宋勤飛,牛素貞,陳正武,尹 杰,*,周紹均,岑春嬌
(1.貴州大學(xué) 茶學(xué)院,貴州 貴陽 550025; 2.貴州大學(xué) 茶葉工程技術(shù)研究中心,貴州 貴陽 550025; 3.貴州省茶葉研究所,貴州 貴陽 550006; 4.遵義市產(chǎn)品質(zhì)量檢驗(yàn)檢測院,貴州 遵義 563000)
基于主成分分析的花溪古茶樹立地土壤養(yǎng)分評(píng)價(jià)
宋勤飛1,2,牛素貞1,2,陳正武3,尹 杰1,2,*,周紹均4,岑春嬌1
(1.貴州大學(xué) 茶學(xué)院,貴州 貴陽 550025; 2.貴州大學(xué) 茶葉工程技術(shù)研究中心,貴州 貴陽 550025; 3.貴州省茶葉研究所,貴州 貴陽 550006; 4.遵義市產(chǎn)品質(zhì)量檢驗(yàn)檢測院,貴州 遵義 563000)
為明確貴州花溪古茶樹土壤養(yǎng)分狀況,為古茶樹的保護(hù)和合理開發(fā)利用提供參考,對(duì)黔陶、馬鈴、久安、高坡等花溪古茶樹集中分布區(qū)37份立地土壤進(jìn)行理化檢測,分析其養(yǎng)分含量間的相關(guān)性,并采用主成分分析法對(duì)土壤養(yǎng)分狀況進(jìn)行綜合評(píng)價(jià)。結(jié)果表明,花溪古茶樹立地土壤pH值均值為4.77,總體處于適宜狀態(tài);土壤有機(jī)質(zhì)、堿解氮、速效鉀含量較為豐富;但59.45%的土壤全氮含量極低,91.89%和86.49%的土壤全磷和有效磷含量極低,處于缺磷狀態(tài);大部分土壤交換性鈣、交換性鋁含量均處于茶樹生長適宜范圍;花溪古茶樹土壤有效錳變異范圍較大,僅有40.54%的土壤有效錳處于適宜范圍。主成分分析表明,花溪古茶樹立地土壤IFI值在8.11~32.89,均值為19.23,屬于中等以上肥力的土壤占到64.86%,土壤肥力質(zhì)量總體水平屬于良好。其中馬鈴?fù)寥鲤B(yǎng)分狀況最好,其次是久安和高坡,黔陶古茶樹土壤養(yǎng)分狀況最差。對(duì)花溪古茶樹應(yīng)重點(diǎn)增施氮磷肥。
花溪;古茶樹;土壤養(yǎng)分;主成分分析
云貴高原是茶樹起源中心,生長著大量野生、半野生(過渡)和栽培型古茶樹[1]。古茶樹因其進(jìn)化上的原始性、極強(qiáng)的抗逆性、豐富的遺傳基因,是研究茶樹起源、演化和分類的重要材料和依據(jù)。許多古茶樹還蘊(yùn)含特異的生化成分[1],極具開發(fā)利用價(jià)值?;ㄏ靥幥械貐^(qū),境內(nèi)久安、黔陶、燕樓、馬鈴、高坡等鄉(xiāng)鎮(zhèn)分布著一定數(shù)量的古茶樹。其中花溪久安鄉(xiāng)的古茶樹是目前發(fā)現(xiàn)的規(guī)模最大的灌木型古茶樹居群,樹齡多在600年以上,數(shù)量達(dá)到5萬多株[2-3]。目前花溪古茶樹除久安建立了古茶園進(jìn)行保護(hù)外,大部分古茶樹長期處于無人管理狀態(tài),茶樹生長從土壤中吸收的養(yǎng)分不能得到及時(shí)補(bǔ)充使其立地土壤環(huán)境逐漸惡化,加上人類活動(dòng)的影響,其生態(tài)環(huán)境不容樂觀[2]。
土壤是茶樹生長的重要載體。土壤養(yǎng)分狀況直接影響著茶樹的生長狀況,決定著茶樹的產(chǎn)量和品質(zhì)。前人對(duì)湖南[4]、浙江[5]、福建[6]、陜西[7]、河南[8]、貴州[9-11]等主要茶區(qū)茶園土壤環(huán)境和養(yǎng)分狀況都進(jìn)行了相關(guān)研究和評(píng)價(jià);也有研究者對(duì)云南景邁山和六大茶山[12]、貴州黔西南州[13]等地古茶樹立地土壤養(yǎng)分進(jìn)行了分析,但還未見對(duì)花溪古茶樹立地土壤養(yǎng)分綜合評(píng)價(jià)的報(bào)告。本研究以花溪古茶樹較為集中的久安、黔陶、高坡、馬鈴等地作為調(diào)查區(qū)域,通過對(duì)古茶樹生長地土壤取樣分析,并采用主成分分析對(duì)花溪古茶樹立地土壤養(yǎng)分狀況進(jìn)行評(píng)價(jià),以期全面了解花溪古茶樹立地土壤肥力狀況,為改良古茶樹土壤環(huán)境,科學(xué)保護(hù)古茶樹、合理開發(fā)利用古茶樹提供理論依據(jù)。
1.1 樣品采集與處理
在前期調(diào)研基礎(chǔ)上,確定花溪古茶樹分布較為集中的馬林、黔陶、久安、高坡為調(diào)查區(qū)域,在每個(gè)區(qū)域選取具有代表性的茶樹生長點(diǎn)進(jìn)行土樣采集,采樣點(diǎn)基本情況見表1。按照隨機(jī)、等量和多點(diǎn)混合的原則采集土樣,在同一采樣點(diǎn)上,沿茶樹最外側(cè)滴水線處按“S”形取5個(gè)小樣點(diǎn),土樣采集深度為10~30 cm,將各采樣點(diǎn)土壤樣品混合均勻,用四分法取樣1 kg左右?guī)Щ貙?shí)驗(yàn)室,經(jīng)自然風(fēng)干,去除石塊、樹根、雜草后磨細(xì),分別過2 mm、0.25 mm網(wǎng)篩,混勻。裝自封袋后備用。
1.2 方法
1.2.1 土壤理化指標(biāo)測定方法
參考鮑士旦[13]的方法對(duì)所采土樣的pH、有機(jī)質(zhì)、全氮、堿解氮、全磷、速效磷、速效鉀、交換性鈣、交換性鋁和有效錳等指標(biāo)進(jìn)行測定。每指標(biāo)重復(fù)測定3次。pH測定采用水浸提電位法(水土比為2.5∶1.0);有機(jī)質(zhì)的測定采用重鉻酸鉀容量法;全氮測定采用半微量凱氏定氮法;堿解氮測定采用堿解擴(kuò)散法;全磷測定采用高氯酸—硫酸法;速效磷測定采用0.05 mol·L-1鹽酸—0.025 mol·L-1硫酸法;速效鉀測定采用火焰光度法;交換性鈣測定采用1 mol·L-1乙酸銨振蕩浸提—原子吸收分光光度法;交換性鋁測定采用1 mol·L-1KCl交換—中和滴定法;有效錳測定采用DTPA浸提—原子吸收分光光度法。
1.2.2 土壤養(yǎng)分評(píng)價(jià)標(biāo)準(zhǔn)
綜合第二次全國土壤普查養(yǎng)分分級(jí)標(biāo)準(zhǔn)[14]、國家綠色食品產(chǎn)地質(zhì)量標(biāo)準(zhǔn)(NY/T391—2000)[15]、茶葉產(chǎn)地環(huán)境技術(shù)條件(NY/T853—2004)[16]中茶園土壤的肥力分級(jí)標(biāo)準(zhǔn)對(duì)花溪古茶樹集中分布區(qū)土壤養(yǎng)分狀況進(jìn)行分級(jí)評(píng)價(jià)。具體分級(jí)標(biāo)準(zhǔn)見表2。
表1取樣點(diǎn)地理信息及土壤情況
Table1Geography and soil condition of sampling spot
編號(hào)取樣點(diǎn)立地海拔成土母巖土壤類型NumberSamplingspotAltitude/mSoilmotherrockSoiltypeHX-1黔陶鄉(xiāng)1Qiantao11086黃色砂巖Yellowsandstone黃壤YellowsoilHX-2黔陶鄉(xiāng)2Qiantao21069黃色砂巖Yellowsandstone黃壤YellowsoilHX-3黔陶鄉(xiāng)3Qiantao31060黃色砂巖Yellowsandstone黃壤YellowsoilHX-4黔陶鄉(xiāng)4Qiantao41061黃色砂巖Yellowsandstone黃壤YellowsoilHX-5黔陶鄉(xiāng)5Qiantao51064黃色砂巖Yellowsandstone黃壤YellowsoilHX-6黔陶鄉(xiāng)6Qiantao61055黃色砂巖Yellowsandstone黃壤YellowsoilHX-7黔陶鄉(xiāng)7Qiantao71056黃色砂巖Yellowsandstone黃壤YellowsoilHX-8黔陶鄉(xiāng)8Qiantao81067黃色砂巖Yellowsandstone黃壤YellowsoilHX-9黔陶鄉(xiāng)9Qiantao91071黃色砂巖Yellowsandstone黃壤YellowsoilHX-10黔陶鄉(xiāng)10Qiantao101037黃色砂巖Yellowsandstone黃壤YellowsoilHX-11黔陶鄉(xiāng)11Qiantao111054黃色砂巖Yellowsandstone黃壤YellowsoilHX-12黔陶鄉(xiāng)12Qiantao121061黃色砂巖Yellowsandstone黃壤YellowsoilHX-13黔陶鄉(xiāng)13Qiantao131058黃色砂巖Yellowsandstone黃壤YellowsoilHX-14馬鈴鄉(xiāng)1Maling11204黃色砂巖Yellowsandstone黃壤YellowsoilHX-15馬鈴鄉(xiāng)2Maling21202黃色砂巖Yellowsandstone黃壤YellowsoilHX-16馬鈴鄉(xiāng)3Maling31225黃色砂巖Yellowsandstone黃壤YellowsoilHX-17馬鈴鄉(xiāng)4Maling41220黃色砂巖Yellowsandstone黃壤YellowsoilHX-18馬鈴鄉(xiāng)5Maling51216黃色砂巖Yellowsandstone黃壤YellowsoilHX-19馬鈴鄉(xiāng)6Maling61217黃色砂巖Yellowsandstone黃壤YellowsoilHX-20馬鈴鄉(xiāng)7Maling71241黃色砂巖Yellowsandstone黃壤YellowsoilHX-21馬鈴鄉(xiāng)8Maling81201黃色砂巖Yellowsandstone黃壤YellowsoilHX-22馬鈴鄉(xiāng)9Maling91222黃色砂巖Yellowsandstone黃壤YellowsoilHX-23馬鈴鄉(xiāng)10Maling101215黃色砂巖Yellowsandstone黃壤YellowsoilHX-24馬鈴鄉(xiāng)11Maling111231黃色砂巖Yellowsandstone黃壤YellowsoilHX-25馬鈴鄉(xiāng)12Maling121242黃色砂巖Yellowsandstone黃壤YellowsoilHX-26馬鈴鄉(xiāng)13Maling131214黃色砂巖Yellowsandstone黃壤YellowsoilHX-27馬鈴鄉(xiāng)14Maling141225黃色砂巖Yellowsandstone黃壤YellowsoilHX-28久安鄉(xiāng)1Jiuan11253黃色砂巖Yellowsandstone黃壤YellowsoilHX-29久安鄉(xiāng)2Jiuan21292黃色砂巖Yellowsandstone黃壤YellowsoilHX-30久安鄉(xiāng)3Jiuan31261黃色砂巖Yellowsandstone黃壤YellowsoilHX-31久安鄉(xiāng)4Jiuan41262黃色砂巖Yellowsandstone黃壤YellowsoilHX-32久安鄉(xiāng)5Jiuan51276黃色砂巖Yellowsandstone黃壤YellowsoilHX-33久安鄉(xiāng)6Jiuan61321黃色砂巖Yellowsandstone黃壤YellowsoilHX-34高坡鄉(xiāng)1Gaopo11305石英砂巖Quartzsandstone黃壤YellowsoilHX-35高坡鄉(xiāng)2Gaopo21308石英砂巖Quartzsandstone黃壤YellowsoilHX-36高坡鄉(xiāng)3Gaopo31355石英砂巖Quartzsandstone黃壤YellowsoilHX-37高坡鄉(xiāng)4Gaopo41347石英砂巖Quartzsandstone黃壤Yellowsoil
1.2.3 土壤養(yǎng)分評(píng)價(jià)方法
采用因子分析提取主成分分析法(PCA),綜合各土壤養(yǎng)分指標(biāo)對(duì)花溪區(qū)古茶樹立地土壤養(yǎng)分進(jìn)行綜合評(píng)價(jià)[17]。PCA法通過因子分析確定參評(píng)土壤指標(biāo)主成分特征值和特征向量,根據(jù)主成分累計(jì)貢獻(xiàn)率,選擇關(guān)鍵主成分,計(jì)算各主成分得分,再利用綜合得分公式求出各取樣點(diǎn)土壤養(yǎng)分綜合分評(píng)價(jià)值(IFI)。
IFI=λ1F1+λ2F2+……….+λmFm。
式中F表示單個(gè)主成分得分;λ表示對(duì)應(yīng)主成分的貢獻(xiàn)率。再根據(jù)土壤養(yǎng)分綜合評(píng)價(jià)值,采用類平均法對(duì)土壤樣品進(jìn)行聚類分析[9],評(píng)價(jià)其養(yǎng)分高低。
1.3 數(shù)據(jù)統(tǒng)計(jì)分析
所有試驗(yàn)數(shù)據(jù)采用EXCEL2010和SPSS19.0統(tǒng)計(jì)軟件進(jìn)行分析處理。
表2茶園土壤養(yǎng)分分級(jí)標(biāo)準(zhǔn)
Table2Classification of soil nutrient status of tea plants
指標(biāo)Index等級(jí)GradeⅠⅡⅢpH<4.54.5~5.5>5.5有機(jī)質(zhì)Organicmatter/(g·kg-1)>2015~20<15全氮Totalnitrogen/(g·kg-1)>10.8~1.0<0.8全磷Totalphosphorus/(g·kg-1)>1.00.4~1.0<0.4堿解氮Availablenitrogen/(mg·kg-1)>10080~100<80速效磷Availablephosphorus/(mg·kg-1)>105~10<5速效鉀Availablepotassium/(mg·kg-1)>10060~100<60交換性鈣Exchangeablecalcium/(cmol·kg-1)<44~9>9交換性鋁Exchangeablealuminum/(cmol·kg-1)<33~4>4有效錳Availablemanganese/(mg·kg-1)<3030~80>80
2.1花溪古茶樹立地土壤養(yǎng)分含量情況
茶樹是喜酸性植物,土壤酸堿性直接影響茶樹生長及品質(zhì)形成,茶樹適宜的土壤pH為4.0~6.5,最適宜pH值為4.5~5.5[18]。從表3可知,花溪古茶樹立地土壤pH含量在3.99~5.44,均值為4.77。除HX-4、HX-12、HX-30、HX-31等4個(gè)點(diǎn)土壤pH低于4.5外,其余33個(gè)點(diǎn),89.19%的土壤pH處于4.5~5.5,即茶樹生長最適宜的pH范圍,說明花溪古茶樹生長地大部分區(qū)域土壤pH值較為適宜。茶樹生長過程中根系分泌有機(jī)酸及茶樹生物學(xué)物質(zhì)循環(huán)等原因都會(huì)導(dǎo)致土壤酸化,且酸化程度會(huì)隨著植茶年限的增加而加劇[19]?;ㄏ挪铇渖L年限多在幾百年以上,但其土壤酸化現(xiàn)象并不明顯,這可能與本身花溪處于喀斯特地區(qū),土壤本底pH值偏高以及茶樹本身的適應(yīng)性等有關(guān)。
表3顯示,花溪古茶樹集中分布區(qū)立地土壤有機(jī)質(zhì)含量范圍在15.64~47.28 g·kg-1,均值為26.18 g·kg-1,變異系數(shù)為27.18%,處于中等變異。37個(gè)取樣點(diǎn)中,除HX-1、HX-4、HX-5、HX-6等4個(gè)點(diǎn)土壤有機(jī)質(zhì)含量低于20 g·kg-1,處于Ⅱ級(jí)外,其余33個(gè)點(diǎn)的土壤有機(jī)質(zhì)含量都大于20 g·kg-1,處于Ⅰ級(jí)狀態(tài)。表明花溪古茶樹集中分布區(qū)絕大部分土壤有機(jī)質(zhì)含量豐富。這可能與古茶樹生長年限較長,大量的枯枝落葉等在地面積累,形成大量腐殖質(zhì)有關(guān),且茶樹本身含有較多的多酚類物質(zhì)會(huì)抑制土壤微生物和土壤酶活性[20],從而使土壤有機(jī)質(zhì)含量豐富。
氮是茶樹生長必需元素之一,氮有利于蛋白質(zhì)、氨基酸、葉綠素等的積累,對(duì)茶葉產(chǎn)量和品質(zhì)的形成具有重要作用。從表3可知,花溪古茶樹立地土壤全氮含量在0.01~2.83 g·kg-1,均值為0.76 g·kg-1,變異系數(shù)為100.6,屬于高變異,表明各個(gè)取樣點(diǎn)之間土壤全氮含量差異較大,平均值代表性不強(qiáng)。有12個(gè)取樣點(diǎn),即32.43%的土壤全氮含量豐富,達(dá)到Ⅰ級(jí)標(biāo)準(zhǔn);有3個(gè)取樣點(diǎn),即8.10%的土壤全氮含量尚可,處于Ⅱ級(jí)標(biāo)準(zhǔn);而其余22個(gè)取樣點(diǎn),59.45%的土壤全氮含量極低,處于Ⅲ級(jí)標(biāo)準(zhǔn),表明花溪古茶樹生長地約一半的土壤都處于全氮缺乏的狀態(tài)。花溪古茶樹立地土壤堿解氮的含量在136.50~315.2 mg·kg-1,均值為233.26 mg·kg-1,變異系數(shù)為23.07%,屬于中等變異。所有37個(gè)取樣點(diǎn)土壤堿解氮含量都達(dá)到Ⅰ級(jí)標(biāo)準(zhǔn)之上,表明花溪古茶樹生長地土壤堿解氮含量豐富。出現(xiàn)這一現(xiàn)象的原因可能是部分古茶樹位于農(nóng)田邊上,農(nóng)業(yè)生產(chǎn)大量施肥以及農(nóng)戶習(xí)慣在田邊進(jìn)行漚肥處理等均會(huì)引起土壤中堿解氮等含量增加;久安古茶樹的取樣點(diǎn)位于古茶園內(nèi),每年政府都會(huì)進(jìn)行土壤施肥,導(dǎo)致土壤中堿解氮含量較高。
磷參與茶樹蛋白質(zhì)、核酸等的形成,參與光合呼吸等代謝活動(dòng),也參與茶葉品質(zhì)的形成。花溪古茶樹生長地土壤全磷含量范圍在0.09~1.33 g·kg-1,均值為0.25 g·kg-1,變異系數(shù)達(dá)到89.19%,屬于高變異,表明花溪古茶樹各個(gè)分布點(diǎn)之間土壤全磷含量差異較大。從分布來看,僅有HX-21、HX-28、HX-32等3個(gè)點(diǎn)土壤全磷含量達(dá)到Ⅱ級(jí)標(biāo)準(zhǔn),而余下34個(gè)點(diǎn)土壤全磷含量處于Ⅲ級(jí)狀態(tài),說明花溪古茶樹生長地絕大部分土壤全磷含量極低,處于缺磷狀態(tài)?;ㄏ挪铇渖L地土壤有效磷含量范圍為2.00~9.21 mg·kg-1,均值為3.62 mg·kg-1,變異系數(shù)為50.86%,屬于中等變異。除HX-30、HX-32、HX-33、HX-34、HX-35等5個(gè)點(diǎn)土壤有效磷含量在5.00~10.00 mg·kg-1,達(dá)到Ⅱ級(jí)標(biāo)準(zhǔn)外,其余32個(gè)取樣點(diǎn)土壤有效磷含量均小于5 mg·kg-1,處于Ⅲ級(jí)土壤狀態(tài),表明大部分花溪古茶樹生長地土壤速效磷處于缺乏狀態(tài)。導(dǎo)致花溪古茶樹立地土壤全磷和有效磷缺乏的主要原因可能是花溪處于喀斯特地區(qū),土壤發(fā)育時(shí),礦物營養(yǎng)元素流失嚴(yán)重,磷等元素本底含量偏低[21];此外喀斯特地區(qū)土壤中存在的大量游離碳酸鈣也會(huì)使大部分磷成為難溶性的磷酸鈣鹽,致使能被茶樹吸收利用的有效態(tài)磷含量降低[22]。
鉀在茶樹生長中主要以酶的活化劑形式參與代謝,促進(jìn)根系發(fā)育,作為滲透性物質(zhì)調(diào)節(jié)茶樹抗性。從表3可知,花溪古茶樹生長地的速效鉀含量范圍在53.97~266.3 mg·kg-1,均值為127.57 mg·kg-1。變異系數(shù)為38.87%,處于中等變異范圍。從分布看,26個(gè)取樣點(diǎn),約70.27%的土壤速效鉀含量較高,達(dá)到了土壤Ⅰ級(jí)標(biāo)準(zhǔn);余下11個(gè)取樣點(diǎn),約29.03%的土壤速效鉀含量達(dá)到Ⅱ級(jí)標(biāo)準(zhǔn)。表明花溪古茶樹生長地土壤中速效鉀含量較為豐富,且大部分土壤中速效鉀極為豐富。
表3花溪古茶樹立地土壤養(yǎng)分狀況
Table3Site soil nutrient contents of ancient tea tree in Huaxi
編號(hào)NumberpH有機(jī)質(zhì)Organicmatter/(g·kg-1)全氮Totalnitrogen/(g·kg-1)堿解氮Availablenitrogen/(mg·kg-1)全磷Totalphosphorus/(g·kg-1)速效磷Availablephosphorus/(mg·kg-1)速效鉀Availablepotassium/(mg·kg-1)交換性鈣Exchangeablecalcium/(cmol·kg-1)交換性鋁Exchangeablealuminum/(cmol·kg-1)有效錳Availablemanganese/(mg·kg-1)HX-15.0215.640.07170.800.322.72266.301.393.9227.00HX-24.7220.530.81252.930.252.7953.970.746.0718.73HX-35.1320.300.05161.930.282.4462.454.926.1315.29HX-44.4419.540.11149.330.172.2678.870.543.971.85HX-54.7419.770.04268.800.092.9058.350.692.2913.36HX-64.7619.220.14234.030.362.90109.450.522.2918.90HX-75.1222.730.07165.430.102.2490.730.542.0019.02HX-85.3623.801.80177.100.132.8789.972.072.0373.02HX-95.1923.250.15284.670.123.6691.091.201.4727.95HX-104.7220.761.22191.570.243.66234.020.593.5256.48HX-114.5220.230.29234.270.232.9891.340.652.438.22HX-124.4021.460.01136.500.182.3359.453.103.874.79HX-134.5020.110.22152.600.312.31114.543.722.7911.18HX-144.6726.650.81217.930.123.55152.951.313.0373.18HX-154.7425.660.23281.400.092.85191.171.652.4023.81HX-164.5825.870.07255.500.122.94110.562.403.2860.15HX-174.7526.571.06258.770.232.81167.962.693.7130.60HX-184.4326.210.41265.070.112.92105.352.283.5815.58HX-194.5425.160.42271.130.182.57140.031.872.9814.39HX-204.6124.940.72217.000.092.96198.172.122.4555.23HX-214.8025.961.00288.630.424.12116.632.391.6756.98HX-225.1224.970.29225.870.102.81150.972.761.08121.28HX-234.5326.180.43276.030.292.92193.021.794.8151.29HX-244.6726.241.11278.370.373.66151.673.173.5390.10HX-254.7326.060.20225.870.342.79142.523.371.4197.13HX-264.8425.580.20247.800.232.63144.853.481.1470.54HX-274.7626.250.36291.900.142.00103.503.474.0814.51HX-284.8425.261.21290.030.754.4290.244.061.0098.30HX-294.5524.811.23315.230.124.4972.944.221.6733.35HX-303.9933.401.00166.130.118.71199.481.8612.227.32HX-314.1525.690.52152.370.092.50112.282.7213.0947.97HX-324.6547.282.59295.401.339.21136.264.013.9615.14HX-335.1644.652.61305.900.396.35102.265.6810.4536.54HX-345.3343.242.83299.600.288.34146.205.282.3258.51HX-354.9341.101.92164.970.296.76153.226.964.1734.31HX-365.4426.670.90196.470.183.07116.064.141.7656.49HX-375.0727.020.88263.200.212.61121.323.082.0526.17平均值Mean4.7726.180.76233.260.253.62127.572.633.6440.13最小值Min3.9915.640.01136.500.092.0053.970.521.001.85最大值Max5.4447.282.83315.231.339.21266.306.9613.09121.28標(biāo)準(zhǔn)差SD0.327.120.7653.810.231.8449.581.592.8130.11變異系數(shù)CV/%6.7727.18100.6623.0789.1950.8638.8760.2677.1575.03
茶樹為嫌鈣性植物,對(duì)鈣的需求量較小?;ㄏ挪铇渖L地交換性鈣的含量范圍為0.52~6.96 cmol·kg-1,均值為2.63 cmol·kg-1,變異系數(shù)為60.26,處于中等變異范圍。除HX-3、HX-28、HX-29、HX-32、HX-33、HX-34、HX-35、HX-36等8個(gè)點(diǎn)土壤交換性鈣含量處于Ⅱ級(jí)標(biāo)準(zhǔn)外,其余29個(gè)點(diǎn),約78.38%的土壤交換性鈣含量均低于4 cmol·kg-1,處于Ⅰ級(jí)標(biāo)準(zhǔn)范圍。表明花溪古茶樹大部分立地土壤中交換性鈣的含量都較低,適于茶樹的生長。
茶樹為嗜鋁性植物,樹體中鋁含量要遠(yuǎn)高于一般農(nóng)作物[23]?;ㄏ挪铇淞⒌赝寥澜粨Q性鋁含量范圍為1.00~13.09 cmol·kg-1,均值為3.64 cmol·kg-1,變異系數(shù)為77.15%,屬于中等變異范圍。從分布看,18個(gè)取樣點(diǎn)土壤交換性鋁含量達(dá)到Ⅰ級(jí)標(biāo)準(zhǔn),11個(gè)取樣點(diǎn)土壤交換性鋁含量達(dá)到Ⅱ級(jí)標(biāo)準(zhǔn),8個(gè)取樣點(diǎn)土壤交換性鋁含量達(dá)到Ⅲ級(jí)標(biāo)準(zhǔn)??傮w來看花溪古茶樹土壤交換性鋁含量適中,比較適宜茶樹生長,這與茶樹長期生長在酸性土壤中,適應(yīng)了土壤中較高的鋁含量有關(guān)。
茶樹具有富錳特性,茶樹體內(nèi)錳含量可達(dá)0.1%以上。錳可促進(jìn)茶樹氮代謝,提高多酚氧化酶活性,穩(wěn)定葉綠體,參與茶樹維生素C的合成等?;ㄏ挪铇淞⒌赝寥烙行уi含量范圍為1.85~121.28 mg·kg-1,均值為40.13 mg·kg-1,變異系數(shù)為75.03%,屬于中等變異范圍。從分布看,HX-22、HX-24、HX-25、HX-28等4個(gè)取樣點(diǎn)土壤有效錳含量處于Ⅲ級(jí)標(biāo)準(zhǔn),已處于過量范圍;18個(gè)取樣點(diǎn)土壤有效錳含量處于Ⅰ級(jí)標(biāo)準(zhǔn),即缺乏狀態(tài);只有15個(gè)取樣點(diǎn)土壤有效錳含量處于Ⅱ級(jí)標(biāo)準(zhǔn),即適量范圍。
2.2土壤養(yǎng)分相關(guān)性分析
從表4可知,花溪古茶樹立地土壤有機(jī)質(zhì)和全氮、全磷、速效磷、有效錳等4個(gè)指標(biāo)達(dá)到極顯著正相關(guān),與有機(jī)質(zhì)與堿解氮達(dá)到顯著正相關(guān);全氮與堿解氮達(dá)到顯著正相關(guān),與全磷、速效磷、有效錳之間達(dá)到了極顯著正相關(guān);全磷與速效磷之間也達(dá)到極顯著正相關(guān)。表明花溪古茶樹集中分布區(qū)土壤養(yǎng)分指標(biāo)之間存在一定的相關(guān)性,且所有指標(biāo)均未被剔除,符合因子分析的前提條件,可以進(jìn)行主成分分析。
表4花溪古茶樹立地土壤養(yǎng)分相關(guān)性
Table4The correlation among site soil nutrient contents of ancient tea tree in Huaxi
指標(biāo)IndexpH有機(jī)質(zhì)全氮堿解氮全磷速效磷速效鉀交換性鈣交換性鋁有效錳OrganicmatterTotalnitrogenAvailablenitrogenTotalphosphorusAvailablephosphorusAvailablepotassiumExchangeablecalciumExchangeablealuminumAvailablemanga-nesepH1.000有機(jī)質(zhì)Organicmatter0.1371.000全氮Totalnitrogen0.2850.828**1.000堿解氮Availablenitrogen0.1470.347*0.327*1.000全磷Totalphosphorus0.0450.467**0.486**0.2801.000速效磷Availablephosphorus0.0020.842**0.789**0.2400.517**1.000速效鉀Availablepotassium-0.0800.1180.105-0.0620.0280.1951.000交換性鈣Exchangeablecalcium0.3090.0900.1790.1720.058-0.0090.2391.000交換性鋁Exchangeablealumi-num-0.431**0.2760.177-0.262-0.0460.2980.065-0.2881.000有效錳Availablemanganese0.2860.655**0.558**0.1300.3120.451**-0.0810.2060.1091.000
*,**分別表示達(dá)到顯著(P<0.05)、極顯著(P<0.01)相關(guān)性。
*,** represents the signficance at the level of 0.05 and 0.01, respectively.
2.3花溪古茶樹立地土壤養(yǎng)分主成分分析
從表5可知,前4個(gè)主成分的貢獻(xiàn)率分別是36.775%、18.537%、11.855%、10.117%,當(dāng)主成分個(gè)數(shù)達(dá)到4時(shí),累積貢獻(xiàn)率已達(dá)77.284%,即4個(gè)主成分代表了37個(gè)不同采樣點(diǎn)花溪古茶樹土壤養(yǎng)分77.284%的信息量。
從表6可知,第1主成分在有機(jī)質(zhì)、全氮、全磷、速效磷及有效錳等幾個(gè)指標(biāo)上有較高的載荷,特征值分別為0.935、0.913、0.629、0.869和0.704,說明第1主成分主要反映了有機(jī)質(zhì)、全氮、全磷、速效磷及有效錳幾個(gè)指標(biāo)的信息;第2主成分在pH、交換性鈣、交換性鋁等幾個(gè)指標(biāo)上有較高的載荷,特征值分別為0.721、0.607、-0.833,說明第2主成分主要反映了土壤pH、交換性鈣及交換性鋁幾個(gè)養(yǎng)分指標(biāo)的信息;第3主成分在速效鉀指標(biāo)上有較高載荷,特征值為0.906,說明第3主成分主要反映了速效鉀的信息;第4主成分在堿解氮指標(biāo)上有較高載荷,特征值為-0.595,說明第4主成分反映了堿解氮的信息。
表5特征值、貢獻(xiàn)率及累積貢獻(xiàn)率
Table5The eigenvalue, contribution rate and the cumulative contribution rate
主成分特征值貢獻(xiàn)率累積貢獻(xiàn)率PrincipalcomponentEigenvalueContributionrate/%Cumulativecontributionrate/%13.67836.77536.77521.85418.53755.31231.18511.85567.16741.01210.11777.28450.6776.77284.05660.6196.19090.24670.4104.10294.34880.3123.11997.46790.1521.52098.987100.1011.013100.000
表6各指標(biāo)主成分的特征向量
Table6The characteristics of the principal component vectors between all the indexes
指標(biāo)Index1234pH0.2470.721-0.0930.395有機(jī)質(zhì)Organicmatter0.935-0.147-0.0140.052全氮Totalnitrogen0.913-0.0020.0120.067堿解氮Availablenitrogen0.4180.388-0.208-0.595全磷Totalphosphorus0.6290.024-0.126-0.399速效磷Availablephosphor-us0.869-0.2890.063-0.099速效鉀Availablepotassium0.131-0.0840.906-0.166交換性鈣Exchangeablecalcium0.2060.6070.5170.134交換性鋁Exchangeablealuminum0.172-0.8330.0690.244有效錳Availablemanganese0.7040.091-0.1430.469
2.4花溪古茶樹集中分布區(qū)土壤養(yǎng)分綜合評(píng)價(jià)
用4個(gè)主成分對(duì)花溪古茶樹分布區(qū)不同采樣點(diǎn)土壤養(yǎng)分進(jìn)行綜合評(píng)價(jià)。綜合評(píng)價(jià)函數(shù)為IFI=0.36775F1+0.18537F2+0.11855F3+0.10117F4,按綜合評(píng)價(jià)函數(shù)計(jì)算出的不同取樣點(diǎn)花溪古茶樹立地土壤養(yǎng)分綜合成分得分及排序見表7。從表7可知,花溪古茶樹立地土壤綜合肥力綜合得分范圍在8.11~32.89,均值為19.23,變異系數(shù)為35.10%。從4個(gè)區(qū)域土壤肥力變異系數(shù)來看(表8),黔陶、馬鈴、久安、高坡土壤肥力變異系數(shù)分別為25.15%、48.48%、18.35%、16.98%,都處于中等變異范圍,說明各個(gè)區(qū)域內(nèi)部土壤肥力狀況差異不大。
以歐氏距離為衡量樣本間差異大小的依據(jù),采用類平均法進(jìn)行系統(tǒng)聚類可將37個(gè)樣本分為4類,即第Ⅰ類IFI≥32.89,第Ⅱ類25.07≤IFI≤29.38,第Ⅲ類16.19≤IFI≤22.38,第Ⅳ類8.11≤IFI≤14.25,分別代表土壤肥力高、較高、中等、低等4個(gè)等級(jí),結(jié)果見表8。從表8可知,花溪37個(gè)古茶樹土壤取樣點(diǎn)中,有27.03%、35.14%的土壤養(yǎng)分處于Ⅱ級(jí)和Ⅲ級(jí),說明花溪古茶樹土壤養(yǎng)分總體良好,但有35.14%的土壤肥力處于Ⅳ級(jí)狀態(tài),肥力較差,需要重點(diǎn)培肥。從表8還可看出,花溪古茶樹分布較為集中的黔陶、久安、馬鈴及高坡4個(gè)地方土壤養(yǎng)分狀況不盡相同。從綜合得分來看,來自馬鈴的14個(gè)取樣點(diǎn)土壤養(yǎng)分的綜合得分較高,其中7.14%的土壤養(yǎng)分達(dá)到Ⅰ級(jí)狀態(tài),42.86%的取樣點(diǎn)土壤養(yǎng)分達(dá)到Ⅱ級(jí)狀態(tài),31.25%的土壤養(yǎng)分達(dá)到Ⅲ級(jí)狀態(tài),表明馬鈴古茶樹立地土壤養(yǎng)分狀況總體較好。來自黔陶的13個(gè)取樣點(diǎn)土壤養(yǎng)分綜合得分最低,其中有76.92%的土壤養(yǎng)分處于Ⅳ級(jí),表明黔陶古茶樹立地土壤養(yǎng)分狀況較差。來自久安6個(gè)取樣點(diǎn)的土壤中,有2個(gè)處于Ⅱ級(jí)狀態(tài),2個(gè)處于Ⅲ級(jí)狀態(tài),2個(gè)處于Ⅳ級(jí)狀態(tài)。高坡的4個(gè)土壤樣本中,分別有25%和75%的土壤處于Ⅱ級(jí)、Ⅲ級(jí)狀態(tài),表明久安和高坡兩地古茶樹立地土壤養(yǎng)分狀態(tài)處于中等狀態(tài)。
表7花溪古茶樹不同取樣點(diǎn)土壤養(yǎng)分綜合指標(biāo)值及排序
Table7The comprehensive composition and sorting from different site soil of ancient tea tree in Huaxi
編號(hào)IFI排序取樣點(diǎn)編號(hào)IFI排序取樣點(diǎn)NumberSortingSamplingspotNumberSortingSamplingspotHX-2232.891馬鈴MalingHX-3318.7420久安JiuanHX-1029.382黔陶QiantaoHX-3218.6521久安JiuanHX-2528.793馬鈴MalingHX-3118.6222久安JiuanHX-2428.554馬鈴MalingHX-3716.8723高坡GaopoHX-127.145黔陶QiantaoHX-1916.1924馬鈴MalingHX-2026.826馬鈴MalingHX-914.2525黔陶QiantaoHX-1425.967馬鈴MalingHX-2914.1526久安JiuanHX-2325.88馬鈴MalingHX-613.8327黔陶QiantaoHX-3425.699高坡GaopoHX-1813.7428馬鈴MalingHX-2825.0810久安JiuanHX-2713.5529馬鈴MalingHX-2625.0711馬鈴MalingHX-1313.4330黔陶QiantaoHX-3522.3812高坡GaopoHX-712.6531黔陶QiantaoHX-1521.6713馬鈴MalingHX-1110.9132黔陶QiantaoHX-1721.0514馬鈴MalingHX-310.0333黔陶QiantaoHX-3621.0415高坡GaopoHX-29.4834黔陶QiantaoHX-820.9816黔陶QiantaoHX-59.0435黔陶QiantaoHX-2120.9217馬鈴MalingHX-48.7836黔陶QiantaoHX-1620.6518馬鈴MalingHX-128.1137黔陶QiantaoHX-3020.5019久安Jiuan
表8花溪古茶樹土壤肥力綜合指標(biāo)值及不同肥力等級(jí)土壤所占比例
Table8IFIand ratio of different soil fertility grades of different sampling spots of ancient tea tree in Huaxi
取樣點(diǎn)Samplingspot樣本數(shù)Samplenumber變幅Amplitude均值Mean標(biāo)準(zhǔn)差Standarddeviation變異系數(shù)Coefficientofvariation/%不同肥力土壤所占比例/%ProportionsoilgradingineachsamplingspotⅠⅡⅢⅣ馬鈴Maling1413.55~32.8922.985.7825.157.1442.8631.2514.29黔陶Qiantao138.11~29.3814.467.0148.48015.387.6976.92久安Jiuan614.15~25.0819.293.5418.35016.6766.6716.67高坡Gaopo416.87~25.6921.503.6516.98025.0075.000合計(jì)Total378.11~32.8919.236.7535.102.7027.0335.1435.14
土壤養(yǎng)分狀態(tài)對(duì)茶樹養(yǎng)分吸收同化、生長代謝、抗性生理以及茶多酚、咖啡堿、氨基酸等特征性成分的形成等方面具有重要作用[24]。古茶樹由于長期處于無人管理狀態(tài),土壤養(yǎng)分分布極不均勻。從本研究可看出,花溪古茶樹大部分立地土壤pH含量處于適宜范圍,僅有少量土壤有酸化趨勢(shì),對(duì)這部分土壤可通過適當(dāng)施用生理堿性肥料來緩解?;ㄏ挪铇淞⒌赝寥烙袡C(jī)質(zhì)含量較為豐富,土壤堿解氮、速效鉀含量也較為豐富,大部分花溪古茶樹立地土壤交換性鈣和交換性鋁含量也處于茶樹生長適宜范圍,利于茶樹的生長。但91.89%和86.49%的土壤全磷和有效磷含量極低,處于缺磷狀態(tài),提示花溪絕大部分古茶樹生長地都亟需施磷肥。花溪古茶樹立地土壤有效錳,僅有40.54%的土壤有效錳處于適宜范圍,而各有20%左右的土壤有效錳處于缺乏或過量狀態(tài),在施肥時(shí)應(yīng)根據(jù)實(shí)際情況進(jìn)行調(diào)整。
本研究選取花溪古茶樹立地土壤pH值、有機(jī)質(zhì)、全氮、堿解氮、全磷、有效磷、速效鉀、交換性鈣、交換性鋁、有效錳等10個(gè)指標(biāo)進(jìn)行土壤養(yǎng)分主成分分析,結(jié)果表明花溪古茶樹立地土壤總體狀態(tài)良好。花溪大部分古茶樹分布區(qū)域周邊伴生植物較為豐富,生態(tài)環(huán)境良好,大量枯枝落葉及動(dòng)物腐尸等有利于土壤表面積累大量有機(jī)質(zhì),加之古茶樹在長期生長過程中根系分泌物的大量積累導(dǎo)致土壤微生物活動(dòng)、土壤理化結(jié)構(gòu)的改善,使土壤中肥力能夠較好地維持。綜合4個(gè)區(qū)域土壤養(yǎng)分評(píng)價(jià)來看,馬鈴古茶樹立地土壤肥力最好,其次是久安和高坡,黔陶古茶樹立地土壤肥力狀況最差。馬鈴古茶樹分布區(qū)距離居民點(diǎn)較近,且多在田邊地坎,受人類活動(dòng)影響較大,農(nóng)業(yè)生產(chǎn)中施肥等可能提高了土壤中養(yǎng)分物質(zhì)含量;久安古茶樹群由于政府保護(hù)力度較大,近年針對(duì)古茶樹茶園進(jìn)行了施肥活動(dòng),提高了土壤肥力;而黔陶古茶樹主要分布在荒山中,長期處于無人管理狀態(tài),土壤養(yǎng)分狀態(tài)較差。針對(duì)這類古茶樹,政府應(yīng)加大保護(hù)力度,制定科學(xué)合理的土壤培肥措施,提高土壤肥力,改善古茶樹生長環(huán)境。
[1] 陳正武,劉紅梅,曹雨,等.貴州野生茶樹資源及地方品種變異類型的保護(hù)與利用[J].貴州農(nóng)業(yè)科學(xué),2009,37(7):188-190.
CHEN Z W,LIU H M,CAO Y, et al. Protection and utilization of variation type of wild tea resources and local tea varieties in Guizhou[J].GuizhouAgriculturalSciences,2009,37(7):188-190. (in Chinese with English abstract)
[2] 田永輝,梁遠(yuǎn)發(fā),鄢東海,等.貴州野生茶樹資源的地理分布與生態(tài)型[J].貴州科學(xué), 2008, 26 (2):160-161.
TIAN Y H,LIANG Y F,YAN D H, et al. Geographical distribution and ecotype of Guizhou’s wild tea tree resources[J].GuizhouScience, 2008, 26 (2):160-161. (in Chinese with English abstract)
[3] 張明露.關(guān)于貴州花溪久安鄉(xiāng)古茶樹資源保護(hù)利用[J].貴州茶葉,2011,40(1):22-23.
ZHANG M L. Protection and utilization of the ancient tea tree in Jiuan Huaxi of Guizhou province[J].GuizhouTea,2011,40(1):22-23.(in Chinese)
[4] 傅海平,張亞蓮,常碩其,等.茶園土壤肥力質(zhì)量的綜合評(píng)價(jià)[J].江西農(nóng)業(yè)學(xué)報(bào),2011,23(3):78-81.
FU H P,ZHANG Y L,CHANG S Q, et al. Comprehensive evaluation of quality of soil fertility in tea garden[J].ActaAgriculturaeJiangxi,2011,23(3):78-81. (in Chinese with English abstract)
[5] 余悅虎,陶建明,陳福明,等.茶葉基地土壤環(huán)境與肥力質(zhì)量評(píng)價(jià)研究[J].農(nóng)業(yè)與技術(shù),2014,34(2):6-7.
YU Y H, TAO J M, CHEN F M, et al. Quality Assessment for soil environment and fertility in the tea base[J].AgricultureandTechnology, 2014,34(2): 6-7. (in Chinese)
[6] 江福英,吳志丹,尤志明,等.閩東地區(qū)茶園土壤養(yǎng)分肥力質(zhì)量評(píng)價(jià)[J].福建農(nóng)業(yè)學(xué)報(bào),2012,27(4):379-384.
JIANG F Y,WU Z D,YOU Z M, et al. Evaluation of soil fertility quality of tea gardens in eastern Fujian[J].FujianJournalofAgriculturalSciences, 2012,27(4):379-384. (in Chinese with English abstract)
[7] 高婷,肖斌,王麗霞,等.陜西商南茶區(qū)生態(tài)環(huán)境分析與綜合評(píng)價(jià)[J].西北農(nóng)林科技大學(xué)學(xué)報(bào)(自然科學(xué)版),2013,41(9):119-126.
GAO T, XIAO B, WANG L X, et al. Analysis and comprehensive evaluation of ecological environment of tea planting area in Shangnan,Shangxi[J].JournalofNorthwestA&FUniversity(NaturalScienceEdition),2013,41(9):119-126. (in Chinese with English abstract)
[8] 劉超良,吳克寧,呂巧靈,等.信陽毛尖茶生長環(huán)境的土壤特性分析[J].河北農(nóng)業(yè)大學(xué)學(xué)報(bào),2006,40(3):274-278.
LIU C L, WU K N, LU Q L, et al. Analysis on soil characters of the growing environment of Xinyangmaojian tea[J].JournalofHenanAgriculturalUniversity,2006,40(3):274-278. (in Chinese with English abstract)
[9] 趙華富,周國蘭,劉曉霞,等.貴州茶區(qū)土壤養(yǎng)分狀況綜合評(píng)價(jià)[J].中國土壤與肥料,2012(3):30-34.
ZHAO H F, ZHOU G L, LIU X X, et al. Comprehensive evaluation on tea garden soil fertility status of tea planting areas in Guizhou[J].SoilsandFertilizersSciencesinChina,2012(3):30-34. (in Chinese with English abstract)
[10] 張小琴,陳娟,高秀兵,等.貴州重點(diǎn)茶區(qū)茶園土壤pH值和主要養(yǎng)分分析[J].西南農(nóng)業(yè)學(xué)報(bào),2015,28(1):286-291.
ZHANG X Q, CHEN J, GAO X B, et al. Analysis on pH and major soil nutrients of tea gardens in key tea producing areas of Guizhou[J].SouthwestChinaJournalofAgriculturalSciences,2015,28(1):286-291. (in Chinese with English abstract)
[11] 任艷芳,何俊瑜,張艷超,等.貴州省開陽茶園土壤養(yǎng)分狀況與肥力質(zhì)量評(píng)價(jià)[J].土壤,2016,48(4):668-674.
REN Y F, HE J Y, ZHANG Y C, et al. Soil nutrient status and comprehensive evaluation of quality of soil fertility of tea garden in Kaiyang of Guizhou province[J].Soils,2016,48(4):668-674. (in Chinese with English abstract)
[12] 李又勇,王家金,孫雪梅,等.云南景邁山和六大茶山古茶園土壤養(yǎng)分分析[J].中國農(nóng)學(xué)通報(bào),2013,29(13):201-206.
LI Y Y, WANG J J, SUN X M, et al. Analysis on soil nutrient of the ancient tea garden of Jingmaishan and Liudachashan in Yunnan[J].ChineseAgriculturalScienceBulletin,2013,29(13):201-206. (in Chinese with English abstract)
[13] 鮑士旦.土壤農(nóng)化分析[M]. 3版.北京:中國農(nóng)業(yè)出版社,2000.35-157.
[14] 全國土壤普查辦公室.中國土壤[M].北京:中國農(nóng)業(yè)出版社,1998.
[15] 中華人民共和國農(nóng)業(yè)部.綠色食品產(chǎn)地環(huán)境技術(shù)條件(NY/T 391—2000)[S].北京:中國標(biāo)準(zhǔn)出版局,2000.
[16] 中華人民共和國農(nóng)業(yè)部.茶葉產(chǎn)地環(huán)境技術(shù)條件(NY/Y853—2004)[S].北京:中國標(biāo)準(zhǔn)出版局,2000.
[17] 黃安,楊聯(lián)安,杜挺,等.基于主成分分析的土壤養(yǎng)分綜合評(píng)價(jià)[J].干旱區(qū)研究2014,31(5):819-825.
HUANG A, YANG L A, DU T, et al. comprehensive assessment of soil nutrients base on PCA[J].AridZoneResearch,2014,31(5):819-825. (in Chinese with English abstract)
[18] 駱耀平.茶樹栽培學(xué)[M].5版.北京:中國農(nóng)業(yè)出版社,2000: 107-109.
[19] 郭琳.茶園土壤的酸化與防治[J].茶葉科學(xué)技術(shù),2008 (2):16-17.
GUO L Acidification and preventive of soil in tea garden[J].TeaScienceandTechnology, 2008 (2):16-17. (in Chinese)
[20] 姜虹,沙麗清.云南瀾滄縣景邁古茶園土壤養(yǎng)分和土壤酶活性研究[J].茶葉科學(xué),2008,28(3): 214-220.
JIANG H, SHA L Q. Characteristics of soil nutrients and enzyme activity of ancient tea garden in Jingmai, Lancang, Yunnan Province[J].JournalofTeaScience, 2008, 28(3): 214-220. (in Chinese with English abstract)
[21] 陳武,任明強(qiáng),蘆正艷,等.貴州典型喀斯特區(qū)土壤地球化學(xué)特征研究[J].中國巖溶,2010,29(3):246-252.
CHEN W, REN M Q, LU Z Y, et al. Research on the property of soil geochemistry in typical karst area in Guizhou Province[J].CarsologicaSinica,2010,29(3):246-252. (in Chinese with English abstract)
[22] 汪濤,楊元合,馬文紅,等.中國土壤磷庫的大小、分布及其影響因素[J].北京大學(xué)學(xué)報(bào)(自然科學(xué)版),2008,44(6):945-952.
WANG T,YANG Y H,MA W H, et al. Storage, pattern and environmental controls of soil phosphorus in china[J].ActaScientiagrumNaturaliumUniversitatisPekinensis,2008, 44(6):945-952. (in Chinese with English abstract)
[23] 李海生,張志權(quán).不同鋁水平下茶對(duì)鋁及礦質(zhì)養(yǎng)分的吸收與累積[J].生態(tài)環(huán)境,2007,16(1): 186-190.
LI H S, ZHANG Z Q. The absorption and accumulation of aluminum and mineral nutrient in tea (Camelliasinensis) under different Al levels[J].EcologyandEnvironment, 2007, 16(1): 186-190. (in Chinese with English abstract)
[24] 胡明宇,林昌虎,何騰兵,等.茶園土壤性狀與茶葉品質(zhì)關(guān)系研究現(xiàn)狀[J].貴州科學(xué),2009,27(3):92-96.
HU M Y, LIN C H, HE T B, et al. Research status of tea garden soil properties of tea quality[J].GuizhouScience, 2009, 27(3):92-96. (in Chinese with English abstract)
(責(zé)任編輯張 韻)
EvaluationofnutrientstatusinsitesoilofancientteatreesinHuaxionprincipalcomponentanalysis
SONG Qinfei1,2, NIU Suzhen1,2, CHEN Zhengwu3, YIN Jie1,2,*, ZHOU Shaojun4, CEN Chunjiao1
(1.CollegeofTea,GuizhouUniversity,Guiyang550025,China;2.TeaEngineeringandTechnologyResearchCenterofGuizhou,Guiyang550025,China;3.GuizhouTeaResearchInstitute,Guiyang550006,China;4.InstituteofProductQualityInspection&TestingofZunyi,Zunyi563000,China)
This study was conducted to investigate soil nutrient status of ancient tea trees in Huaxi, Guizhou Province, and to provide the basic data for protection and rational utilization of ancient tea trees. Thirty-seven site soil samples were collected from Qiantao, Maling, Jiuan and Gaopo. The pH value, organic matter(OM), total nitrogen(TN), available nitrogen(AN), total phosphorus(TP), available phosphorus(AP), available potassium(AK), exchangeable calcium(ECa), exchangeable aluminum (EAl)and available manganese(AMn) and the relationship between them were measured and analyzed. Then the method of principal component analysis was used to estimate the status of soil fertility by means of estimatingIFI. The results showed that the pH value, contents of exchangeable calcium and effective aluminum of site soil was suitable for ancient tea tree growth,the contents of soil organic matter, available nitrogen and available potassium were sufficient. But the content of total nitrogen, total phosphorus and available phosphorus were very low in 59.45%, 91.89% and 86.49% side soil, respectively. Available manganese changed greatly, only 40.54% side soil contained suitable available manganese for ancient tea tree. Soil integrated fertility index (IFI) was 19.23. According to the value ofIFI, side soil with fertility at middle grade accounted for 64.86%, so the soil fertility quality of side soil belonged to the middle level in general. The best nutrient status of side soil came from Malin, then Jiuan and Gaopo, the side soil from Qiantao was the worst, which suggested that soil fertility management should focus on increasing the content of phosphorus and nitrogen.
Huaxi; ancient tea trees; soil nutrient; principal component analysis
宋勤飛,牛素貞,陳正武,等. 基于主成分分析的花溪古茶樹立地土壤養(yǎng)分評(píng)價(jià)[J].浙江農(nóng)業(yè)學(xué)報(bào),2017,29(11): 1844-1853.
10.3969/j.issn.1004-1524.2017.11.10
2017-06-06
國家自然科學(xué)基金(31560222);貴州省科研機(jī)構(gòu)服務(wù)企業(yè)行動(dòng)計(jì)劃項(xiàng)目黔科合服企([2014]4008號(hào));貴州省教育廳自然科學(xué)研究項(xiàng)目[(2014)2995號(hào)];貴州大學(xué)引進(jìn)人才科研項(xiàng)目[貴大人基合字(2014)19號(hào)]
宋勤飛(1978—),女,四川樂山人,碩士研究生,講師,主要從事茶樹栽培生理生態(tài)、茶葉生物化學(xué)研究。E-mail: song96@sina.com
*通信作者,尹杰,E-mail: yj_nxy@126.com
S571.1
A
1004-1524(2017)11-1844-10