侯 俊,次瀚林,呂博文,苗令占,劉智臨
(1. 河海大學(xué)淺水湖泊綜合治理與資源開(kāi)發(fā)教育部重點(diǎn)實(shí)驗(yàn)室,江蘇 南京 210098;2. 河海大學(xué)環(huán)境學(xué)院, 江蘇 南京 210098)
典型人工納米材料的水環(huán)境行為研究進(jìn)展
侯 俊1, 2,次瀚林1, 2,呂博文1, 2,苗令占1, 2,劉智臨1, 2
(1. 河海大學(xué)淺水湖泊綜合治理與資源開(kāi)發(fā)教育部重點(diǎn)實(shí)驗(yàn)室,江蘇 南京 210098;2. 河海大學(xué)環(huán)境學(xué)院, 江蘇 南京 210098)
概述典型人工納米材料釋放到水環(huán)境中可能發(fā)生的團(tuán)聚、沉降、溶解等行為及其影響因素(包括pH值、離子強(qiáng)度、天然有機(jī)物、無(wú)機(jī)膠體、水動(dòng)力條件等)。這些水環(huán)境條件通過(guò)靜電作用、位阻效應(yīng)、橋聯(lián)作用與溶解離子絡(luò)合作用等影響納米顆粒的行為。分析當(dāng)前研究的不足,認(rèn)為應(yīng)開(kāi)展自然環(huán)境條件下的納米材料行為研究,例如更低濃度的納米材料環(huán)境行為、納米材料與天然膠體之間的相互作用等,為進(jìn)一步研究和預(yù)測(cè)人工納米材料在水環(huán)境中的歸趨提供理論依據(jù)。
人工納米材料;水環(huán)境;環(huán)境行為;綜述
人工納米材料(engineered nanomaterials,ENMs)在廣義上被定義為人為制造出的三維空間內(nèi)至少有一維尺寸在1~100 nm的顆粒材料[1-2]。ENMs因?yàn)槌叽缧 ⒈缺砻娣e大、表面活性高等特性,在光學(xué)、醫(yī)療藥劑、電子、陶瓷工業(yè)等諸多領(lǐng)域獲得應(yīng)用[3]。近年來(lái),ENMs的大量生產(chǎn)和廣泛應(yīng)用不可避免地造成這些材料釋放到環(huán)境中[4-5]。據(jù)調(diào)查,2010年全球63%~91%的ENMs進(jìn)入垃圾填埋場(chǎng),8%~28%釋放到土壤中,0.4%~7%進(jìn)入水體,還有0.1%~1.5%排入大氣中[6]。ENMs在環(huán)境中的遷移規(guī)律見(jiàn)圖1[7],進(jìn)入土壤和大氣的部分ENMs也會(huì)隨著物質(zhì)循環(huán)過(guò)程進(jìn)入水環(huán)境中[7]。研究表明,ENMs作為一種新型污染物,會(huì)對(duì)環(huán)境造成不良影響[8-9]。因此早在2008年,經(jīng)濟(jì)合作與發(fā)展組織等國(guó)際組織就表示研究ENMs的環(huán)境行為并評(píng)估其環(huán)境效應(yīng)是十分必要的,ENMs在環(huán)境中尤其是水環(huán)境中的遷移轉(zhuǎn)化規(guī)律受到研究者的廣泛關(guān)注。
ENMs由于其特殊的表面性質(zhì),會(huì)受到DLVO(derjaguin-landon-verwey-overbeek)作用力如范德華力、靜電作用力,以及非DLVO作用力如空間位阻作用、架橋作用等的影響,在水環(huán)境中發(fā)生團(tuán)聚、沉降、溶解等行為,顯著影響其在水環(huán)境中的歸趨、水生生物之間的相互作用以及生物毒性[10-11]。例如ENMs團(tuán)聚沉降等行為會(huì)影響其在水體中的縱向分布,ENMs粒徑和濃度會(huì)隨水深變化從而對(duì)不同深度水體中的生物產(chǎn)生不同的毒性效應(yīng),此外納米金屬氧化物在水中溶解釋放的金屬離子也會(huì)對(duì)生物產(chǎn)生毒性作用?,F(xiàn)有的研究表明,水環(huán)境中的大部分環(huán)境要素,例如粒子性質(zhì)(粒徑、表面電荷、粒子形態(tài))、水化學(xué)指標(biāo)(pH、離子強(qiáng)度、氧化還原條件、天然有機(jī)質(zhì)(natural organic matter,NOM))等都會(huì)與ENMs相互作用從而改變其物理化學(xué)性質(zhì)[12-14],影響ENMs的環(huán)境行為,同時(shí)水動(dòng)力條件也會(huì)影響ENMs在水環(huán)境中的團(tuán)聚和沉降過(guò)程[15]。
圖1 ENMs在環(huán)境中的遷移轉(zhuǎn)化示意圖
ENMs被釋放到水體中,形成高度分散的多相體系,ENMs在基液中會(huì)發(fā)生團(tuán)聚、沉降、溶解等行為(圖1),而這些環(huán)境行為對(duì)評(píng)估ENMs在水環(huán)境中的遷移轉(zhuǎn)化規(guī)律及生物毒性有著至關(guān)重要的作用[16-17]。
1.1 ENMs在水環(huán)境中的聚沉行為
在水環(huán)境中,ENMs表面帶有電荷而吸引周?chē)喾措姾?,這些反號(hào)離子在兩相界面呈擴(kuò)散分布,形成雙電層結(jié)構(gòu)[18]。根據(jù)DLVO理論,ENMs之間存在范德華引力和雙電層排斥力,二者之和決定了顆粒之間是相互吸引還是排斥[19]。范德華力和靜電斥力共同作用使得ENMs之間存在能量勢(shì)壘。pH和離子強(qiáng)度引起靜電斥力的變化破壞了由能量勢(shì)壘造成的ENMs顆粒之間的穩(wěn)定平衡,當(dāng)靜電斥力降低,能量勢(shì)壘減弱或消失,ENMs顆粒之間更容易發(fā)生團(tuán)聚。ENMs本身的性質(zhì)也會(huì)影響其聚集。Tso等[20]發(fā)現(xiàn),在同樣的環(huán)境條件下,nZnO比nTiO2和nSiO2團(tuán)聚速率快,且更容易溶解釋放離子。Li等[21]的研究表明,nAg在水中的團(tuán)聚與其表面涂層有關(guān)。除此之外,在水環(huán)境中還存在大量的大分子NOM 和無(wú)機(jī)膠體,濃度遠(yuǎn)大于ENMs,因此ENMs與大分子NOM 和無(wú)機(jī)膠體之間的異相團(tuán)聚也不可忽略[22]。Huynh等[23]發(fā)現(xiàn),ENMs與NOM 或自然膠體的異團(tuán)聚效率與各相濃度有關(guān)。
ENMs在水環(huán)境中團(tuán)聚成較大的顆粒后,會(huì)在重力作用下沉降,ENMs的沉降過(guò)程是造成ENMs從水環(huán)境遷移到沉積物的主要原因。Zhu等[24]發(fā)現(xiàn)在水溶液中,尺寸較大的ENMs團(tuán)聚體迅速沉降到底部,尺寸較小的顆粒懸浮于溶液中。Lyu等[25]進(jìn)行了長(zhǎng)期的聚沉實(shí)驗(yàn),實(shí)驗(yàn)結(jié)果表明,nCeO2在水中團(tuán)聚后,會(huì)產(chǎn)生分層現(xiàn)象,粒徑大于1 000 nm的顆粒沉降在底部,粒徑較小的則懸浮于溶液中,因此認(rèn)為粒徑1 000 nm左右是nCeO2重力與浮力平衡的臨界尺寸。此外,由于自然水體中存在大量天然無(wú)機(jī)膠體,ENMs與無(wú)機(jī)膠體之間的異團(tuán)聚更容易發(fā)生,無(wú)機(jī)膠體是造成ENMs沉降的主要因素[26]。ENMs在水中的沉降過(guò)程符合一級(jí)反應(yīng)動(dòng)力學(xué)[27],可以通過(guò)式(1)估算ENMs的沉降速率[27-28]:
(1)
式中:Ct為時(shí)間t時(shí)的物質(zhì)濃度;Vs為沉降速率;C0為初始濃度;Cns為實(shí)驗(yàn)時(shí)間內(nèi)未沉降物質(zhì)的濃度;h為沉降高度;Kdis為溶解常數(shù),溶解量很少時(shí)可忽略;t為沉降時(shí)間。
由于沉降速率與ENMs自團(tuán)聚和異團(tuán)聚速率及團(tuán)聚體粒徑相關(guān)[27],因此沉降也會(huì)受到水環(huán)境條件的影響,在不同自然水體中,ENMs沉降速率不同[28]。沉降速率快表明ENMs在水體中停留時(shí)間較短,而在水底沉積物中積累量較多,沉降速率慢則意味著ENMs會(huì)在水體中經(jīng)過(guò)更長(zhǎng)距離的運(yùn)輸,從而分布更加廣泛。沉降速率這一參數(shù)對(duì)于預(yù)測(cè)ENMs環(huán)境濃度及遷移轉(zhuǎn)化規(guī)律和潛在生物毒性等有著重要意義。
ENMs的聚沉行為是研究其在水環(huán)境中的遷移性、可生物利用性及生物毒性的關(guān)鍵,在ENMs環(huán)境行為的研究中受到廣泛關(guān)注。
1.2 ENMs在水環(huán)境中的溶解動(dòng)力學(xué)
一些金屬或金屬氧化物ENMs會(huì)在水溶液中發(fā)生溶解行為,產(chǎn)生金屬離子,例如nCuO、nAg、nZnO在水溶液中可以解離出Cu2+、Ag+和Zn2+。ENMs溶解的程度也受到自身性質(zhì)和水化學(xué)條件的影響[29-30]。通常粒徑較小、比表面積較大的顆粒更容易溶解,例如,小尺寸(4±1nm)的nZnO比一般的nZnO(gt;10nm)更容易溶解產(chǎn)生Zn2+[31]。當(dāng)nAg在水中發(fā)生聚集行為、形成粒徑較大的聚集體時(shí),nAg溶解速率降低[32]。因此,當(dāng)nAg初始濃度較高時(shí),nAg顆粒更容易聚集,比表面積變小,Ag+釋放量降低[33]。這是因?yàn)樾〕叽珙w粒比表面積更大,具有更高的表面能。除此之外,nAg表面涂層也會(huì)影響其溶解規(guī)律,例如聚乙烯吡咯烷酮(polyvinylpyrrolidone,PVP)和單寧酸包裹的nAg比檸檬酸鹽包裹的nAg更容易溶解[34]。在之前的研究中,通常用準(zhǔn)一級(jí)反應(yīng)動(dòng)力學(xué)方程描述ENMs溶解釋放金屬離子的過(guò)程[32-33,35]:
Ct=C0(1-e-kt)
(2)
式中:C0為初始ENMs初始濃度;k為一級(jí)反應(yīng)速率常數(shù)。
但He等[36]認(rèn)為在自然條件下,準(zhǔn)一級(jí)反應(yīng)具有一定的局限性,例如nAg在水體中發(fā)生團(tuán)聚和氧化還原反應(yīng)會(huì)影響nAg的溶解,因此Zhang等[37-38]采用兩階段反應(yīng)模型擬合nAg的溶解過(guò)程:
(3)
式中:CAgNPs(0)為實(shí)始的nAg濃度;CAgNPs(E)為反應(yīng)過(guò)程中達(dá)到溶解平衡時(shí)的nAg濃度;CAgNPs(t)為溶解過(guò)程中t時(shí)刻nAg的濃度。
在第一階段,只有易發(fā)生反應(yīng)的“活躍”部分nAg顆粒溶解,而第二階段,由于受到nAg溶解性的限制或者nAg團(tuán)聚或發(fā)生氧化還原反應(yīng),溶解反應(yīng)停止,溶解銀離子濃度達(dá)到平衡狀態(tài)。氧化還原反應(yīng)影響nAg溶解主要是由于好氧條件下nAg顆粒表面容易生成Ag2O,抑制nAg溶解釋放Ag+[36]。因此研究溶解性質(zhì)類(lèi)似于nAg的ENMs,例如nCuO、nZnO[29-30]等金屬類(lèi)ENMs溶解行為,還需要考慮ENMs自身團(tuán)聚以及水體中的氧化還原條件對(duì)溶解的影響。
ENMs在水環(huán)境中的團(tuán)聚、沉降、溶解等環(huán)境行為會(huì)受到水化學(xué)條件和水動(dòng)力條件的影響,例如pH、離子強(qiáng)度、天然有機(jī)質(zhì)、無(wú)機(jī)膠體、水流剪切力等。
2.1 pH和離子強(qiáng)度
通常靜電作用穩(wěn)定的ENMs體系,其穩(wěn)定程度除了受到ENMs表面電荷的影響,還取決于整個(gè)體系中電解質(zhì)的濃度。ENMs在水溶液中會(huì)形成雙電層結(jié)構(gòu),水中的離子會(huì)產(chǎn)生壓縮雙電層或吸附電中和效應(yīng),從而促進(jìn)ENMs的團(tuán)聚。有研究表明,二價(jià)離子比單價(jià)離子更有利于促進(jìn)ENMs聚集,因?yàn)槎r(jià)離子壓縮雙電層作用顯著[46]。相同pH條件下,二價(jià)離子可以顯著增快納米硼、C60、nTiO2及其他納米金屬或氧化物等ENMs的聚集速率[24,47-49]。通過(guò)測(cè)量zeta電位發(fā)現(xiàn),ENMs表面電荷隨電解質(zhì)溶液濃度升高而降低,這是因?yàn)殡娊赓|(zhì)溶液中的離子會(huì)覆蓋在ENMs表面形成離子屏障,降低ENMs的表面電荷,從而促進(jìn)ENMs團(tuán)聚。
引起膠體快速聚沉的電解質(zhì)濃度稱(chēng)為臨界聚沉濃度。根據(jù)Schulze Hardy法則,臨界聚沉濃度與離子價(jià)位(Z)倒數(shù)的六次方成正比。有研究發(fā)現(xiàn)Ca2+和Mg2+溶液對(duì)檸檬酸包裹的nAg(nAgCIT)的臨界聚沉濃度遠(yuǎn)低于Na+溶液,符合Schulze Hardy法則[50]。幾種常見(jiàn)ENMs的臨界聚沉濃度如表1所示。此外電解質(zhì)也可以影響ENMs的溶解。Chambers等[51]研究發(fā)現(xiàn)陰離子可以加速nAg的溶解,主要原因是陰離子與納米Ag形成Ag(Ⅰ)復(fù)合物或反應(yīng)生成沉淀。
表1幾種常見(jiàn)ENMs的臨界聚沉濃度mmol/L
ENMs種類(lèi)C(Na+)C(Ca2+)nAgCIT[50]122±2.82.2±0.1nAgPVP[52]111.54.9nCeO[25]28216nCuO[53]54.52.9C[47]601204.8
2.2 天然有機(jī)質(zhì)及沉積物
在自然水體中存在各種NOM,例如蛋白質(zhì)、多糖、腐殖酸、富里酸、微生物分泌的胞外聚合物等,由于ENMs比表面積較大,在自然水體中,ENMs會(huì)吸附大量NOM[19],吸附了NOM的ENMs之間由于位阻效應(yīng)和靜電排斥,穩(wěn)定性增強(qiáng)[54]?,F(xiàn)有的研究結(jié)果表明,細(xì)菌胞外聚合物(EPS)、藻酸鹽和牛血清蛋白(BSA)等有機(jī)物都會(huì)增加ENMs的穩(wěn)定性,抑制其聚集,如圖2(a)所示,其中BSA作用更明顯[35,55-56]。不同有機(jī)質(zhì)抑制ENMs團(tuán)聚的作用機(jī)制也不相同。Miao等[35]通過(guò)zeta電位的測(cè)量發(fā)現(xiàn),EPS和多糖可以改變nCuO表面電荷電性,說(shuō)明在這兩種NOM 存在時(shí),靜電排斥是抑制nCuO團(tuán)聚的主要機(jī)制;而B(niǎo)SA并沒(méi)有明顯改變nCuO的表面電性,且BSA分子量小,因此認(rèn)為空間位阻效應(yīng)是BSA抑制nCuO團(tuán)聚的主要機(jī)制。NOM 除了抑制ENMs粒徑增長(zhǎng),還可以使已經(jīng)團(tuán)聚的ENMs團(tuán)聚體解聚(圖2(b)),例如nTiO2在pH=8.2且含有1.125 mmol/L Ca2+和0.21 mmol/L Mg2+的水體中(模擬自然湖水的pH和硬度)團(tuán)聚成3 000 nm左右的團(tuán)聚體,添加藻酸鹽后團(tuán)聚體解聚,粒徑減小,主要是由于nTiO2團(tuán)聚體吸附藻酸鹽而產(chǎn)生空間位組效應(yīng)和靜電排斥作用,因此藻酸鹽濃度越高,解聚現(xiàn)象越明顯[57]。此外,EPS、藻酸鹽和BSA還可以促進(jìn)nCuO的溶解,其中EPS促進(jìn)nCuO溶解釋放Cu2+的能力更強(qiáng),是由于EPS是一種復(fù)雜的高分子聚合物,其中含有多糖、蛋白質(zhì)和腐殖類(lèi)物質(zhì),官能團(tuán)種類(lèi)較多,與金屬離子結(jié)合能力較強(qiáng),從而加速了nCuO的溶解[35]。
雖然通常認(rèn)為NOM 可以增加ENMs穩(wěn)定性,抑制其聚集,但在特定條件下或延長(zhǎng)反應(yīng)時(shí)間,某些大分子NOM 也可能促進(jìn)ENMs的團(tuán)聚。例如添加多糖可以增加nCuO在各種濃度Na+溶液中的穩(wěn)定性,但在高濃度Ca2+溶液中由于多糖分子與Ca2+的架橋作用形成凝膠狀有機(jī)質(zhì)膠體,這些有機(jī)膠體包裹并連接在nCuO團(tuán)聚體之間(圖2(c)),即在高濃度二價(jià)陽(yáng)離子條件下nCuO顆粒的團(tuán)聚現(xiàn)象更加明顯[53]。Bian等[31]研究發(fā)現(xiàn),腐殖酸濃度在7.3~14 mg/L范圍內(nèi),nZnO顆粒最穩(wěn)定,不易團(tuán)聚,但在長(zhǎng)期觀察中發(fā)現(xiàn),120 min之后,ENMs懸液不穩(wěn)定,并有團(tuán)聚傾向,nZnO的Zeta電位由正值變?yōu)樨?fù)值,表明在120 min內(nèi)腐殖酸逐漸吸附于ENMs表面,ENMs與腐殖酸復(fù)雜的官能團(tuán)發(fā)生架橋反應(yīng)改變了nZnO的表面電性。有機(jī)質(zhì)濃度也會(huì)影響ENMs團(tuán)聚,Oriekhova等[58]在研究中發(fā)現(xiàn),低濃度(lt;1 mg/L)富里酸(fulvic acid,F(xiàn)A)可以抑制nCeO2團(tuán)聚;但逐漸增加FA濃度,溶液中形成較大FA-nCeO2配合物,低pH時(shí)nCeO2和FA電性相反,更容易形成配合物,高pH時(shí)二者電性相同,不易形成配合物。因此NOM對(duì)ENMs團(tuán)聚行為的影響與NOM 種類(lèi)、濃度及水環(huán)境條件如離子強(qiáng)度、pH等有關(guān)。
(a) NOM抑制ENMs團(tuán)聚
(b) NOM使RNMs團(tuán)聚體解聚
(c) NOM凝膠通過(guò)架橋作用促進(jìn)ENMs團(tuán)聚
自然水體中也存在沉積物,由于ENMs可以吸附于沉積物表面,吸附到固相成分表面的ENMs,可移動(dòng)性降低,可生物利用性也會(huì)降低[59]。Van Koetsem等[60]將沉積物溶于超純水中,向其中加入nAg和nCeO2,進(jìn)行離心分離,探究ENMs在固相和液相中的分布規(guī)律。結(jié)果表明,經(jīng)過(guò)離心分離后,比起Ag+和Ce3+,nAg和nCeO2更傾向于停留在液相中,這說(shuō)明比起溶解于水中的離子而言,ENMs移動(dòng)性較強(qiáng),更易遷移。沉積物作為一種載體,上面吸附著多種有機(jī)物和排放進(jìn)水體中的污染物[61],這些物質(zhì)都可能與ENMs發(fā)生反應(yīng),從而影響ENMs的性質(zhì)。
2.3 天然無(wú)機(jī)膠體
自然水體中存在大量無(wú)機(jī)膠體,無(wú)機(jī)膠體的顆粒濃度遠(yuǎn)大于ENMs。在水環(huán)境中,無(wú)機(jī)膠體與ENMs之間的相互作用對(duì)于ENMs的聚沉行為也有著非常重要的影響[27]。無(wú)機(jī)膠體分為黏土礦物、水合氧化物膠體及其他懸浮物質(zhì)等。黏土礦物具有特殊的層狀結(jié)構(gòu),會(huì)與ENMs發(fā)生團(tuán)聚。硅離子和鋁離子對(duì)低價(jià)離子的同晶型取代使黏土表面帶有永久負(fù)電荷,但黏土邊緣所帶電荷會(huì)受到水環(huán)境pH和離子強(qiáng)度的影響,黏土顆粒還具有一定的離子交換能力[62]。黏土礦物與ENMs之間主要通過(guò)靜電作用發(fā)生異團(tuán)聚。Zhou等[63]研究了蒙脫土和nAg、nTiO2兩種典型ENMs之間的異團(tuán)聚,為了模擬自然水體環(huán)境并探究異團(tuán)聚作用機(jī)制,實(shí)驗(yàn)選取了兩種pH條件,pH=4低于蒙脫土邊緣pHzpc,edge,pH=8高于pHzpc,edge。雖然蒙脫土zeta電位隨pH變化很小,但在低pH時(shí),蒙脫土表面和邊緣電荷電性相反,體系不穩(wěn)定,蒙脫土可以降低nAg、nTiO2的臨界聚沉濃度,促進(jìn)團(tuán)聚;pH=8時(shí),蒙脫土表面和邊緣都帶負(fù)電,靜電排斥作用使得體系較為穩(wěn)定[63-64],如圖3所示。高嶺土、伊利石與nAg、nTiO2之間的異團(tuán)聚規(guī)律也是如此[64-65]。此外Wang等[64]還研究了NOM 對(duì)該體系聚集的影響,腐殖酸吸附在ENMs和高嶺土表面,并通過(guò)靜電作用或位阻效應(yīng)抑制ENMs與高嶺土之間的團(tuán)聚,從而增強(qiáng)體系的穩(wěn)定性。除金屬或金屬氧化物ENMs之外,其他ENMs(例如氧化石墨烯)也會(huì)與無(wú)機(jī)膠體發(fā)生異團(tuán)聚。Zhao等[66]研究了納米氧化石墨烯(GO)與不同種類(lèi)天然無(wú)機(jī)膠體(蒙脫土、高嶺土和針鐵礦)在水環(huán)境中的異團(tuán)聚。研究表明,GO和帶正電荷的針鐵礦由于靜電吸引而發(fā)生異團(tuán)聚,但與帶負(fù)電的蒙脫土和高嶺土之間沒(méi)有這樣的反應(yīng)。該研究用一種線性模型與GO-針鐵礦吸附等溫線擬合,吸附于針鐵礦表面的GO不容易脫附,這種解吸的滯后性主要是由于GO-針鐵礦團(tuán)聚體多層構(gòu)型穩(wěn)定性較高。Sotirelis等[67]通過(guò)研究GO和高嶺土之間的熱力學(xué)吸附過(guò)程,發(fā)現(xiàn)GO與高嶺土之間的異團(tuán)聚是焓驅(qū)動(dòng)下的放熱非自發(fā)反應(yīng),在高溫下更容易發(fā)生。
(a) pHlt;pHzpc,edge,黏土表面和邊緣電荷相反
(b) pHgt;pHzpc,edge,黏土表面和邊緣電荷相同
常見(jiàn)的水合氧化物膠體有SiO2、Al2O3的水合物等。Praetorius等[44]通過(guò)SiO2和nTiO2團(tuán)聚實(shí)驗(yàn)數(shù)據(jù)和描述膠體碰撞的Smolu-Model模型擬合,計(jì)算得到不同水環(huán)境條件下的異團(tuán)聚速率(αhetero)。Praetorius等[44]認(rèn)為SiO2和nTiO2二元體系中,聚集過(guò)程分為兩個(gè)步驟,首先nTiO2吸附在SiO2表面,該過(guò)程為初級(jí)團(tuán)聚,隨后吸附了nTiO2的SiO2顆粒之間聚集形成更大的顆粒,成為二次團(tuán)聚。研究結(jié)果表明酸性條件(pH=5)時(shí),異團(tuán)聚速率與nTiO2濃度有關(guān),當(dāng)濃度較低時(shí),αhetero很小,只有當(dāng)nTiO2濃度達(dá)到臨界濃度時(shí)才發(fā)生異團(tuán)聚,且由于SiO2和nTiO2電性相反,因此αhetero可以接近1。當(dāng)pH=8,SiO2和nTiO2電性相同,αhetero主要由鹽濃度決定,在鹽溶液濃度低時(shí)αhetero很小,鹽溶液濃度高時(shí)αhetero接近1,腐殖酸(SRHA)可以抑制SiO2和nTiO2之間的異團(tuán)聚。該研究將NPs和NCs之間的異團(tuán)聚情況用量化的方式表征。
總體上講,無(wú)機(jī)膠體與ENMs之間的異團(tuán)聚也會(huì)受到水環(huán)境條件的影響,與ENMs自團(tuán)聚相似,當(dāng)體系中存在相反電荷時(shí),由于靜電吸引,團(tuán)聚現(xiàn)象明顯,但當(dāng)體系中電荷電性相同,則可認(rèn)為是同相團(tuán)聚,例如黏土與nAg在中性pH條件下的異團(tuán)聚行為與黏土膠體團(tuán)聚行為相似[65]。無(wú)機(jī)膠體和ENMs都是納米尺寸級(jí)別的顆粒物,目前,異團(tuán)聚的研究方法和分析手段是借鑒ENMs自團(tuán)聚的研究,但通過(guò)體系平均粒徑的變化無(wú)法準(zhǔn)確區(qū)分ENMs自團(tuán)聚和ENMs與其他膠體的異團(tuán)聚以及這兩個(gè)過(guò)程發(fā)生的先后順序,這也是這一領(lǐng)域目前存在的問(wèn)題。
2.4 水動(dòng)力條件
在自然水體中,水流條件及由水流產(chǎn)生的剪切力是影響ENMs聚集行為不可忽略的因素。但目前,關(guān)于不同水動(dòng)力條件下的ENMs穩(wěn)定性的研究較少。Yin等[68]研究發(fā)現(xiàn)在pH值、攪拌時(shí)間等其他條件相同時(shí),隨著攪拌速度的增加,赤鐵礦顆粒絮凝現(xiàn)象越來(lái)越明顯,且絮凝體平均粒徑增大;當(dāng)攪拌速度大于1 400 r/min時(shí),絮凝體的平均粒徑減小,說(shuō)明攪拌速度過(guò)大時(shí),會(huì)對(duì)絮凝體造成破壞。Chekli等[69]研究了ENMs在海水、湖水、河水、污水廠出水、地下水等5種水體中的團(tuán)聚情況,并在團(tuán)聚實(shí)驗(yàn)中施加一定的機(jī)械攪拌,明顯觀察到ENMs被破壞,ENMs粒徑隨剪切力增強(qiáng)而減小,但這種變化在一定程度上是可逆的,即剪切力減弱或停止后,ENMs會(huì)再次團(tuán)聚,這是由于ENMs之間既有易被破壞的物理作用例如范德華力,也存在較為強(qiáng)烈的化學(xué)作用,例如氫鍵、有機(jī)物架橋等[15,70]。通過(guò)化學(xué)作用鏈接的團(tuán)聚體結(jié)構(gòu)緊密,不易受到水動(dòng)力條件的影響,但通過(guò)物理作用形成的團(tuán)聚體結(jié)構(gòu)松散,在水流速較快的時(shí)候容易被分散[15]。團(tuán)聚體的形態(tài)結(jié)構(gòu)與水環(huán)境條件有關(guān),ENMs在海水中的聚集體結(jié)構(gòu)較為松散,容易被破壞,但在湖水中的聚集體結(jié)構(gòu)緊密,不易被破壞。這是由于在海水中主要受到離子強(qiáng)度的影響,聚集體之間通過(guò)范德華力或靜電作用結(jié)合起來(lái),而在湖水中,由于包裹了天然有機(jī)物,聚集體之間通過(guò)化學(xué)鍵的作用結(jié)合,不易受到破壞。因此水動(dòng)力條件對(duì)ENMs團(tuán)聚行為的影響與水化學(xué)條件和團(tuán)聚機(jī)制有關(guān)。
水流剪切力除了會(huì)改變ENMs團(tuán)聚體的尺寸,還會(huì)破壞ENMs由于團(tuán)聚沉降形成的縱向分層現(xiàn)象,使得沉降的ENMs再懸浮,增加ENMs的可移動(dòng)性[25]。
迄今為止,對(duì)于ENMs在水環(huán)境中的環(huán)境行為,特別是團(tuán)聚行為的研究已經(jīng)取得很大進(jìn)展,現(xiàn)有研究結(jié)果表明,ENMs在水環(huán)境中的團(tuán)聚、沉降和溶解等行為除了受到其自身性質(zhì)的影響,還與水環(huán)境條件如pH、離子強(qiáng)度、NOM種類(lèi)和濃度、天然無(wú)機(jī)膠體和水動(dòng)力條件等有關(guān)。在自然水環(huán)境中,ENMs的遷移受自身理化性質(zhì)和水環(huán)境條件的共同影響,闡明各因素的交互作用機(jī)制,有助于準(zhǔn)確評(píng)價(jià)ENMs在自然水環(huán)境中的行為和歸趨。雖然研究者們對(duì)于ENMs在水環(huán)境中的行為取得了一些共識(shí),但該領(lǐng)域的研究還存在一些問(wèn)題有待解決:
a. 在水環(huán)境中,ENMs的含量是非常微量的,但由于檢測(cè)手段的限制,目前的研究大多是在mg級(jí)別,更低濃度的、接近自然環(huán)境或污水處理系統(tǒng)濃度的ENMs聚沉、溶解等行為的研究是目前所欠缺的。
b. 在自然條件下ENMs與無(wú)機(jī)膠體的異團(tuán)聚比ENMs自團(tuán)聚更容易發(fā)生,但目前這方面研究還不夠完善,特別是在NOM 存在條件下,ENMs與天然無(wú)機(jī)膠體之間的異團(tuán)聚和沉降規(guī)律及機(jī)制還有待進(jìn)一步探索。
c. ENMs在復(fù)雜體系中,例如當(dāng)水體中還存在其他顆粒物如無(wú)機(jī)膠體或蛋白質(zhì)、微生物等生物質(zhì)時(shí),目前只是宏觀地通過(guò)粒徑變化來(lái)表征ENMs的性質(zhì),而未能通過(guò)有效的方法將ENMs的自團(tuán)聚和ENMs與其他膠體的異團(tuán)聚區(qū)分開(kāi),運(yùn)用更直接的顆粒分析手段進(jìn)行ENMs單顆粒的分析將有助于深入研究ENMs在復(fù)雜水體中的行為,這也將成為今后的研究重點(diǎn)。
[1]DUNPHY K A,FINNEGAN M P,BANFIELD J F.Influence of surface potential on aggregation and transport of titania nanoparticles[J].Environmental Science amp; Technology,2006,40(24):7688-7693.
[2]李軼,殷亞遠(yuǎn),王超,等.納米二氧化鈦和銅對(duì)大型溞的聯(lián)合毒性[J].河海大學(xué)學(xué)報(bào)(自然科學(xué)版),2016,44(2):95-100.(LI Yi,YIN Yayuan,WANG Chao,et al.Joint toxicity of titanium dioxide nanoparticles and copper on Daphnia magna [J].Journal of Hohai University (Natural Sciences),2016,44(2):95-100. (in Chinese))
[3]夏俊,陸光華,趙海洲,等.人工納米材料在流動(dòng)水域中的環(huán)境行為與生物效應(yīng)[J].水資源保護(hù),2013,29(6):1-5.(XIA Jun,LU Guanghua,ZHAO Haizhou,et al.Environmental behaviors and biological effects of manufactured nanomaterials in flowing waters[J].Water Resources Protection,2013,29(6):1-5.(in Chinese))
[4]NOWACK B,BUCHELI T D.Occurrence,behavior and effects of nanoparticles in the environment[J].Environmental Pollution,2007,150(1):5-22.
[5]GOTTSCHALK F,SONDERER T,SCHOLZ R W,et al.Modeled environmental concentrations of engineered nanomaterials(TiO2,ZnO,Ag,CNT,fullerenes)for different regions[J].Environmental Science amp; Technology,2009,43(24):9216-9222.
[6]KELLER A A,MCFERRAN S,LAZAREVA A,et al.Global life cycle releases of engineered nanomaterials[J].Journal of Nanoparticle Research,2013,15(6):1692.
[7]MEESTERS J A J,QUIK J T K,KOELMANS A A,et al.Multimedia environmental fate and speciation of engineered nanoparticles:a probabilistic modeling approach[J].Environmental Science:Nano,2016,3(4):715-727.
[8]CHAE Y J,PHAM C H,LEE J,et al.Evaluation of the toxic impact of silver nanoparticles on Japanese medaka(Oryzias latipes)[J].Aquatic Toxicology,2009,94(4):320-327.
[9]SCOWN T M,VAN AERLE R,TYLER C R.Review:do engineered nanoparticles pose a significant threat to the aquatic environment?[J].Critical Reviews in Toxicology,2010,40(7):653-670.
[10]LI X,LENHART J J,WALKER H W.Aggregation kinetics and dissolution of coated silver nanoparticles[J].Langmuir,2011,28(2):1095-1104.
[11]GAISER B K,FERNANDES T F,JEPSON M A,et al.Interspecies comparisons on the uptake and toxicity of silver and cerium dioxide nanoparticles[J].Environmental Toxicology and Chemistry,2012,31(1):144-154.
[12]AIKEN G R,HSU-KIM H,RYAN J N.Influence of dissolved organic matter on the environmental fate of metals,nanoparticles,and colloids[J].Environmental Science and Technology-Columbus,2011,45(8):31-96.
[13]CHANG Y N,ZHANG M,Xia L,et al.The toxic effects and mechanisms of CuO and ZnO nanoparticles[J].Materials,2012,5(12):2850-2871.
[14]YANG Y,ZHANG C,HU Z.Impact of metallic and metal oxide nanoparticles on wastewater treatment and anaerobic digestion[J].Environmental Science:Processes amp; Impacts,2013,15(1):39-48.
[15]LV X,TAO J,CHEN B,et al.Roles of temperature and flow velocity on the mobility of nano-sized titanium dioxide in natural waters[J].Science of the Total Environment,2016,565:849-856.
[16]APPLEROT G,LELLOUCHE J,LIPOVSKY A,et al.Understanding the antibacterial mechanism of CuO nanoparticles:revealing the route of induced oxidative stress[J].Small,2012,8(21):3326-3337.
[17]KLAINE S J,ALVAREZ P J J,BATLEY G E,et al.Nanomaterials in the environment:behavior,fate,bioavailability,and effects[J].Environmental Toxicology and Chemistry,2008,27(9):1825-1851.
[18]VERWEY E J W,OVERBEEK J T G.Theory of the stability of lyophobic colloids[M].New York:Courier Corporation,1999.
[19]ZHANG Y,CHEN Y,WESTERHOFF P,et al.Impact of natural organic matter and divalent cations on the stability of aqueous nanoparticles[J].Water Research,2009,43(17):4249-4257.
[20]TSO C,ZHUNG C,SHIH Y,et al.Stability of metal oxide nanoparticles in aqueous solutions[J].Water Science and Technology,2010,61(1):127-133.
[21]LI X,LENHART J J.Aggregation and dissolution of silver nanoparticles in natural surface water[J].Environmental Science amp; Technology,2012,46(10):5378-5386.
[22]PRAETORIUS A,SCHERINGER M,HUNGERBüHLER K.Development of environmental fate models for engineered nanoparticles:a case study of TiO2nanoparticles in the Rhine River[J].Environmental Science amp; Technology,2012,46(12):6705-6713.
[23]HUYNH K A,MCCAFFERY J M,CHEN K L.Heteroaggregation of multiwalled carbon nanotubes and hematite nanoparticles:rates and mechanisms[J].Environmental Science amp; Technology,2012,46(11):5912-5920.
[24]ZHU M,WANG H,KELLER A A,et al.The effect of humic acid on the aggregation of titanium dioxide nanoparticles under different pH and ionic strengths[J].Science of the Total Environment,2014,487:375-380.
[25]LV B,WANG C,HOU J,et al.Influence of shear forces on the aggregation and sedimentation behavior of cerium dioxide(CeO2)[J].Journal of Nanoparticle Research,2016,18(7):1-12.
[26]QUIK J T K,STUART M C,WOUTERSE M,et al.Natural colloids are the dominant factor in the sedimentation of nanoparticles[J].Environmental Toxicology and Chemistry,2012,31(5):1019-1022.
[27]QUIK J T K,VAN DE MEENT D,Koelmans A A.Simplifying modeling of nanoparticle aggregation-sedimentation behavior in environmental systems:a theoretical analysis[J].Water Research,2014,62:193-201.
[28]QUIK J T K,VELZEBOER I,WOUTERSE M,et al.Heteroaggregation and sedimentation rates for nanomaterials in natural waters[J].Water Research,2014,48:269-279.
[29]BONDARENKO O,IVASK A,KKINEN A,et al.Sub-toxic effects of CuO nanoparticles on bacteria:kinetics,role of Cu ions and possible mechanisms of action[J].Environmental Pollution,2012,169:81-89.
[30]MAJEDI S M,KELLY B C,LEE H K.Role of combinatorial environmental factors in the behavior and fate of ZnO nanoparticles in aqueous systems:a multiparametric analysis[J].Journal of Hazardous Materials,2014,264:370-379.
[31]BIAN S W,MUDUNKOTUWA I A,RUPASINGHE T,et al.Aggregation and dissolution of 4 nm ZnO nanoparticles in aqueous environments:influence of pH,ionic strength,size,and adsorption of humic acid[J].Langmuir,2011,27(10):6059-6068.
[32]LIU J,HURT R H.Ion release kinetics and particle persistence in aqueous nano-silver colloids[J].Environmental Science amp; Technology,2010,44(6):2169-2175.
[33]ZHANG W,YAO Y,SULLIVAN N,et al.Modeling the primary size effects of citrate-coated silver nanoparticles on their ion release kinetics[J].Environmental Science amp; Technology,2011,45(10):4422-4428.
[34]DOBIAS J,BERNIER-LATMANI R.Silver release from silver nanoparticles in natural waters[J].Environmental Science amp; Technology,2013,47(9):4140-4146.
[35]MIAO L,WANG C,HOU J,et al.Enhanced stability and dissolution of CuO nanoparticles by extracellular polymeric substances in aqueous environment[J].Journal of Nanoparticle Research,2015,17(10):404.
[36]HE D,JONES A M,GARG S,et al.Silver nanoparticle-reactive oxygen species interactions:application of a charging-discharging model[J].The Journal of Physical Chemistry C,2011,115(13):5461-5468.
[37]ZHANG C,HU Z,DENG B.Silver nanoparticles in aquatic environments:physiochemical behavior and antimicrobial mechanisms[J].Water Research,2016,88:403-427.
[38]KITTLER S,GREULICH C,DIENDORF J,et al.Toxicity of silver nanoparticles increases during storage because of slow dissolution under release of silver ions[J].Chemistry of Materials,2010,22(16):4548-4554.
[39]PHILIPPE A,SCHAUMANN G E.Interactions of dissolved organic matter with natural and engineered inorganic colloids:a review[J].Environmental Science amp; Technology,2014,48(16):8946-8962.
[40]ZHANG Y,CHEN Y,WESTERHOFF P,et al.Stability of commercial metal oxide nanoparticles in water[J].Water Research,2008,42(8):2204-2212.
[41]HSU J P,NACU A.An experimental study on the rheological properties of aqueous ceria dispersions[J].Journal of Colloid and Interface Science,2004,274(1):277-284.
[42]VALE G,FRANCO C,DINIZ M S,et al.Bioavailability of cadmium and biochemical responses on the freshwater bivalve Corbicula fluminea-the role of TiO2nanoparticles[J].Ecotoxicology and Environmental Safety,2014,109:161-168.
[43]REDDY K J,MCDONALD K J,KING H.A novel arsenic removal process for water using cupric oxide nanoparticles[J].Journal of Colloid and Interface Science,2013,397:96-102.
[44]PRAETORIUS A,LABILLE J,SCHERINGER M,et al.Heteroaggregation of titanium dioxide nanoparticles with model natural colloids under environmentally relevant conditions[J].Environmental Science amp; Technology,2014,48(18):10690-10698.
[45]ZHANG H,CHEN B,BANFIELD J F.Particle size and pH effects on nanoparticle dissolution[J].The Journal of Physical Chemistry C,2010,114(35):14876-14884.
[46]SON J,VAVRA J,FORBES V E.Effects of water quality parameters on agglomeration and dissolution of copper oxide nanoparticles(CuO-NPs)using a central composite circumscribed design[J].Science of the Total Environment,2015,521:183-190.
[47]CHEN K L,ELIMELECH M.Aggregation and deposition kinetics of fullerene(C60)nanoparticles[J].Langmuir,2006,22(26):10994-11001.
[48]BAALOUSHA M.Aggregation and disaggregation of iron oxide nanoparticles:influence of particle concentration,pH and natural organic matter[J].Science of the Total Environment,2009,407(6):2093-2101.
[49]LIU X,WAZNE M,HAN Y,et al.Effects of natural organic matter on aggregation kinetics of boron nanoparticles in monovalent and divalent electrolytes[J].Journal of Colloid and Interface Science,2010,348(1):101-107.
[50]BAALOUSHA M,NUR Y,R?MER I,et al.Effect of monovalent and divalent cations,anions and fulvic acid on aggregation of citrate-coated silver nanoparticles[J].Science of the Total Environment,2013,454:119-131.
[51]CHAMBERS B A,AFROOZ A N,BAE S,et al.Effects of chloride and ionic strength on physical morphology,dissolution,and bacterial toxicity of silver nanoparticles[J].Environmental Science amp; Technology,2013,48(1):761-769.
[52]HUYNH K A,CHEN K L.Aggregation kinetics of citrate and polyvinylpyrrolidone coated silver nanoparticles in monovalent and divalent electrolyte solutions[J].Environmental Science amp; Technology,2011,45(13):5564-5571.
[53]MIAO L,WANG C,HOU J,et al.Effect of alginate on the aggregation kinetics of copper oxide nanoparticles(CuO NPs):bridging interaction and hetero-aggregation induced by Ca2+[J].Environmental Science and Pollution Research,2016,23(12):11611-11619.
[54]HYUNG H,KIM J H.Natural organic matter(NOM)adsorption to multi-walled carbon nanotubes:effect of NOM characteristics and water quality parameters[J].Environmental Science amp; Technology,2008,42(12):4416-4421.
[55]GEBAUER J S,MALISSEK M,SIMON S,et al.Impact of the nanoparticle-protein corona on colloidal stability and protein structure[J].Langmuir,2012,28(25):9673-9679.
[56]SALEH N B,PFEFFERLE L D,ELIMELECH M.Influence of biomacromolecules and humic acid on the aggregation kinetics of single-walled carbon nanotubes[J].Environmental Science amp; Technology,2010,44(7):2412-2418.
[57]LOOSLI F,LE COUSTUMER P,STOLL S.Effect of electrolyte valency,alginate concentration and pH on engineered TiO2nanoparticle stability in aqueous solution[J].Science of the Total Environment,2015,535:28-34.
[58]ORIEKHOVA O,STOLL S.Effects of pH and fulvic acids concentration on the stability of fulvic acids-cerium(Ⅳ)oxide nanoparticle complexes[J].Chemosphere,2016,144:131-137.
[59]GIMBERT L J,HAMON R E,CASEY P S,et al.Partitioning and stability of engineered ZnO nanoparticles in soil suspensions using flow field-flow fractionation[J].Environmental Chemistry,2007,4(1):8-10.
[60]VAN KOETSEM F,GEREMEW T T,WALLAERT E,et al.Fate of engineered nanomaterials in surface water:factors affecting interactions of Ag and CeO2nanoparticles with(re)suspended sediments[J].Ecological Engineering,2015,80:140-150.
[61]RAKOWSKA M I,KUPRYIANCHYK D,HARMSEN J,et al.In situ remediation of contaminated sediments using carbonaceous materials[J].Environmental Toxicology and Chemistry,2012,31(4):693-704.
[63]ZHOU D,ABDEL-FATTAH A I,KELLER A A.Clay particles destabilize engineered nanoparticles in aqueous environments[J].Environmental Science amp; Technology,2012,46(14):7520-7526.
[64]WANG H,DONG Y,ZHU M,et al.Heteroaggregation of engineered nanoparticles and kaolin clays in aqueous environments[J].Water Research,2015,80:130-138.
[65]LIU J,HWANG Y S,LENHART J J.Heteroaggregation of bare silver nanoparticles with clay minerals[J].Environmental Science:Nano,2015,2(5):528-540.
[66]ZHAO J,LIU F,WANG Z,et al.Heteroaggregation of graphene oxide with minerals in aqueous phase[J].Environmental Science amp; Technology,2015,49(5):2849-2857.
[67]SOTIRELIS N P,CHRYSIKOPOULOS C V.Heteroaggregation of graphene oxide nanoparticles and kaolinite colloids[J].Science of the Total Environment,2017,579:736-744.
[68]YIN W Z,YANG X S,ZHOU D P,et al.Shear hydrophobic flocculation and flotation of ultrafine Anshan hematite using sodium oleate[J].Transactions of Nonferrous Metals Society of China,2011,21(3):652-664.
[69]CHEKLI L,ZHAO Y X,TIJING L D,et al.Aggregation behaviour of engineered nanoparticles in natural waters:characterising aggregate structure using on-line laser light scattering[J].Journal of Hazardous Materials,2015,284:190-200.
[70]TELEKI A,WENGELER R,WENGELER L,et al.Distinguishing between aggregates and agglomerates of flame-made TiO2by high-pressure dispersion[J].Powder Technology,2008,181(3):292-300.
Researchprogressofwaterenvironmentbehavioroftypicalengineerednanomaterials
HOUJun1,2,CIHanlin1,2,LYUBowen1,2,MIAOLingzhan1,2,LIUZhilin1,2
(1.KeyLaboratoryofIntegratedRegulationandResourceDevelopmentonShallowLakes,MinistryofEducation,HohaiUniversity,Nanjing210098,China; 2.CollegeofEnvironment,HohaiUniversity,Nanjing210098,China)
This paper has reviewed the aggregation, sedimentation, dissolution and other behaviors and influence factors (pH, ionic strength, natural organic matter, inorganic colloid and hydrodynamic force) of typical ENMs that are likely to occur in aquatic environment. These water environment conditions affect the behaviors of nanoparticles by means of electrostatic interaction, steric hindrance, bridging and complexation with dissolved ions mechanism. In view of current insufficient research in this regard, future studies are proposed to focus on nanomaterials behaviors under natural environmental conditions, such as lower concentration of nanomaterials and the interactions between nanomaterials and natural colloids in order to provide a theoretical basis for further research and prediction of the fates of ENMs in water.
engineered nanomaterials;aquatic environment;environmental behavior;research progress
10.3880/j.issn.1004-6933.2017.06.01
國(guó)家自然科學(xué)基金(51479047);江蘇省杰出青年基金(BK20160038)
侯俊(1979—),男,博士,研究員,博士生導(dǎo)師,主要從事水環(huán)境保護(hù)與生態(tài)修復(fù)研究。E-mail:hhuhjyhj@126.com
X171.5
A
1004-6933(2017)06-0001-08
2017-06-23 編輯:徐 娟)