張建新, 時冉冉
(1許昌學(xué)院, 河南 許昌 461000; 2漯河醫(yī)學(xué)高等??茖W(xué)校, 河南 漯河 462002)
基于骨肉瘤高表達(dá)抗原PBF CTL表位改造及鑒定*
張建新1, 時冉冉2△
(1許昌學(xué)院, 河南 許昌 461000;2漯河醫(yī)學(xué)高等專科學(xué)校, 河南 漯河 462002)
目的觀察骨肉瘤高表達(dá)抗原乳頭瘤病毒結(jié)合因子(PBF)的改造表位是否有HLA-A2限制性抗腫瘤能力,開發(fā)基于骨肉瘤的多肽免疫治療。方法首先運用RT-PCR和Western blot方法檢測PBF在骨肉瘤細(xì)胞系U2OS和Saos-2的表達(dá)情況。然后通過NetCTL 1.2、SYFPEITHI和IEDB軟件預(yù)測打分來選取PBF的HLA-A2限制性表位。替換PBF抗原錨定位點氨基酸獲得改造肽。候選表位肽的合成方法是標(biāo)準(zhǔn)的Fmoc化學(xué)合成法,結(jié)合力實驗用于檢測候選表位與T2A2細(xì)胞表面HLA-A2分子的結(jié)合能力,ELISPOT實驗檢測候選表位肽誘導(dǎo)細(xì)胞毒性T淋巴細(xì)胞(CTL)分泌干擾素γ(IFN-γ)的能力,乳酸脫氧酶(LDH)釋放實驗和羧基熒光素琥珀酰亞胺脂(CFSE)細(xì)胞毒實驗檢測候選肽誘導(dǎo)CTL的能力。結(jié)果PBF在骨肉瘤細(xì)胞系U2OS和Saos-2均有表達(dá),候選肽P75-1Y2L、P412-1Y、P416-1Y2L9V、P107-1Y和P435-1Y2L具有較好的結(jié)合力,且改造肽與HLA-A2的結(jié)合力高于原肽。ELISPOT實驗結(jié)果顯示表位肽P412、P412-1Y、P416、P416-1Y2L9V和P435-1Y2L誘導(dǎo)的CTL具有分泌IFN-γ的能力;P412-1Y和P416-1Y2L9V誘導(dǎo)特異性T細(xì)胞免疫分泌的IFN-γ略高于原肽。LDH釋放實驗和CFSE細(xì)胞毒實驗結(jié)果顯示表位P412、P412-1Y、P416和P416-1Y2L9V對U2OS細(xì)胞均有一定的殺傷作用,P412-1Y和P416-1Y2L9V特異性CTLs對U2OS細(xì)胞殺傷率高于原肽特異性CTLs。結(jié)論PBF抗原改造表位P412-1Y和P416-1Y2L9V與天然表位P412和P416相比有更高的HLA-A2分子親和力,保留了原有的免疫原性,并且改造肽抗腫瘤免疫效應(yīng)強(qiáng)于天然表位。P412-1Y和P416-1Y2L9V是優(yōu)秀的PBF抗原的HLA-A*0201限制性CTL候選表位,可以成為新的抗腫瘤多肽免疫治療疫苗的候選表位。
乳頭瘤病毒結(jié)合因子; 表位; 細(xì)胞毒性T淋巴細(xì)胞; 骨肉瘤
骨肉瘤是骨科最常見的原發(fā)性惡性腫瘤。1970年前,骨肉瘤患者的生存率低于20%。輔助化療和手術(shù)治療準(zhǔn)則的建立,使患者五年存活率提高為60%~70%[1-2]。 這些進(jìn)展掩蓋了近年來的輔助免疫治療,盡管使用自身腫瘤疫苗的輔助免疫治療具有一定的治療功效[3-5], 但是,骨肉瘤患者的存活率在過去10年已經(jīng)進(jìn)入停滯期[6-7],這又重新激起了免疫治療方法的開展[8-9]。乳頭瘤病毒結(jié)合因子(pa-pillomavirus-binding factor,PBF)被鑒定為調(diào)節(jié)人乳頭瘤病毒8型基因組上的啟動子活性的轉(zhuǎn)錄因子[10]。PBF是由自體細(xì)胞毒性T淋巴細(xì)胞(cytoto-xic T-lymphocytes,CTL)克隆識別的骨肉瘤相關(guān)抗原[11]。 免疫組織化學(xué)分析顯示,92%的骨肉瘤活檢標(biāo)本表達(dá)PBF。 此外,PBF陽性骨肉瘤具有比PBF陰性表達(dá)更差的預(yù)后[12]。 通常,常規(guī)骨肉瘤是間充質(zhì)來源的惡性腫瘤,沒有特定的病因,例如病毒感染。 PBF不僅在人乳頭瘤病毒基因組的轉(zhuǎn)錄中具有某些功能,而且在骨肉瘤[13-14]、先天免疫[15]和脂肪形成[16]的細(xì)胞增殖和凋亡中具有某些功能。本次研究使用NetCTL 1.2、SYFPEITHI和IEDB生物信息學(xué)軟件進(jìn)行綜合預(yù)測,篩選出綜合打分較高的表位,并對優(yōu)勢表位進(jìn)行適當(dāng)替換,通過進(jìn)一步的實驗分析,鑒定篩選出PBF的HLA-A*0201限制性CTL表位[17-19],為未來構(gòu)建多表位疫苗和重組蛋白融合疫苗打下基礎(chǔ)。
1材料
T2A2細(xì)胞、U2OS細(xì)胞(HLA-A2+)和Saos-2細(xì)胞(HLA-A2-)由漯河醫(yī)學(xué)高等??茖W(xué)校分子醫(yī)學(xué)實驗室常規(guī)保存,采用37 ℃、5% CO2、飽和濕度培養(yǎng)條件下常規(guī)培養(yǎng)。外周血單個核細(xì)胞(peripheral blood mononuclear cells,PBMCs)由HLA-A2+健康供者捐贈。HLA-A2+外周血健康供者來自課題組尋找的健康供者。
2方法
2.1PBF 在腫瘤細(xì)胞中的表達(dá) 采用RT-PCR和Western blot法檢測PBF在骨肉瘤細(xì)胞系U2OS和Saos-2中的表達(dá)情況。參照說明書提取總RNA,反轉(zhuǎn)錄得到cDNA,以cDNA為模板行PCR。擴(kuò)增條件為: 95 ℃預(yù)變性30 s; 95 ℃變性30 s, 63 ℃退火45 s, 72 ℃延伸45 s,共30個循環(huán); 72 ℃終止延伸5 min。將PCR產(chǎn)物行1%瓊脂糖凝膠電泳,采用凝膠成像系統(tǒng)觀察結(jié)果,ImageJ軟件測定各條帶灰度值。PBF的上游引物序列為 5’-TGTGCACAGGTGTCTTTGGT-3’,下游引物序列為5’-CCTGAGCGAAGTTCCCATGT-3’,產(chǎn)物大小278 bp。GAPDH的上游引物序列為5’-GAAGGTGAA GGTCGGAGTC-3’, 下游序列引物為5’-GAAGATGGTGATGGGATTTC-3’,產(chǎn)物大小為226 bp。裂解細(xì)胞提取總蛋白,BCA法定量,行SDS-PAGE并轉(zhuǎn)移PVDF膜。封閉液封閉1 h,加入已稀釋的 I 抗,4 ℃孵育過夜,TBST洗膜3次,加入 II 抗,室溫下孵育1 h, TBST洗膜3次,加入ECL進(jìn)行發(fā)光反應(yīng)。用ImageJ軟件測定各條帶灰度值。
2.2HLA-A*0201限制性CTL表位肽的預(yù)測 結(jié)合NetCTL 1.2(http://www.cbs.dtu.dk/services/NetCTL/)、SYFPEITHI(http://www.syfpeithi. de/ bin/MHCServer.dll/EpitopePrediction.htm)和IEDB(http://tools.iedb.org/main/tcell/)軟件對PBF氨基酸序列的預(yù)測打分,分別打開這3種預(yù)測軟件的主頁,進(jìn)入 CTL 表位預(yù)測界面,本次研究以A2超型為主,參數(shù)設(shè)定為CTL表位限制性 MHC類型——HLA-A*0201。預(yù)測抗原肽長度nonamers (9 aa)。根據(jù)各個預(yù)測軟件所推選的前30個優(yōu)勢表位進(jìn)行綜合選擇,選出在各種軟件打分較好的HLA-A*0201限制性表位。
2.3HLA-A*0201限制性CTL表位肽的合成、純化、分析及質(zhì)譜鑒定 候選表位肽由上海生工生物工程有限公司合成,經(jīng)HPLC分析純化后,其純度大于95%,質(zhì)譜分析其相對分子質(zhì)量符合理論值。
2.4表位肽與HLA-A2分子結(jié)合力實驗 收集T2A2細(xì)胞,用無血清RPMI-1640培養(yǎng)基洗3次,調(diào)整細(xì)胞濃度至1×109/L,鋪于24孔板中,每孔1 mL,每實驗孔加入待測肽50 mg/L,β2-M 2.5 mg/L,37 ℃、5% CO2共孵育18 h后,冷PBA洗滌3次,加入500 μL稀釋度為1∶100的 I 抗(鼠抗人β2-M),4 ℃避光靜置40 min。之后冷PBA洗滌3次,加入50 μL稀釋度為1∶50的 II 抗(FITC標(biāo)記的羊抗鼠IgG溶液),4 ℃靜置40 min,PBA洗滌1次后上流式細(xì)胞儀檢測。其結(jié)果用熒光指數(shù)(fluorescence index, FI)表示,F(xiàn)I=(表位肽平均熒光強(qiáng)度-背景平均熒光強(qiáng)度)/背景平均熒光強(qiáng)度。FI>1.0表示高等結(jié)合力,1.0>FI>0.5表示中等結(jié)合力,F(xiàn)I<0.5表示低結(jié)合力[20]。
2.5CTL的體外誘導(dǎo) 抽取HLA-A2+健康供者的外周血,將外周血加入含肝素鈉的離心管中,經(jīng)常規(guī)聚蔗糖-泛影葡胺分層液梯度離心,獲取PBMCs,用含10%胎牛血清的IMDM培養(yǎng)基調(diào)整細(xì)胞濃度為1.5×109/L。第2天分別加入10 mg/L的候選肽共培養(yǎng),第3天加入5×104U/L的rIL-2繼續(xù)培養(yǎng)。每周收集細(xì)胞,1 000 r/min離心10 min,除去上清,加入新鮮的10%胎牛血清的IMDM培養(yǎng)基,同時加入上述條件的候選肽和rIL-2。刺激3輪后于最后一次刺激的第3天收集細(xì)胞。調(diào)整細(xì)胞濃度作為效應(yīng)細(xì)胞,用無血清IMDM培養(yǎng)基調(diào)整細(xì)胞濃度作為靶細(xì)胞[21]。
2.6干擾素γ(Interferon-γ,IFN-γ)分泌水平檢測 酶聯(lián)免疫斑點實驗(enzyme-linked immunospot assay,ELISPOT)試劑盒購自達(dá)科為生物技術(shù)有限公司。取出板條,加200 μL無血清的IMDM培養(yǎng)基進(jìn)行封閉,靜置10 min;誘導(dǎo)的CTL作為效應(yīng)細(xì)胞,荷肽的T2A2作為刺激細(xì)胞,細(xì)胞濃度均調(diào)整為2×109/L;設(shè)立對照孔和實驗孔,37 ℃、5% CO2孵育18 h;傾盡孔中培養(yǎng)基,每孔加入200 μL無菌的去離子水,4 ℃ 裂解細(xì)胞10 min;傾盡孔內(nèi)液體,加入200 μL 1×Washing Buffer進(jìn)行洗滌,洗滌6次,每次停留60 s;加入 100 μL生物素標(biāo)記的抗體,37 ℃ 孵育1 h;傾盡孔內(nèi)液體,加入200 μL 1×Washing Buffer進(jìn)行洗滌,洗滌方法同上,在吸水紙上拍干;加入100 μL酶聯(lián)親和素,37 ℃ 孵育1 h;每孔加入200 μL 1×Washing Buffer進(jìn)行洗滌,洗滌方法同上;加入100 μL現(xiàn)配的AEC顯色液,25 ℃避光靜置30 min;結(jié)束后置于通風(fēng)處,室溫靜置干燥;結(jié)果用 ELISPOT 圖像分析儀計數(shù) 96 孔板中每孔的斑點數(shù)[22]。
2.7乳酸脫氫酶(lactate dehydrogenase,LDH)釋放實驗檢測CTL的細(xì)胞毒性 調(diào)整CTL濃度為5×109/L;調(diào)整靶細(xì)胞U2OS細(xì)胞濃度為1×108/L;按50∶1、25∶1和12.5∶1的不同效靶比(effector/target,E/T)鋪于96孔板中,同時設(shè)立效應(yīng)細(xì)胞自發(fā)釋放組、靶細(xì)胞自發(fā)釋放組、靶細(xì)胞最大釋放組、體積校正組和背景對照組,每孔終體積為100 μL。37 ℃、5% CO2培養(yǎng)4 h。于孵育結(jié)束前45 min在靶細(xì)胞最大釋放組及體積校正組中加入10 μL裂解液,1 000 r/min離心4 min,轉(zhuǎn)移50 μL上清至另一干凈96孔板中,每孔加入50 μL底物混合液,室溫避光孵育30 min;每孔再加入50 μL終止液。用酶標(biāo)儀檢測其在490 nm波長處的吸光度(A)。殺傷率(%)=(實驗孔值-效應(yīng)細(xì)胞自發(fā)釋放值-CTL自發(fā)釋放值)/(靶細(xì)胞值-效應(yīng)細(xì)胞自發(fā)釋放值)×100%[23]。
2.8羧基熒光素琥珀酰亞胺酯(carboxyfluorescein succinimidyl ester,CFSE)熒光染色檢測CTL的細(xì)胞毒性 離心收集靶細(xì)胞,并將細(xì)胞重懸于含1% 胎牛血清的PBS中,并將細(xì)胞濃度調(diào)節(jié)至1×109/L。按下法制備致敏靶細(xì)胞:每1 mL細(xì)胞懸浮液加入0.5 μL 5 mmol/L CFSE,室溫光照孵育4 min;對照靶細(xì)胞:每1 mL細(xì)胞懸液中加入0.5 μL 100 μmol/L CFSE,室溫光照孵育4 min。將細(xì)胞用5% FCS-PBS洗滌1次,離心并除去上清液,重懸于無血清IMDM培養(yǎng)基中。將效應(yīng)細(xì)胞在無血清IMDM培養(yǎng)基中洗滌1次,并以(1.25~5)×109/L的濃度重懸于無血清IMDM培養(yǎng)基中。將效應(yīng)細(xì)胞(分別為12.5∶1、25∶1和50∶1)與致敏的靶細(xì)胞在離心管中混合,靶細(xì)胞數(shù)為2×104,37 ℃溫育4 h后,用含有1% 胎牛血清和0.1%疊氮化鈉的PBS(FACS緩沖液)處理相同E/T致敏的靶細(xì)胞組和對照靶細(xì)胞組,并用FACS緩沖液洗滌。離心,重懸在4%多聚甲醛的PBS溶液中,流式細(xì)胞儀檢測。殺傷率(%)=(對照樣品中致敏靶細(xì)胞的數(shù)量-測試樣品中致敏靶細(xì)胞的數(shù)量)/對照樣品中致敏靶細(xì)胞的數(shù)量×100%。
3統(tǒng)計學(xué)處理
實驗數(shù)據(jù)用均數(shù)±標(biāo)準(zhǔn)差(mean±SD)表示,多組間均數(shù)比較采用單因素方差分析, 以P<0.05為差異有統(tǒng)計學(xué)意義。統(tǒng)計圖均由GraphPad Prism 5.0軟件繪制。
1PBF在骨肉瘤細(xì)胞系中的表達(dá)
分別使用RT-PCR以及Western blot的方法檢測PBF在骨肉瘤細(xì)胞系中的表達(dá),從圖1中可以看出,PBF在U2OS和Saos-2骨肉瘤細(xì)胞系中均有表達(dá)。
Figure 1. The mRNA (A) and protein (B) expression of PBF in the osteosarcoma cell lines determined by RT-PCR and Western blot.
圖1骨肉瘤細(xì)胞系中PBF的表達(dá)
2PBFHLA-A2限制性CTL表位的預(yù)測結(jié)果
依據(jù)NetCTL 1.2、SYFPEITHI和IEDB軟件的結(jié)果,選取在各個預(yù)測軟件中分值排名靠前的表位肽,根據(jù)這3個預(yù)測軟件進(jìn)行綜合打分,篩選出分值在各個軟件中打分較好的CTL表位肽,對篩選的表位肽進(jìn)行氨基酸替換,軟件預(yù)測的改造表位的打分情況見表1。
表1PBFHLA-A2限制性CTL表位的預(yù)測結(jié)果
Table 1. Prediction scores of the HLA-A2 restricted epitope peptides derived from PBF
PeptideSequence ScoreIEDBNetCTLSYFPEITHIP75?1Y2LYLPGQKVYV0.51.211326P169MAAMVLTSL0.90.837222P412ALPSFQIPV0.11.362923P412?1YYLPSFQIPV0.21.499723P107WLLEQKLQV0.41.054725P107?1YYLLEQKLQV0.31.350427P416FQIPVSPHI0.20.92614P416?1Y2L9VYLIPVSPHV0.21.418027P289KVLRSIVGI0.70.936222P435SAACSLSPV0.70.900722P435?1Y2LYLACSLSPV0.21.476228HBcAg18?27FLPSDFFPSV0.20.801024
3表位肽/HLA-A2分子結(jié)合力實驗結(jié)果
P75-1Y2L、P412-1Y、P416-1Y2L9V、P107-1Y和P435-1Y2L具有較好的HLA-A2結(jié)合力(FI>1);經(jīng)過改造后的表位肽明顯提高與MHC分子結(jié)合能力,見表2。
表2候選肽與HLA-A*0201分子結(jié)合力結(jié)果
Table 2. The data of the HLA-A*0201-binding affinity of the candidate peptides derived from PBF
PeptideESI?MS[M+H]+CalculatedObservedFIP75?1Y2L1066.21066.41.32P412971.2972.60.62P412?1Y1063.21062.21.46P107?1Y1133.31134.30.89P4161037.21037.80.86P416?1Y2L9V1024.21024.61.54P1071156.41156.80.67P107?1Y1133.31134.31.68P435833.9834.90.58P435?1Y2L952.1952.61.42HBcAg18?271155.31156.31.66
FI = [mean fluorescence intensity (MFI) of the peptide-MFI background]/MFI background.4IFN-γ分泌水平的檢測
根據(jù)結(jié)合力的實驗結(jié)果,我們選擇了高結(jié)合力的多肽進(jìn)行實驗,結(jié)果顯示: P412、P412-1Y、P416、P416-1Y2L9V和P435-1Y2L多肽疫苗能檢測到特異性T細(xì)胞免疫,能分泌較多的IFN-γ;P412-1Y、P416-1Y2L9V和P435-1Y2L誘導(dǎo)特異性T細(xì)胞免疫分泌的IFN-γ略高于原肽,見圖2。
Figure 2. ELISPOT assay to measure IFN-γ release by CTLs induced from PBMCs of healthy donors. CTLs induced by PBS and irrelevant peptide HBcAg18-27were taken as negative control. Mean±SD.n=3.**P<0.01vsPBS group;△P<0.05vsP412 group;▲P<0.05vsP416 group.
圖2ELISPOT法檢測PBF候選表位肽特異性CTL分泌IFN-γ的能力
5LDH法檢測細(xì)胞毒性
根據(jù)IFN-γ分泌水平結(jié)果,我們將有效果的P412、P412-1Y、P416和P416-1Y2L9V做進(jìn)一步的免疫活性檢測。LDH釋放實驗結(jié)果顯示,P412、P412-1Y、P416和P416-1Y2L9V誘導(dǎo)得到的CTL在不同效靶比(12.5∶1、25∶1和50∶1)時對PBF表達(dá)陽性的骨肉瘤細(xì)胞系U2OS(HLA-A2+)的殺傷率均明顯高于陰性對照(PBS)組和無關(guān)肽(HBcAg18-27)組(P<0.01),見圖3。
6CFSE熒光染色檢測細(xì)胞毒性的實驗結(jié)果
候選肽所誘導(dǎo)產(chǎn)生的CTL,隨著效靶比的提高殺傷效果相應(yīng)提高。P412和P412-1Y誘導(dǎo)得到的CTL在效靶比為50∶1時對荷肽T2A2的殺傷率分別是23.0%和35.2%,P416和P416-1Y2L9V誘導(dǎo)得到的CTL在效靶比為50∶1時對荷肽T2A2的殺傷率分別是25.5%和32.3%,見圖4。
Figure 3. Specific lysis of U2OS cells (HLA-A2+) by the CTLs generated from PBMCs of healthy donors. CTLs were induced by PBF-derived peptides and their analogues. A: P412 and P412-1Y; B: P416 and P416-1Y2L9V. The effector/target (E/T) ratios were 12.5∶1, 25∶1 and 50∶1. The levels of LDH release were detected. CTLs induced by PBS and irrelevant peptide HBcAg18-27were used as negative control. Mean±SD.n=3.**P<0.01vsPBS group.
圖3P412和P416候選肽及其類似物誘導(dǎo)得到的CTL在不同效靶比時對靶細(xì)胞U2OS的殺傷情況
骨與軟組織肉瘤在分子靶向治療方面近年來取得了很大的進(jìn)展,但是除了胃腸道間質(zhì)瘤外,其它類型的肉瘤對分子靶向治療的療效仍不理想,可能是由于藥物針對的靶點特異性不強(qiáng)和功能不夠關(guān)鍵所致。免疫治療和基因治療在軟組織肉瘤和膠質(zhì)細(xì)胞腫瘤中尚處于研究階段,盡管在動物腫瘤模型中取得了很好的結(jié)果,但在臨床上尚未能達(dá)到預(yù)期的結(jié)果,其原因是尚未掌握很好的、控制高度復(fù)雜的免疫系統(tǒng)的方法,因此目前還存在很多問題有待于解決,如何選擇分子靶向治療藥物并克服耐藥、選擇高效的免疫治療和基因治療的靶點、構(gòu)建具有高度特異性和高免疫源性的疫苗、提高基因治療的轉(zhuǎn)染效率、靶向性和安全性等是目前急需解決的問題。深人研究骨科腫瘤發(fā)展的分子機(jī)制將有利于開發(fā)更多、更特異、更有效的新型靶向治療藥物。腫瘤抗原特異性疫苗含有多種表位,包括Th表位、CTL表位和B細(xì)胞表位等,因此免疫原性也強(qiáng),僅次于腫瘤細(xì)胞疫苗,可誘導(dǎo)特異性CTL產(chǎn)生和抗體產(chǎn)生,殺死靶細(xì)胞,抑制腫瘤生長,使一些腫瘤患者緩解。細(xì)胞毒性T細(xì)胞是T淋巴細(xì)胞的一部分,具有細(xì)胞毒性,在體細(xì)胞免疫中起重要作用,CTL是抗腫瘤免疫的主要效應(yīng)細(xì)胞,同時還在抗病毒、抗細(xì)菌中作用突出。
Figure 4. Detection of antigen-specific cytotoxicity by FACS-CTL assay. A: P412 and P412-1Y; B: P416 and P416-1Y2L9V. The effector/target (E/T) ratios were 12.5∶1, 25∶1 and 50∶1. CTLs induced by PBS and irrelevant peptide HBcAg18-27were used as negative control.**P<0.01vsPBS group.
圖4CFSE法特異性CTL的體外細(xì)胞毒實驗結(jié)果
在本研究中,我們檢查了腫瘤相關(guān)抗原PBF的HLA-A*0201結(jié)合肽的免疫原性。CTL識別腫瘤相關(guān)抗原是發(fā)展抗原特異性癌癥免疫治療的首要條件。然而,鑒于在建立自體腫瘤-CTL的技術(shù)難度,基于自體的抗原鑒定主要來自黑素瘤和腎細(xì)胞癌。在其它腫瘤,包括骨和軟組織肉瘤,已經(jīng)使用反向免疫學(xué)方法,并且已經(jīng)定義了來自腫瘤特異性融合基因的抗原肽,例如滑膜肉瘤中的SYT-SSX[24-25]、尤文氏肉瘤中的EWS-FLI1[23]和肺泡橫紋肌肉瘤中的PAX3-FKHR[26-27]。因為通過反向方法定義的肽不都是在腫瘤細(xì)胞中加工,所以在臨床應(yīng)用之前需要嚴(yán)格評價這些合成肽。事實上,來自12名患有慢性骨髓性白血病[28],12名患有尤文氏肉瘤[26]和4名患有肺泡橫紋肌肉瘤的患者中,僅在具有尤文氏肉瘤的單個患者中導(dǎo)致腫瘤緩解。PBF來源的多肽可以進(jìn)一步有效地提高骨肉瘤患者的存活率,特別是對當(dāng)前化療方案沒有效果的患者??乖?MHC-I 類分子復(fù)合物的形式表達(dá)于細(xì)胞表面,供特異性 CD8+T 細(xì)胞識別[28-29]。天然 CTL 表位與 MHC-I 的親和力較弱,也容易引起機(jī)體的免疫耐受,并且在體內(nèi)易受蛋白酶的攻擊水解。針對這些不足,國內(nèi)外許多學(xué)者采用了不同的方法對天然 CTL 表位進(jìn)行改造[22]。1993年,Sundara等[30]證明HLA-A2.1結(jié)合基序可以被定位在位置2(P2)的亮氨酸(L)或甲硫氨酸(M)和位置9(P9)的亮氨酸(L)、纈氨酸(V)或異亮氨酸(I)。Tourdot等[31]表明,酪氨酸P1的替代可以提高HLA-A2-限制性表位的免疫原性。
預(yù)測T細(xì)胞表位的生物信息學(xué)方法很多,在本次研究中,選擇NetCTL 1.2、SYFPEITHI和IEDB等預(yù)測軟件,綜合這3個軟件的打分結(jié)果進(jìn)行初步的表位篩選,篩選出的優(yōu)勢表位,在氨基酸1、2、9位置進(jìn)行適當(dāng)?shù)奶鎿Q,所有的表位進(jìn)行結(jié)合力實驗,從結(jié)合力實驗看出,經(jīng)過氨基酸替換后的表位,可以提高M(jìn)HC分子與表位肽的結(jié)合。隨后對親和力較高的表位進(jìn)行體外免疫活性檢測,結(jié)果顯示,P412、P412-1Y、P416和P416-1Y2L9V多肽表位疫苗能檢測到特異性T細(xì)胞免疫,可以分泌較多的IFN-γ。并且這4條肽對靶細(xì)胞具有殺傷作用。表位的改造可以增強(qiáng)HLA的結(jié)合能力和T細(xì)胞(抗原)受體(T-cell receptor,TCR)的識別能力,可以更加有效的打破免疫耐受,氨基酸替換在多肽表位中可以有效地誘導(dǎo)肽特異性CTLs。多肽進(jìn)行修飾可增加多肽在體內(nèi)的半衰期,防止酶類的降解,提高其穩(wěn)定性。對天然性多肽進(jìn)行修飾是一條值得探索的腫瘤免疫治療途徑。
[1] Ferrari S, Palmerini E. Adjuvant and neoadjuvant combination chemotherapy for osteogenic sarcoma[J]. Curr Opin Oncol, 2007, 19(4):341-346.
[2] Ebata T, Yokoyama Y, Sugawara G, et al. Concept of perihilar cholangiocarcinoma in the General Rules for Cli-nical and Pathological Studies on Cancer of the Biliary Tract, 6th edition[J]. Nihon Geka Gakkai Zasshi, 2014, 115(4):201-205.
[3] Jahdasani R, Jamnani FR, Behdani M, et al. Identification of the immunogenic epitopes of the whole venom component of theHemiscorpiuslepturusscorpion using the phage display peptide library[J]. Toxicon, 2016, 124:83-93.
[4] Marasini N, Giddam AK, Khalil ZG, et al. Double adjuvanting strategy for peptide-based vaccines: trimethyl chitosan nanoparticles for lipopeptide delivery[J]. Nanome-dicine (Lond), 2016, 11(24):3223-3235.
[5] Walker KB, Guo M, Guo Y, et al. Novel approaches to preclinical research and TB vaccine development[J]. Tuberculosis (Edinb), 2016, 99 (Suppl 1):S12-S15.
[6] Alam A, Ali S, Ahamad S, et al. From ZikV genome to vaccine: in silico approach for the epitope-based peptide vaccine against Zika virus envelope glycoprotein[J]. Immunology, 2016, 149(4):386-399.
[7] Kwon AJ, Moon JY, Kim WK, et al. Protection efficacy of the Brucella abortus ghost vaccine candidate lysed by the N-terminal 24-amino acid fragment (GI24) of the 36-amino acid peptide PMAP-36 (porcine myeloid antimicrobial peptide 36) in murine models[J]. J Vet Med Sci, 2016, 78(10):1541-1548.
[8] Maki RG. Future directions for immunotherapeutic intervention against sarcomas[J]. Curr Opin Oncol, 2006, 18(4):363-368.
[9] Sato N, Hirohashi Y, Tsukahara T, et al. Molecular pathological approaches to human tumor immunology[J]. Pathol Int, 2009, 59(4):205-217.
[10] Boeckle S, Pfister H, Steger G. A new cellular factor recognizes E2 binding sites of papillomaviruses which mediate transcriptional repression by E2[J]. Virology, 2002, 293(1):103-117.
[11] Tsukahara T, Nabeta Y, Kawaguchi S, et al. Identification of human autologous cytotoxic T-lymphocyte-defined osteosarcoma gene that encodes a transcriptional regulator, papillomavirus binding factor[J]. Cancer Res, 2004, 64(15):5442-5448.
[12] Tsukahara T, Kawaguchi S, Torigoe T, et al. Prognostic impact and immunogenicity of a novel osteosarcoma antigen, papillomavirus binding factor, in patients with osteosarcoma[J]. Cancer Sci, 2008, 99(2):368-375.
[13] Sichtig N, Silling S, Steger G. Papillomavirus binding factor (PBF)-mediated inhibition of cell growth is regulated by 14-3-3β[J]. Arch Biochem Biophys, 2007, 464(1):90-99.
[14] Tsukahara T, Kimura S, Ichimiya S, et al. Scythe/BAT3 regulates apoptotic cell death induced by papillomavirus binding factor in human osteosarcoma[J]. Cancer Sci, 2009, 100(1):47-53.
[15] Jordanovski D, Herwartz C, Pawlowski A, et al. The hypoxia-inducible transcription factor ZNF395 is controlled by IκB kinase-signaling and activates genes involved in the innate immune response and cancer[J]. PLoS One, 2013, 8(9):e74911.
[16] Hasegawa R, Tomaru Y, de Hoon M, et al. Identification of ZNF395 as a novel modulator of adipogenesis[J]. Exp Cell Res, 2013, 319(3):68-76.
[17] Tsukahara T, Kawaguchi S, Torigoe T, et al. HLA-A*0201-restricted CTL epitope of a novel osteosarcoma antigen, papillomavirus binding factor[J]. J Transl Med, 2009, 7:44.
[18] 范柳笛, 劉 輝, 袁 磊, 等. 胰腺癌高表達(dá)抗原MUC4 CTL表位肽的篩選與改造[J]. 中國病理生理雜志, 2017, 33(5):811-816.
[19] 時冉冉, 李伯和, 袁 磊, 等. 腫瘤抗原PIWIL2的HLA-A2限制性CTL表位鑒定[J]. 中國病理生理雜志, 2015, 31(7):1315-1319.
[20] Zhu YH, Gao YF, Chen F, et al. Identification of novel T cell epitopes from efflux pumps of Mycobacterium tuberculosis[J]. Immunol Lett, 2011, 140(1-2): 68-73.
[21] Wu ZY, Gao YF, Wu YH, et al. Identification of a novel CD8+T cell epitope derived from cancer-testis antigen MAGE-4 in oesophageal carcinoma[J]. Scand J Immunol, 2011, 74(6):561-567.
[22] Liu W, Zhai M, Wu Z, et al. Identification of a novel HLA-A2-restricted cytotoxic T lymphocyte epitope from cancer-testis antigen PLAC1 in breast cancer[J]. Amino Acids, 2012, 42(6):2257-2265.
[23] Zhu B, Chen Z, Cheng X, et al. Identification of HLA-A*0201-restricted cytotoxic T lymphocyte epitope from TRAG-3 antigen[J]. Clin Cancer Res, 2003, 9(5):1850-1857.
[24] Li J, Shayan G, Avery L, et al. Tumor-infiltrating Tim-3+T cells proliferate avidly except when PD-1 is co-expressed: evidence for intracellular cross talk[J]. Oncoimmunology, 2016, 5(10):e1200778.
[25] Bacchi M, Jullian M, Sirigu S, et al. Total chemical synthesis, refolding, and crystallographic structure of fully active immunophilin calstabin 2 (FKBP12.6) [J]. Protein Sci, 2016, 25(12):2225-2242.
[26] Zou C, Zhao P, Xiao Z, et al. γδ T cells in cancer immunotherapy[J]. Oncotarget, 2017, 8(5):8900-8909.
[27] 陳紅蓮, 劉 輝, 楊旭光, 等. Notch3信號通路介導(dǎo)SAHA誘導(dǎo)的小細(xì)胞肺癌H446細(xì)胞凋亡[J]. 中國病理生理雜志, 2016, 32(9):1556-1561.
[28] Rosenberg SA, Restifo NP, Yang JC, et al. Adoptive cell transfer: a clinical path to effective cancer immunotherapy[J]. Nat Rev Cancer, 2008, 8(4):299-308.
[29] Xu X, Gu Y, Bian L, et al. Characterization of immune response to novel HLA-A2-restricted epitopes from zinc transporter 8 in type 1 diabetes[J]. Vaccine, 2016, 34(6):854-862.
[30] Sundara YT, Kostine M, Cleven AH, et al. Increased PD-L1 and T-cell infiltration in the presence of HLA class I expression in metastatic high-grade osteosarcoma: a ra-tionale for T-cell-based immunotherapy[J]. Cancer Immunol Immunother, 2017, 66(1):119-128.
[31] Tourdot S, Scardino A, Saloustrou E, et al. A general strategy to enhance immunogenicity of low-affinity HLA-A2.1-associated peptides: implication in the identification of cryptic tumor epitopes[J]. Eur J Immunol, 2000, 30(12): 3411-3421.
(責(zé)任編輯: 盧 萍, 羅 森)
Identification and molecular modification of cytotoxic T-lymphocyte epitopes from osteosarcoma high-expressing antigen PBF
ZHANG Jian-xin1, SHI Ran-ran2
(1XuchangUniversity,Xuchang461000,China;2LuoheMedicalCollege,Luohe462002,China.E-mail:ranranpeptide@163.com)
AIM: To observe whether modified epitopes from osteosarcoma high-expressing antigen papillomavirus-binding factor (PBF) have HLA-A2 restricted antitumor ability, and to develop peptide-based immunotherapy for osteosarcoma.METHODSRT-PCR and Western blot were used to determine the expression of PBF in the osteosarcoma cell lines U2OS and Saos-2. HLA-A2 epitopes from PBF protein were predicted by NetCTL 1.2, SYFPEITHI and IEDB. The modified peptides from PBF containing HLA-A2 binding anchor motifs were designed by replacing the anchor residues. The peptides were synthesized by standard solid-phase methods, and the binding affinity of the peptides to HLA-A*0201 was evaluated by T2A2 cell binding assay. ELISPOT assay was used to investigate the seretion of interferon-γ (IFN-γ) from the peptide-induced specific cytotoxic T-lymphocytes (CTLs). The ability of inducing T-cell response was analyzed by lactate dehydrogenase (LDH) release assay and carboxyfluorescein succinimidyl ester (CFSE) cytotoxicity assayinvitro.RESULTSThe expression of PBF was observed in the U2OS and Saos-2 cells. The candidate peptides P75-1Y2L, P412-1Y, P416-1Y2L9V, P107-1Y and P435-1Y2L showed moderate affinity toward HLA-A2 molecule. The modified peptides showed significantly higher affinity with HLA-A2 than the native peptide. ELISPOT assay showed that P412, P412-1Y, P416, P416-1Y2L9V and P435-1Y2L induced specific CTLs to secrete IFN-γ, and P412-1Y and P416-1Y2L9V induced more secretion of IFN-γ than the native peptide. The CTLs induced by P412, P412-1Y, P416 and P416-1Y2L9V lysed U2OS cells. P412-1Y and P416-1Y2L9V peptide-specific CTLs showed higher cytotoxicity against U2OS cells than the native peptide-specific CTLs.CONCLUSIONCompared with the native peptide, modified epitopes P412-1Y and P416-1Y2L9V have higher binding affinity with HLA-A*0201 and retain immunogenecity. In addition, the anti-tumor immunity effects of modified epitopes P412-1Y and P416-1Y2L9V are stronger than the native peptide. The peptides P412-1Y and P416-1Y2L9V is excellent HLA-A*0201 restricted CTL epitopes from tumor antigen PBF, which could serve as new candidates towards antitumor peptide vaccines.
Papillomavirus-binding factor; Epitopes; Cytotoxic T-lymphocyte; Osteosarcoma
1000- 4718(2017)11- 1993- 07
2017- 05- 04
2017- 06- 06
河南省科技廳科技發(fā)展計劃項目(No. 142102310203);漯河醫(yī)學(xué)高等??茖W(xué)??蒲谢鹳Y助項目(No. 2017-S-LMC-3)
△通訊作者 Tel: 0395-2964509; E-mail: ranranpeptide@163.com
R738.1; R392.3
A
10.3969/j.issn.1000- 4718.2017.11.012