary BMSCs. A: phase-contrast micrograph of the BMSCs at passage 4 (P4); B: osteogenic differentiation of P4 BMSCs was determined by alizarin red staining; C: adipogenic differentiation of P4 BMSCs was determined by oil red O staining; D: the expression of CD105, CD29, Sca1 and CD45 on the surface of the BMSCs was detected by flow cytometry. The scale bar=200 μm.
圖1原代骨髓間充質(zhì)干細(xì)胞的培養(yǎng)及鑒定
Figure 2. The observation of green fluorescent protein (GFP)-labeled BMSCs and the injected GFP-BMSCs in the lateral ventricles ofAPP/PS1 mice. A: no spontaneous fluorescence in BMSCs, and GFP-labeled cells showed green fluorescence under fluorescence microscope; B: the transfection efficiency was 61.5% determined by flow cytometry; C: immunofluorescence staining of transplanted BMSCs in the brain ofAPP/PS1 mice. Green: GFP; blue: DAPI. The scale bar=100 μm.
圖2GFP標(biāo)記的BMSCs及注射入小鼠側(cè)腦室內(nèi)BMSCs的示蹤觀察
2攜帶綠色熒光蛋白的腺病毒感染BMSCs及小鼠腦室內(nèi)BMSCs的示蹤
攜帶GFP的腺病毒感染BMSCs 48 h后,可見(jiàn)BMSCs表達(dá)大量綠色熒光,細(xì)胞形態(tài)好,未見(jiàn)明顯自發(fā)熒光表達(dá)。流式細(xì)胞術(shù)檢測(cè)轉(zhuǎn)染效率為61.5%。BMSCs移植入小鼠腦內(nèi)10 d,在海馬區(qū)附近發(fā)現(xiàn)了移植的BMSCs,見(jiàn)圖2。
3BMSCs移植治療后小鼠的行為學(xué)及病理改變
3.1BMSCs移植治療對(duì)小鼠空間學(xué)習(xí)和記憶能力的影響 Morris水迷宮定位航行實(shí)驗(yàn)1 d、3 d、5 d和7 d的實(shí)驗(yàn)結(jié)果表明,與WT/PBS組相比,Tg/PBS組小鼠的逃避潛伏期明顯延長(zhǎng)(P<0.01);而在BMSCs移植治療后,APP/PS1小鼠的逃避潛伏期明顯縮短(P<0.05);第7天定位航行代表性路徑圖表明,與Tg/PBS組小鼠相比,BMSCs移植治療的APP/PS1小鼠導(dǎo)航策略變得更好。第8天的空間探索實(shí)驗(yàn)結(jié)果顯示,Tg/PBS組穿越平臺(tái)次數(shù)為2.40±0.51,Tg/BMSCs組穿越平臺(tái)次數(shù)為5.20±1.16(P<0.05),各組間在目標(biāo)象限停留時(shí)間的差異無(wú)統(tǒng)計(jì)學(xué)顯著性;定位航行代表性軌跡圖顯示,與野生型小鼠相比,PBS處理組APP/PS1小鼠的空間記憶能力更差,在BMSCs移植后APP/PS1小鼠的探索路徑趨向于野生型改變。這表明BMSCs移植可以改善APP/PS1小鼠的學(xué)習(xí)記憶能力,見(jiàn)圖3。
Figure 3. Transplantation of BMSCs improved the spatial learning and memory abilities ofAPP/PS1 mice. A: water maze escape latencies ofAPP/PS1 mice or WT mice which were injected with PBS or BMSCs intracerebroventricularly; B and C: on the final day, the 60-second probe trial was conducted to detect the times of each animal entering the small target zone (C) and the time spent in the target quadrant (B); D: the representative swimming paths at day 7 of training with orientation navigation; E: the representative swimming paths at day 8 of training with space exploration. Mean±SEM.n=5.**P<0.01vsWT/PBS group;#P<0.05vsTg/PBS group.
圖3BMSCs移植可以改善APP/PS1小鼠的空間學(xué)習(xí)和記憶能力
3.2BMSCs移植對(duì)小鼠腦內(nèi)趨化因子CX3CL1表達(dá)的影響 實(shí)驗(yàn)結(jié)果表明,與WT/PBS小鼠相比,Tg/PBS處理組小鼠海馬區(qū)CX3CL1的mRNA表達(dá)降低(P<0.01);BMSCs移植后APP/PS1小鼠海馬區(qū)CX3CL1的mRNA表達(dá)較Tg/PBS組明顯增加(P<0.01);皮質(zhì)區(qū)有增加,但差異無(wú)統(tǒng)計(jì)學(xué)顯著性。進(jìn)一步對(duì)小鼠皮質(zhì)區(qū)CX3CL1蛋白表達(dá)進(jìn)行檢測(cè),結(jié)果表明BMSCs移植顯著上調(diào)了APP/PS1小鼠皮質(zhì)區(qū)CX3CL1蛋白的表達(dá)(P<0.05)。同時(shí)我們發(fā)現(xiàn)BMSCs移植對(duì)野生型小鼠腦內(nèi)CX3CL1的表達(dá)無(wú)顯著影響,見(jiàn)圖4。
Figure 4. BMSC transplantation up-regulated the expression of CX3CL1 at mRNA and protein levels in the brain ofAPP/PS1 mice. A: the mRNA expression of CX3CL1 in the hippocampus and cortex detected by real-time PCR; B: the protein concentration of CX3CL1 in the cortex detected by ELISA. Mean±SEM.n=4.**P<0.01vsWT/PBS group;#P<0.05,##P<0.01vsTg/PBS group.
圖4BMSCs移植對(duì)APP/PS1小鼠腦內(nèi)CX3CL1表達(dá)的影響
3.3BMSCs移植上調(diào)CX3CL1可以通過(guò)對(duì)小膠質(zhì)細(xì)胞的調(diào)控影響腦內(nèi)神經(jīng)炎癥因子和神經(jīng)保護(hù)因子的表達(dá) 組織免疫熒光結(jié)果表明,與PBS處理組相比,無(wú)論是在野生型小鼠還是轉(zhuǎn)基因型小鼠,BMSCs移植均可以明顯激活腦內(nèi)的小膠質(zhì)細(xì)胞。Real-time PCR實(shí)驗(yàn)結(jié)果顯示,與Tg/PBS組相比,Tg/BMSCs組M2型小膠質(zhì)細(xì)胞表面標(biāo)志物YM1的mRNA表達(dá)明顯增加(P<0.05)。此外,與WT/PBS組相比,Tg/PBS組腫瘤壞死因子α(tumor necrosis factor-α,TNF-α)的mRNA表達(dá)明顯增加(P<0.01),白細(xì)胞介素1β(interleukin-1β,IL-1β)表達(dá)未見(jiàn)明顯上升;BMSCs移植后,APP/PS1小鼠皮質(zhì)區(qū)TNF-α、海馬區(qū)TNF-α及IL-1β的mRNA表達(dá)明顯降低(P<0.05);同時(shí)增加了皮質(zhì)區(qū)及海馬區(qū)神經(jīng)保護(hù)因子CX3CR1和Nurr1的mRNA表達(dá)(P<0.05)。值得注意的是,與WT/BMSCs組相比,Tg/BMSCs組皮質(zhì)區(qū)的TNF-α及IL-1β的mRNA表達(dá)均明顯降低(P<0.05),見(jiàn)圖5。
Figure 5. The effects of BMSC transplantation on the morphology of microglia and the expression of inflammatory factors and neuroprotective factors. A: immunofluorescence staining showed the activation of microglia in theAPP/PS1 mice or WT mice with intracerebroventricular injection of BMSCs or PBS (the scale bar=200 μm); B: the mRNA expression of YM1 in the brain; C: the mRNA expression of TNF-α, IL-1β, CX3CR1 and Nurr1 in the hippocampus and cortex. Mean±SEM.n=4.**P<0.01vsWT/PBS group;#P<0.05,##P<0.01vsTg/PBS group;△P<0.05vsWT/BMSCs group.
圖5BMSCs移植對(duì)小膠質(zhì)細(xì)胞的形態(tài)及相關(guān)炎癥因子和神經(jīng)保護(hù)因子表達(dá)的影響
3.4BMSCs上調(diào)CX3CL1可以促進(jìn)APP/PS1小鼠腦內(nèi)突觸相關(guān)蛋白的表達(dá) Western blot實(shí)驗(yàn)結(jié)果表明,Tg/PBS組與WT/PBS組小鼠之間突觸相關(guān)蛋白表達(dá)未見(jiàn)明顯差異;但與Tg/PBS組相比,BMSCs移植可以顯著增加APP/PS1小鼠腦內(nèi)突觸相關(guān)蛋白PSD95的表達(dá)(P<0.05),SYP蛋白表達(dá)在各組間差異無(wú)統(tǒng)計(jì)學(xué)顯著性,見(jiàn)圖6。
Figure 6. Transplantation of BMSCs increased the protein expression of PSD95 inAPP/PS1 mice. Mean ±SEM.n=4.#P<0.05vsTg/PBS group.
圖6BMSCs移植可以促進(jìn)APP/PS1小鼠腦內(nèi)突觸蛋白PSD95的表達(dá)
3.5BMSCs移植可以降低APP/PS1小鼠腦內(nèi)Aβ42蛋白的水平及上調(diào)Aβ清除相關(guān)因子的表達(dá) ELISA結(jié)果顯示,與WT/PBS組相比,Tg/PBS組小鼠腦內(nèi)Aβ42蛋白水平明顯增加(P<0.01);BMSCs移植后APP/PS1小鼠腦內(nèi)Aβ42蛋白水平明顯較Tg/PBS組降低(P<0.05)。此外,與WT/PBS組相比,PBS處理組AD模型小鼠海馬區(qū)Aβ清除相關(guān)因子胰島素降解酶(insulin-degrading enzyme,IDE)的表達(dá)降低(P<0.01),在BMSCs移植后,APP/PS1小鼠海馬區(qū)的IDE及基質(zhì)金屬蛋白酶9(matrix metalloprotease 9,MMP9)的mRNA表達(dá)明顯較Tg/PBS組增加(P<0.05),見(jiàn)圖7。
3.6BMSCs移植可以上調(diào)APP/PS1小鼠腦內(nèi)的p85、p110和p-Akt的蛋白水平 Western blot結(jié)果顯示,與WT/PBS組相比,Tg/PBS組小鼠腦內(nèi)磷脂酰肌醇3-激酶(phosphatidylinositol 3-kinase,PI3K)調(diào)節(jié)亞基p85和催化亞基p110的蛋白表達(dá)明顯降低(P<0.05);BMSCs移植后APP/PS1小鼠腦內(nèi)的p85和p110蛋白的表達(dá)以及Akt蛋白的磷酸化水平均顯著上調(diào)(P<0.05),見(jiàn)圖8。
Figure 7. The effects of BMSC transplantation on the protein le-vel of Aβ42 and the mRNA expression of Aβ clearance-related factors inAPP/PS1 mice. A: Aβ42 content measured by ELISA; B: the mRNA expression of IDE and MMP9 in the hippocampus and cortex detected by real-time PCR. Mean±SEM.n=4.**P<0.01vsWT/PBS group;#P<0.05vsTg/PBS group.
圖7BMSCs移植對(duì)APP/PS1小鼠Aβ42蛋白及Aβ清除相關(guān)因子表達(dá)的影響
隨著對(duì)干細(xì)胞研究的深入,干細(xì)胞治療神經(jīng)系統(tǒng)退行性疾病已取得較多進(jìn)展,研究證實(shí),干細(xì)胞移植在一定程度上可以改善包括AD在內(nèi)的神經(jīng)退行性疾病的認(rèn)知、學(xué)習(xí)和記憶能力[9]。但是,由于AD的病理多樣性以及干細(xì)胞移植后與宿主腦之間相互作用的復(fù)雜性,對(duì)干細(xì)胞移植治療AD的具體機(jī)制至今仍不十分明確,這也是當(dāng)前研究的重點(diǎn)和難點(diǎn)。本研究旨在探討干細(xì)胞移植治療AD的作用及其分子機(jī)制。行為學(xué)檢測(cè)結(jié)果顯示,與PBS處理的APP/PS1小鼠相比,BMSCs移植可以顯著改善APP/PS1小鼠的學(xué)習(xí)記憶能力,這進(jìn)一步證實(shí)了Lee等[10]的研究,即BMSCs移植可以改善APP/PS1小鼠的空間學(xué)習(xí)和記憶能力。
Figure 8. The protein levels of p85, p110 and p-Akt in each group. Mean±SEM.n=4.*P<0.05,**P<0.01vsWT/PBS group;#P<0.05vsTg/PBS group.
圖8各組小鼠腦組織p85、p110及p-Akt蛋白水平的比較
BMSCs移植治療神經(jīng)系統(tǒng)疾病可能是由于它釋放的細(xì)胞因子、趨化因子以及神經(jīng)營(yíng)養(yǎng)因子等通過(guò)對(duì)機(jī)體免疫反應(yīng)的調(diào)控實(shí)現(xiàn)的[11]。體外研究已表明,BMSCs受炎癥信號(hào)驅(qū)動(dòng),可以通過(guò)釋放趨化因子CX3CL1對(duì)小膠質(zhì)細(xì)胞的穩(wěn)態(tài)進(jìn)行調(diào)控,進(jìn)而促使小膠質(zhì)細(xì)胞發(fā)揮有益的神經(jīng)保護(hù)作用[7-8]。然而B(niǎo)MSCs移植入AD模型小鼠腦內(nèi)對(duì)CX3CL1分泌的影響尚未見(jiàn)報(bào)道,但闡明這一問(wèn)題對(duì)于了解BMSCs治療AD的機(jī)制又非常有意義,故本實(shí)驗(yàn)對(duì)BMSCs移植后小鼠腦內(nèi)CX3CL1的表達(dá)進(jìn)行了檢測(cè)。結(jié)果表明,無(wú)論是在皮質(zhì)區(qū)還是海馬區(qū),BMSCs移植均可以顯著上調(diào)APP/PS1小鼠腦內(nèi)的CX3CL1的表達(dá)。研究表明,mRNA與蛋白質(zhì)之間并不是嚴(yán)格的線性關(guān)系,而是內(nèi)在的、復(fù)雜的依賴關(guān)系,轉(zhuǎn)錄本自身的穩(wěn)定性和被翻譯的效率及翻譯產(chǎn)物的穩(wěn)定性都會(huì)影響最終產(chǎn)物的表達(dá)量,且基因表達(dá)的調(diào)控層次很多,轉(zhuǎn)錄水平的調(diào)控只是一個(gè)環(huán)節(jié),轉(zhuǎn)錄后調(diào)控、翻譯以及翻譯后修飾都會(huì)影響最后的蛋白量[12]。因此,本研究中皮質(zhì)區(qū)CX3CL1在mRNA水平未見(jiàn)統(tǒng)計(jì)學(xué)顯著性差異,蛋白水平檢測(cè)可見(jiàn)差異有統(tǒng)計(jì)學(xué)顯著性,這一情況是可以解釋的。相對(duì)于AD模型小鼠,BMSCs移植對(duì)WT小鼠腦內(nèi)CX3CL1的表達(dá)影響并不明顯,這表明BMSCs對(duì)CX3CL1的調(diào)控作用可能受其所在微環(huán)境的影響。
小膠質(zhì)細(xì)胞作為中樞神經(jīng)系統(tǒng)常駐免疫活性細(xì)胞,參與了AD腦內(nèi)的神經(jīng)炎癥、神經(jīng)保護(hù)以及Aβ清除等病理生理過(guò)程,而小膠質(zhì)細(xì)胞究竟是發(fā)揮神經(jīng)保護(hù)還是神經(jīng)損傷作用主要取決于腦內(nèi)微環(huán)境的多因素調(diào)控,神經(jīng)趨化因子CX3CL1與其受體CX3CR1的相互作用是小膠質(zhì)細(xì)胞的重要調(diào)控因素之一[13]。趨化因子CX3CL1在腦內(nèi)主要表達(dá)于神經(jīng)元,分為可溶型和膜結(jié)合型,兩種形態(tài)的趨化分子均只與主要表達(dá)于小膠質(zhì)細(xì)胞上的唯一受體CX3CR1結(jié)合[6],進(jìn)而對(duì)中樞神經(jīng)系統(tǒng)的穩(wěn)態(tài)維持及疾病發(fā)生發(fā)展起作用。Hoshiko等[14]的研究表明,CX3CL1-CX3CR1相互作用可以促進(jìn)正常大腦內(nèi)神經(jīng)元存活、突觸成熟、突觸傳導(dǎo)以及成年海馬神經(jīng)發(fā)生。正常情況下,中樞神經(jīng)系統(tǒng)內(nèi)的小膠質(zhì)細(xì)胞處于相對(duì)靜止?fàn)顟B(tài),當(dāng)發(fā)生腦損傷和炎癥時(shí)小膠質(zhì)細(xì)胞會(huì)被激活,激活的小膠質(zhì)細(xì)胞可分為“經(jīng)典激活型”(M1型)和“替代激活型”(M2型)[15]。其中M1型小膠質(zhì)細(xì)胞與多種促炎因子的產(chǎn)生和釋放有關(guān),而M2型小膠質(zhì)細(xì)胞則與抗炎因子產(chǎn)生和組織修復(fù)相關(guān)[16]。Cho等[17]的研究表明BMSCs可以通過(guò)增加CX3CR1的釋放而誘導(dǎo)小膠質(zhì)細(xì)胞從有害型向保護(hù)型轉(zhuǎn)變。小膠質(zhì)細(xì)胞與腦內(nèi)的炎癥反應(yīng)密切相關(guān),LPS作為致炎因子對(duì)小膠質(zhì)細(xì)胞的激活作用也已被證實(shí)[7, 15, 18]。近來(lái)的研究還表明,CX3CL1可以有效阻斷LPS和干擾素γ誘導(dǎo)激活的小膠質(zhì)細(xì)胞所釋放的IL-1β和TNF-α,它可能是通過(guò)PI3K通路發(fā)揮作用的[19]。PI3K/Akt通路參與細(xì)胞內(nèi)多種細(xì)胞途徑,CX3CL1與其受體CX3CR1結(jié)合可以快速激活小膠質(zhì)細(xì)胞內(nèi)的Akt活化,這一作用還具有時(shí)間和劑量依賴性,外源性CX3CL1也可以通過(guò)調(diào)控PI3K通路維持老年大鼠腦內(nèi)小膠質(zhì)細(xì)胞的穩(wěn)態(tài)[20]。本研究發(fā)現(xiàn),BMSCs移植后APP/PS1小鼠腦內(nèi)小膠質(zhì)細(xì)胞的激活增加。同時(shí)BMSCs移植處理的APP/PS1小鼠腦內(nèi)M2型小膠質(zhì)細(xì)胞表面標(biāo)志物YM1的表達(dá)明顯增加;且BMSCs移植還提高了APP/PS1小鼠腦內(nèi)PI3K調(diào)節(jié)亞基p85、催化亞基p110的蛋白水平和Akt蛋白的磷酸化水平。這提示CX3CL1上調(diào)可以通過(guò)使小膠質(zhì)細(xì)胞轉(zhuǎn)向保護(hù)型來(lái)降低APP/PS1小鼠腦內(nèi)炎癥因子TNF-α和IL-1β的分泌,增加神經(jīng)保護(hù)因子CX3CR1和Nurr1的表達(dá);其分子機(jī)制可能是通過(guò)對(duì)PI3K/Akt通路的調(diào)控實(shí)現(xiàn)的。本研究中海馬區(qū)各個(gè)因子的變化較皮質(zhì)區(qū)改變明顯,這可能是由于海馬是AD發(fā)病時(shí)最先受累的區(qū)域[21]。需要說(shuō)明的是,BMSCs移植入WT小鼠上調(diào)了其皮質(zhì)區(qū)TNF-α及IL-1β的表達(dá),考慮可能為正常腦組織的排異反應(yīng),具體機(jī)制有待進(jìn)一步研究。
神經(jīng)系統(tǒng)內(nèi)突觸功能障礙時(shí),將導(dǎo)致神經(jīng)細(xì)胞間無(wú)法進(jìn)行有效的信息傳遞。CX3CL1是有效誘發(fā)興奮性突觸傳遞的神經(jīng)調(diào)節(jié)劑,在突觸可塑性和神經(jīng)保護(hù)中起重要作用[22]。本研究也表明,BMSCs移植上調(diào)CX3CL1可以促進(jìn)APP/PS1小鼠腦內(nèi)突觸相關(guān)蛋白PSD95的表達(dá)。CX3CL1-CX3CR1對(duì)突觸塑形的調(diào)控和認(rèn)知功能障礙的改善可能是通過(guò)調(diào)控長(zhǎng)時(shí)程增強(qiáng)實(shí)現(xiàn)的[23]。Aβ沉積形成老年斑是AD的重要病理特征之一,Aβ單體由APP受水解酶剪切而來(lái),細(xì)胞周圍過(guò)多的Aβ沉積將通過(guò)誘導(dǎo)氧化應(yīng)激、內(nèi)質(zhì)網(wǎng)應(yīng)激和細(xì)胞鈣調(diào)節(jié)紊亂導(dǎo)致一系列神經(jīng)毒性級(jí)聯(lián)反應(yīng)[1]。腦內(nèi)Aβ主要有兩種基本清除方式,一種是由小膠質(zhì)細(xì)胞表達(dá)的清道夫受體和補(bǔ)體受體等介導(dǎo),另一種是通過(guò)Aβ降解酶如IDE和MMP等進(jìn)行加工[24]。本研究中,BMSCs移植治療后APP/PS1小鼠腦內(nèi)Aβ42蛋白水平降低,Aβ清除相關(guān)酶IDE和MMP9表達(dá)升高,這說(shuō)明,BMSCs移植可以減輕Aβ沉積及促進(jìn)Aβ清除酶表達(dá)。盡管有研究認(rèn)為敲除CX3CR1基因可以減輕APP小鼠腦內(nèi)的Aβ沉積[25],但是BMSCs移植入腦后它與宿主之間的相互作用是十分復(fù)雜的,且本研究使用的模型小鼠處于AD早期,小鼠種屬不同、發(fā)病階段不同等都可能是導(dǎo)致差異性的原因。
綜上所述,本研究進(jìn)一步證實(shí)了BMSCs移植治療AD的作用,并對(duì)BMSCs移植治療AD可能的分子機(jī)制進(jìn)行了探討,發(fā)現(xiàn)BMSCs移植上調(diào)APP/PS1小鼠腦內(nèi)趨化因子CX3CL1及受體CX3CR1的表達(dá),后可能通過(guò)激活PI3K/Akt通路調(diào)控小膠質(zhì)細(xì)胞轉(zhuǎn)向具有神經(jīng)保護(hù)作用的M2型,進(jìn)而發(fā)揮減輕神經(jīng)炎癥、促進(jìn)神經(jīng)保護(hù)、改善AD小鼠學(xué)習(xí)記憶能力的作用。這些發(fā)現(xiàn)可以為探討干細(xì)胞移植治療AD提供理論基礎(chǔ)和實(shí)驗(yàn)依據(jù)。
[1] Ballard C, Gauthier S, Corbett A, et al. Alzheimer’s di-sease[J]. Lancet, 2011, 377(9770):1019-1031.
[2] McGough A, Pope B, Chiu W, et al. Cofilin changes the twist of F-actin: implications for actin filament dynamics and cellular function[J]. J Cell Biol, 1997, 138(4):771-781.
[3] Pluchino S, Cossetti C. How stem cells speak with host immune cells in inflammatory brain diseases[J]. Glia, 2013, 61(9):1379-1401.
[4] Uccelli A, Pistoia V, Moretta L. Mesenchymal stem cells: a new strategy for immunosuppression?[J]. Trends Immunol, 2007, 28(5):219-226.
[5] Akiyama Y, Radtke C, Kocsis JD. Remyelination of the rat spinal cord by transplantation of identified bone marrow stromal cells[J]. J Neurosci, 2002, 22(15):6623-6630.
[6] Hughes PM, Botham MS, Frentzel S, et al. Expression of fractalkine (CX3CL1) and its receptor, CX3CR1, during acute and chronic inflammation in the rodent CNS[J]. Glia, 2002, 37(4): 314-327.
[7] Giunti D, Parodi B, Usai C, et al.Mesenchymal stem cells shape microglia effector functions through the release of CX3CL1[J]. Stem Cells, 2012, 30(9):2044-2053.
[8] 黃禮彬, 徐國(guó)興, 謝茂松, 等. 體外骨髓間充質(zhì)干細(xì)胞對(duì)脂多糖活化的視網(wǎng)膜小膠質(zhì)細(xì)胞生物學(xué)功能的影響[J]. 中華實(shí)驗(yàn)眼科雜志, 2016, 34(9):773-779.
[9] Park D, Yang YH, Bae DK, et al. Improvement of cognitive function and physical activity of aging mice by human neural stem cells over-expressing choline acetyltransferase[J]. Neurobiol Aging, 2013, 34(11):2639-2646.
[10] Lee JK, Jin HK, Endo S, et al. Intracerebral transplantation of bone marrow-derived mesenchymal stem cells reduces amyloid-beta deposition and rescues memory deficits in Alzheimer’s disease mice by modulation of immune responses[J]. Stem Cells, 2010, 28(2):329-343.
[11] Lee JK, Schuchman EH, Jin HK, et al. Soluble CCL5 derived from bone marrow-derived mesenchymal stem cells and activated by amyloid β ameliorates Alzheimer’s di-sease in mice by recruiting bone marrow-induced microglia immune responses[J]. Stem cells, 2012, 30(7):1544-1555.
[12] Mathews MB, Sonenberg N, Hershey JW. Translational control in biology and medicine[M]. New York: Cold Spring Harbor Laboratory Press, 2007.
[13] Lauro C, Catalano M, Trettel F, et al.Fractalkine in the nervous system: neuroprotective or neurotoxic molecule?[J]. Ann N Y Acad Sci, 2015, 1351:141-148.
[14] Hoshiko M, Arnoux I, Avignone E, et al. Deficiency of the microglial receptor CX3CR1 impairs postnatal functio-nal development of thalamocortical synapses in the barrel cortex[J]. J Neurosci, 2012, 32(43):15106-15111.
[15] Hanisch UK, Kettenmann H. Microglia: active sensor and versatile effector cells in the normal and pathologic brain[J]. Nat Neurosci, 2007, 10(11):1387-1394.
[16] Liu Y, Hao W, Letiembre M, et al. Suppression of microglial inflammatory activity by myelin phagocytosis: role of p47-PHOX-mediated generation of reactive oxygen species[J]. J Neurosci, 2006, 26(50):12904-12913.
[17] Cho IH, Hong J, Suh EC, et al. Role of microglial IKKβ in kainic acid-induced hippocampal neuronal cell death[J]. Brain, 2008, 131(Pt 11):3019-3033.
[18] 程小鳳, 趙佳儀, 袁 羽, 等. 腹腔注射LPS建立認(rèn)知功能障礙相關(guān)的中樞神經(jīng)系統(tǒng)免疫炎癥小鼠模型[J]. 中國(guó)病理生理雜志, 2017, 33(5):890-895.
[19] Limatola C, Ransohoff RM. Modulating neurotoxicity through CX3CL1/CX3CR1 signaling[J]. Front Cell Neurosci, 2014, 8:229.
[20] Lyons A, Lynch AM, Downer EJ, et al. Fractalkine-induced activation of the phosphatidylinositol-3 kinase pathway attentuates microglial activationinvivoandinvitro[J]. J Neurochem, 2009, 110(5):1547-1556.
[21] Mu Y, Gage FH. Adult hippocampal neurogenesis and its role in Alzheimer’s disease[J]. Mol Neurodegener, 2011, 6:85.
[22] Bachstetter AD, Morganti JM, Jernberg J, et al. Fractal-kine and CX3CR1 regulate hippocampal neurogenesis in adult and aged rats[J]. Neurobiol Aging, 2011, 32(11):2030-2044.
[23] Maggi L, Trettel F, Scianni M, et al. LTP impairment by fractalkine/CX3CL1 in mouse hippocampus is mediated through the activity of adenosine receptor type 3 (A3R)[J]. J Neuroimmunol, 2009, 215(1-2):36-42.
[24] Doens D, Fernández PL. Microglia receptors and their implications in the response to amyloid β for Alzheimer’s disease pathogenesis [J]. J Neuroinflammation, 2014, 11:48.
[25] Lee S, Varvel NH, Konerth ME, et al. CX3CR1 deficiency alters microglial activation and reduces β-amyloid deposition in two Alzheimer’s disease mouse models[J]. Am J Pathol, 2010, 177(5):2549-2562.
(責(zé)任編輯: 陳妙玲, 羅 森)
Molecular mechanism of BMSC intracerebral transplantation in improving learning and memory abilities of AD mice
FAN Chong-zhu, LI An, HUANG Cui-qin, GAN Dan-hui, LI Qin, ZHAO Jia-yi, WANG Zhen, ZHU Li-hong, LU Da-xiang
(DepartmentofPathophysiology,InstituteofBrainResearch,KeyLaboratoryofStateAdministrationofTraditionalChineseMedicine,SchoolofMedicine,JinanUniversity,Guangzhou510632,China.E-mail:ldx@jnu.edu.cn)
AIM: To investigate the effect of bone marrow mesenchymal stem cell (BMSC) transplantation on learning and memory abilities and pathological changes of Alzheimer disease (AD) mice and the molecular mechanisms.METHODSC57/BL6 wild-type (WT) and transgenic (Tg) mice were randomly divided into 4 groups: WT/PBS group, WT/BMSCs group, Tg/PBS group and Tg/BMSCs group. The mice were administered with PBS or BMSCs via intracerebroventricular injection. Spatial learning and memory abilities of the mice were evaluated by Morris water maze test on the 3rd day after surgery. Real-time PCR was applied to detect the mRNA expression of CX3C chemokine ligand 1 (CX3CL1), CX3C chemokine receptor 1 (CX3CR1), IL-1β, TNF-α, Nurr1, YM1, insulin-degrading enzyme (IDE) and matrix metalloproteinase 9 (MMP9). The protein levels of CX3CL1 and Aβ42 were measured by ELISA. Western blot was used to detect the protein expression of postsynaptic density protein 95 (PSD95) and synaptophysin (SYP).RESULTSThe transplanted BMSCs were observed near the hippocampus ofAPP/PS1 mice on the 10th postoperative day. The escape latency of the mice in Tg/PBS group was significantly longer than that in the WT/PBS mice (P<0.05). Compared with Tg/PBS group, the escape latency of Tg/BMSCs group was significantly shorter (P<0.05), and the mRNA and protein levels of CX3CL1 in Tg/BMSCs group were significantly higher than those in Tg/PBS group (P<0.01). The results of immunohistofluorescence staining showed that BMSC transplantation promoted the activation of microglia in the brain of WT and Tg mice. The mRNA expression of YM1 was up-regulated in WT/BMSCs group and Tg/BMSCs group (P<0.05). Compared with WT/PBS mice, the mRNA expression of TNF-α in the cortex and hippocampus of Tg/PBS group was significantly increased (P<0.05), and the mRNA expression of Nurr1 in the cortex was significantly decreased (P<0.01). Meanwhile, the mRNA expression of TNF-α in the cortex of Tg/BMSCs mice was decreased (P<0.01) and the mRNA expression of CX3CR1 and Nurr1 was up-regulated compared with Tg/PBS group (P<0.05). The results of Western blot showed that the protein levels of PSD95, p85, p110 and p-Akt in Tg/BMSCs group were significantly higher than those in Tg/PBS group (P<0.05). Finally, BMSC transplantation reduced the protein level of Aβ42 inAPP/PS1 mice (P<0.05), and increased the mRNA expression of IDE and MMP9 in the hippocampus (P<0.05).CONCLUSIONBMSC transplantation modulates neuroinflammatory responses and promotes neuroprotective factor and synaptic protein expression, thus improving the learning and memory abilities in theAPP/PS1 mice, which may be achieved by up-regulating the expression of CX3CL1.
Bone marrow mesenchymal stem cells; CX3C chemokine ligand 1; Alzheimer disease; Neuroinflammation; Neuroprotection
1000- 4718(2017)11- 1921- 11
2017- 08- 29
2017- 10- 24
國(guó)家自然科學(xué)基金資助項(xiàng)目(No. 81471236; No. 81371442)
△通訊作者 Tel: 020-85228071; E-mail: ldx@jnu.edu.cn
▲并列第1作者
R741; R363
A
10.3969/j.issn.1000- 4718.2017.11.001