周 健,許嬌嬌*,金米聰,蔡增軒,黃百芬,任一平
響應(yīng)面試驗(yàn)優(yōu)化QuEChERS法提取雞蛋中雜色曲霉毒素工藝及方法學(xué)驗(yàn)證
周 健1,2,許嬌嬌1,*,金米聰2,蔡增軒1,黃百芬1,任一平3
(1.浙江省疾病預(yù)防控制中心理化毒理所,浙江 杭州 310051;2.寧波市疾病預(yù)防控制中心,浙江省微量有毒化學(xué)物健康風(fēng)險(xiǎn)評(píng)估技術(shù)研究重點(diǎn)實(shí)驗(yàn)室,浙江 寧波 315010;3.國(guó)家食品安全風(fēng)險(xiǎn)評(píng)估中心應(yīng)用技術(shù)合作中心,浙江清華長(zhǎng)三角研究院,浙江 嘉興 314006)
使用乙腈溶液對(duì)雞蛋中雜色曲霉毒素進(jìn)行提取,后加入無(wú)水Na2SO4、NaCl和無(wú)水CH3COONa進(jìn)行鹽析,取出上層乙腈后加入C18吸附劑和無(wú)水Na2SO4進(jìn)行凈化濃縮后上機(jī)檢測(cè)。采用Plackett-Burman試驗(yàn)、單因素試驗(yàn)和響應(yīng)面法優(yōu)化,最大限度地提高雜色曲霉毒素的提取率。使用基質(zhì)匹配曲線外標(biāo)法定量,所有陽(yáng)性樣品均使用免疫親和柱法復(fù)測(cè)。結(jié)果表明,雜色曲霉毒素在0.125~1 000 ng/mL質(zhì)量濃度范圍內(nèi)線性良好,相關(guān)系數(shù)達(dá)0.999 6,檢出限為0.1 μg/kg,定量限為0.5 μg/kg。在空白雞蛋基質(zhì)中進(jìn)行三水平加標(biāo)實(shí)驗(yàn),測(cè)得提取率在86.8%~90.4%范圍內(nèi),日間重復(fù)性在1.5%~6.2%范圍內(nèi)。最終,將建立的方法用于45 份樣品檢測(cè),其中10 份雞蛋樣品檢測(cè)結(jié)果呈陽(yáng)性,含量為0.5~3 608 μg/kg。
雞蛋;雜色曲霉毒素;QuEChERS法;響應(yīng)面法;超高效液相色譜-質(zhì)譜聯(lián)用
雞蛋是人類(lèi)最重要的動(dòng)物源性食物之一,富含蛋白質(zhì)、膽固醇及礦物質(zhì)等營(yíng)養(yǎng)成分,有利于促進(jìn)人體生長(zhǎng)、預(yù)防疾病、改善健康狀況等,并且常常被加工成其他各類(lèi)食品。近幾年隨著社會(huì)經(jīng)濟(jì)的發(fā)展,生活質(zhì)量的提高,食品中有毒有害物質(zhì)尤其是真菌毒素污染已成為政府重視、社會(huì)關(guān)注、世界矚目的熱點(diǎn)問(wèn)題[1-3]。為保障食品安全,降低人群攝入真菌毒素的風(fēng)險(xiǎn),各國(guó)對(duì)食品(主要針對(duì)谷物及其衍生產(chǎn)品)中部分真菌毒素規(guī)定了相應(yīng)的殘留限量標(biāo)準(zhǔn),但鮮有研究調(diào)查雞蛋中真菌毒素的污染水平[4-6],而對(duì)雞蛋中雜色曲霉毒素(sterigmatocystin,STC)的檢測(cè)報(bào)道更是少之又少。
STC主要由雜色曲霉(Aspergillus versicofor)、構(gòu)巢曲霉(A. nidulans)、黃曲霉(A. flavus)和皺曲霉(A.rugulosus)等產(chǎn)毒真菌代謝生成,廣泛分布于自然界中,可污染大米、小麥、玉米、豆類(lèi)、花生餅及飼料[7-8]。被污染的糧食及飼草被動(dòng)物攝入后,會(huì)通過(guò)食物鏈進(jìn)入人類(lèi)體內(nèi),從而對(duì)人體健康造成損害[9-10]。STC是第一個(gè)被發(fā)現(xiàn)含有雙氫呋喃苯并呋喃體系的天然產(chǎn)物,其結(jié)構(gòu)與黃曲霉毒素B1十分相似,兩者結(jié)構(gòu)式如圖1所示。通過(guò)14C同位素標(biāo)記法已證實(shí),STC可以轉(zhuǎn)變?yōu)辄S曲霉素B1,其毒性在目前已知的真菌毒素中僅次于黃曲霉素B1,致癌能力約為黃曲霉素B1的1/10,此外,STC還具有腎、肝毒性,會(huì)導(dǎo)致動(dòng)物肝硬變、中毒性肝炎、肝細(xì)胞和腎小管上皮細(xì)胞壞死等[11]。
圖1 STC(A)和黃曲霉毒素B1(B)化學(xué)結(jié)構(gòu)式Fig. 1 Chemical structures of sterigmatocystin (A) and aflatoxin B1 (B)
對(duì)食品中真菌毒素測(cè)定的預(yù)處理過(guò)程主要包括提取和凈化2 個(gè)步驟,而食品基質(zhì)通常成分復(fù)雜,因此凈化步驟成為分析實(shí)驗(yàn)關(guān)鍵步驟[12]。目前真菌毒素的主要凈化方法是在固相萃取法基礎(chǔ)上衍生的免疫親和柱法[12-14]和多功能柱法[15-17],前者雖然凈化效果較好,但存在成本過(guò)高、耗時(shí)長(zhǎng)、無(wú)法同時(shí)測(cè)定多組分等缺陷;后者處理樣品速度快,適用范圍廣,但凈化效果有限,部分待測(cè)毒素的絕對(duì)提取率較低。除固相萃取法外,QuEChERS法因其快速、簡(jiǎn)單、廉價(jià)、高效、穩(wěn)定、安全、樣品通量高等特點(diǎn),近年來(lái)被廣泛應(yīng)用于真菌毒素檢測(cè)[18-20],但QuEChERS法凈化過(guò)程往往涉及到較多可變的實(shí)驗(yàn)條件,如果采用傳統(tǒng)的單因素試驗(yàn)法則耗時(shí)耗力,且無(wú)法對(duì)條件間相互作用進(jìn)行評(píng)估[21-22]。
本實(shí)驗(yàn)采用QuEChERS法對(duì)雞蛋中的STC進(jìn)行提取與凈化,結(jié)合Plackett-Burman設(shè)計(jì)對(duì)前處理?xiàng)l件中顯著性因素進(jìn)行篩選,單因素試驗(yàn)優(yōu)化確定關(guān)鍵因素最佳范圍,隨后使用響應(yīng)面中心組合試驗(yàn)對(duì)待測(cè)因素進(jìn)行試驗(yàn)設(shè)計(jì)與優(yōu)化,建立STC提取率的擬合模型并找出最佳實(shí)驗(yàn)條件。最后在最佳條件下進(jìn)行方法學(xué)驗(yàn)證,并應(yīng)用于實(shí)際樣品檢測(cè)。
1.1 材料與試劑
新鮮雞蛋為農(nóng)貿(mào)市場(chǎng)及超市中隨機(jī)采購(gòu)的樣品,同一批次樣品視為一份,樣品用均質(zhì)機(jī)均質(zhì)后于-24 ℃冷藏備用。
STC標(biāo)準(zhǔn)品(純度≥98%) Romer國(guó)際貿(mào)易(北京)有限公司;STC免疫親和柱 德國(guó)R-Biopharm公司;甲醇、乙腈(色譜純) 德國(guó)Merck公司;丙基乙二胺(primary secondary amine,PSA)吸附劑、C18吸附劑 上海安譜實(shí)驗(yàn)科技股份有限公司;DisQuE凈化鹽包 美國(guó)Waters公司;無(wú)水MgSO4、無(wú)水Na2SO4、無(wú)水CH3COONa、NaCl(分析純)(除無(wú)水CH3COONa外其他鹽類(lèi)使用前均在300 ℃恒溫4 h) 上海凌峰化學(xué)試劑有限公司。
STC標(biāo)準(zhǔn)儲(chǔ)備溶液:取STC標(biāo)準(zhǔn)品1.00 mg,用乙腈溶解并定容至10.0 mL,最終質(zhì)量濃度為100 μg/mL;標(biāo)準(zhǔn)工作溶液用乙腈將儲(chǔ)備溶液稀釋至所需質(zhì)量濃度。
1.2 儀器與設(shè)備
Waters AcquityTM超高效液相色譜配Xevo TQ-S串聯(lián)質(zhì)譜 美國(guó)Waters公司;Milli-Q超純水儀 美國(guó)Millipore公司。
1.3 方法
1.3.1 樣品前處理
QuEChERS方法參考Xu Jiaojiao[20]和Zhou Jian[23]等并作適當(dāng)修改:稱(chēng)取2.50 g雞蛋于50 mL離心管中,再加入5.0 mL水,室溫振蕩2 min后加入10.0 mL乙腈,充分混合均勻后超聲萃取30 min。萃取后加入4.0 g無(wú)水Na2SO4,1.43 g NaCl和0.95 g無(wú)水CH3COONa進(jìn)行鹽析,振蕩1 min,8 500 r/min離心3 min,取3.0 mL上層乙腈加入300 mg C18吸附劑和1.5 g無(wú)水Na2SO4混合凈化,吸取1.0 mL提取液氮吹濃縮,最后使用1.0 mL 20%乙腈溶液復(fù)溶后過(guò)0.22 μm濾膜上機(jī)分析。
陽(yáng)性樣品處理按照GB 5009.25—2016《食品中雜色曲霉素的測(cè)定》中第二法操作,并根據(jù)樣品中毒素含量對(duì)提取液稀釋比例作適當(dāng)調(diào)整以免超過(guò)凈化柱載荷量。
1.3.2 QuEChERS鹽析
在QuEChERS提取過(guò)程中,鹽析分層是直接影響待測(cè)物提取率的關(guān)鍵步驟。經(jīng)典QuEChERS萃取法通常使用無(wú)水MgSO4和NaCl來(lái)進(jìn)行鹽析[24-25],但在實(shí)際操作過(guò)程中發(fā)現(xiàn)無(wú)水MgSO4在吸水時(shí)放熱劇烈并迅速結(jié)塊,可能會(huì)導(dǎo)致目標(biāo)物被包裹,同時(shí),瞬間升溫也可能促使某些熱不穩(wěn)定物質(zhì)分解。本實(shí)驗(yàn)考察MgSO4、Na2SO4、CH3COONa、NaCl等在QuEChERS提取中對(duì)STC提取率的影響,并設(shè)計(jì)以下6 種組合:4.0 g MgSO4+1.0 g CH3COONa、4.0 g MgSO4+1.0 g NaCl、4.0 g MgSO4+1.0 g NaCl+1.0 g Na3C6H5O7+0.5 g Na2C6H6O7、4.0 g CH3COONa+1.0 g NaCl、4.0 g Na2SO4+1.0 g NaCl、4.0 g Na2SO4+1.0 g CH3COONa。以50 μg/kg添加量對(duì)空白雞蛋基質(zhì)進(jìn)行加標(biāo),取3.0 mL上清液用500 mg C18吸附劑進(jìn)行凈化后濃縮過(guò)膜進(jìn)樣,每種鹽類(lèi)組合進(jìn)行3 次平行實(shí)驗(yàn)。
1.3.3 Plackett-Burman試驗(yàn)與單因素試驗(yàn)
在確定最佳QuEChERS鹽類(lèi)組合后,采用Plackett-Burman試驗(yàn)(n=20),對(duì)QuEChERS萃取中水體積、乙腈中甲酸體積分?jǐn)?shù)、超聲萃取時(shí)間、無(wú)水Na2SO4質(zhì)量、NaCl質(zhì)量、無(wú)水CH3COONa質(zhì)量、吸附劑(C18和PSA)質(zhì)量8 個(gè)因素進(jìn)行考察,試驗(yàn)設(shè)計(jì)如表1所示,其中-1代表低水平,1代表高水平,響應(yīng)值為3 次平行試驗(yàn)STC提取率的平均值。
表1 Plackett-Burman試驗(yàn)設(shè)計(jì)因素與水平Table 1 Coded levels and corresponding actual levels of independent variables used for Plackett-Burman design
根據(jù)Plackett-Burman試驗(yàn)結(jié)果,對(duì)篩選出的關(guān)鍵因素(PSA、NaCl、無(wú)水CH3COONa質(zhì)量以及甲酸體積分?jǐn)?shù))進(jìn)行單因素控制變量試驗(yàn),以縮小后續(xù)響應(yīng)面試驗(yàn)優(yōu)化范圍。
1.3.4 中心組合試驗(yàn)設(shè)計(jì)
在確定每個(gè)待優(yōu)化因素大致的最佳范圍后,對(duì)其進(jìn)行中心組合響應(yīng)面設(shè)計(jì),每個(gè)因素進(jìn)行5 個(gè)不同水平的試驗(yàn)來(lái)減少操作中偶然誤差的影響,試驗(yàn)設(shè)計(jì)因素與水平如表2所示。
表2 中心組合試驗(yàn)設(shè)計(jì)因素與水平Table 2 Coded levels and corresponding actual levels of independent variables used for central composite design
利用軟件對(duì)試驗(yàn)結(jié)果進(jìn)行回歸擬合后,可得到試驗(yàn)因素的二次多項(xiàng)回歸模型,見(jiàn)公式(1):
式中:Y為預(yù)測(cè)響應(yīng)值,Xi和Xj代表獨(dú)立變量,δ0為常數(shù)項(xiàng),δi為線性系數(shù),δii為二次項(xiàng)系數(shù),δij為交互項(xiàng)系數(shù),ε為隨機(jī)誤差補(bǔ)償項(xiàng)。
1.3.5 高效液相色譜-質(zhì)譜檢測(cè)條件
液相色譜條件:采用Waters CORTECSTM色譜柱(150 mm ×3.0 mm,1.6 μm),柱溫40 ℃,流速0.4 mL/min,進(jìn)樣體積10 μL,流動(dòng)相A:體積分?jǐn)?shù)0.1%甲酸溶液,流動(dòng)相B:0.1%甲酸-乙腈溶液。梯度洗脫條件:0~0.8 min,10% B;0.8~2.0 min,10%~20% B;2.0~7.0 min,20% B;7.5~10.5 min,20%~40% B;10.5~11.0 min,40%~60% B;11.0~14.0 min,60% B;14.0~14.2 min,60%~95% B;14.2~16.2 min,95% B;16.2~16.5 min,95%~10% B;16.5~20.0 min,10% B。
質(zhì)譜條件:電噴霧離子源(electrospray ionization,ESI),正ESI多反應(yīng)監(jiān)測(cè)模式,毛細(xì)管電壓3.0 kV,離子源溫度500 ℃,脫溶劑氣(高純氮?dú)?,純度?9%)流速750 L/h,碰撞氣(高純氬氣,純度>99%)流速0.15 mL/min。STC質(zhì)譜參數(shù):錐孔電壓40 V,母離子m/z 325.09,定性子離子m/z 310.06,定量子離子m/z 281.08,碰撞能量分別為23 eV和32 eV。
1.3.6 基質(zhì)效應(yīng)評(píng)估與方法學(xué)驗(yàn)證
基質(zhì)共萃取物會(huì)在離子源(尤其在ESI源)中與待測(cè)物質(zhì)競(jìng)爭(zhēng)發(fā)生離子化反應(yīng),這也通常導(dǎo)致待測(cè)物離子化效率降低,產(chǎn)生基質(zhì)抑制效應(yīng)。本實(shí)驗(yàn)中使用提取后加入法來(lái)評(píng)估雞蛋樣品基質(zhì)效應(yīng),具體操作步驟:在純?nèi)軇TC標(biāo)準(zhǔn)工作溶液稀釋成7個(gè)不同質(zhì)量濃度的溶液(0.125、0.25、0.5、2.5、10、50、250、1 000 ng/mL);在空白雞蛋提取液濃縮復(fù)溶的同時(shí)加入相同質(zhì)量濃度水平的標(biāo)準(zhǔn)溶液,將所得曲線的斜率進(jìn)行對(duì)比即為絕對(duì)基質(zhì)效應(yīng),一般絕對(duì)基質(zhì)效應(yīng)在80%~120%之間認(rèn)為是可接受范圍[26]。此外,不同批次的樣品、采樣時(shí)間以及喂養(yǎng)飼料成分的差異可能也會(huì)導(dǎo)致樣品間內(nèi)源性成分的不同,此時(shí)應(yīng)評(píng)估基質(zhì)的相對(duì)基質(zhì)效應(yīng):取5 份不同的空白樣品,進(jìn)行絕對(duì)基質(zhì)效應(yīng)測(cè)試,所得基質(zhì)效應(yīng)值的相對(duì)標(biāo)準(zhǔn)偏差(relative standard deviation,RSD)小于15%時(shí)可認(rèn)為樣品間不存在較大差異[27]。
方法準(zhǔn)確性主要通過(guò)三濃度水平加標(biāo)實(shí)驗(yàn)來(lái)評(píng)估,每個(gè)加標(biāo)水平實(shí)驗(yàn)平行6 次,精密度則通過(guò)日間、日內(nèi)(連續(xù)重復(fù)3 d)重復(fù)性RSD來(lái)表示。取空白雞蛋樣品以1.0 μg/kg水平加標(biāo),平行重復(fù)6 次實(shí)驗(yàn),進(jìn)樣后分別以3 倍和10 倍信噪比為方法檢出限和定量限。
1.4 數(shù)據(jù)分析
儀器數(shù)據(jù)分析軟件為Waters Mass Lynx 4.1和Target Lynx 4.1;實(shí)驗(yàn)設(shè)計(jì)及統(tǒng)計(jì)分析軟件為Design-Expert 8.0.6.0,Minitab 17.1.0和IBM SPSS Statistics 19.0。試樣中STC含量按公式(2)計(jì)算:
式中:X為試樣中STC含量/(μg/kg);ρ為由標(biāo)準(zhǔn)曲線計(jì)算所得的試樣溶液中STC質(zhì)量濃度/(ng/mL);V為最終定容體積/mL;m為樣品質(zhì)量/g;f為稀釋倍數(shù)。
2.1 QuEChERS法鹽析優(yōu)化結(jié)果
圖2 鹽類(lèi)組合對(duì)STC提取率的影響Fig. 2 Effects of salt combinations on the extraction efficiency of sterigmatocystin
由圖2可知,使用無(wú)水Na2SO4和無(wú)水CH3COONa作為脫水劑組合均有較高的提取率,考慮到鹽類(lèi)吸水性能,最終選用無(wú)水Na2SO4作為脫水劑。根據(jù)組合4和6結(jié)果可知,鹽析劑NaCl和CH3COONa兩者效果較好,但其所用量需要進(jìn)一步優(yōu)化。
2.2 Plackett-Burman試驗(yàn)結(jié)果及分析
表3 Plackett-Burman試驗(yàn)設(shè)計(jì)結(jié)果Table 3 Plackett-Burman design with response variable
采用Plackett-Burman設(shè)計(jì)對(duì)實(shí)驗(yàn)中大部分條件進(jìn)行初步篩選,基于非完全平衡塊原理,能在實(shí)驗(yàn)次數(shù)較少的前提下選出對(duì)實(shí)驗(yàn)結(jié)果有顯著影響的關(guān)鍵因素[28]。每個(gè)因素各取高低兩水平,其中高水平通常設(shè)置為低水平的1.5 倍。通過(guò)對(duì)表3所得數(shù)據(jù)進(jìn)行分析后,將結(jié)果用帕累托圖表示,如圖3所示,其中4 個(gè)因素的標(biāo)準(zhǔn)化效應(yīng)值超過(guò)了基準(zhǔn)參照線(圖中虛線),表明這些因素對(duì)提取率影響顯著,在后續(xù)試驗(yàn)中作為主要因素進(jìn)一步優(yōu)化。
圖3 試驗(yàn)因素標(biāo)準(zhǔn)化效應(yīng)帕累托圖Fig. 3 Pareto chart of the standardized effects
2.3 單因素試驗(yàn)優(yōu)化結(jié)果
單因素試驗(yàn)采用控制變量法,對(duì)各因素進(jìn)行五水平考察,確定其最佳值所處范圍供響應(yīng)面法參考。根據(jù)Plackett-Burman試驗(yàn)結(jié)果,假設(shè)4 個(gè)顯著性因素的中心水平為:PSA吸附劑質(zhì)量100 mg、NaCl質(zhì)量1.0 g、無(wú)水CH3COONa質(zhì)量1.0 g、甲酸體積分?jǐn)?shù)4%。因素的5 個(gè)考察水平分別為:PSA吸附劑質(zhì)量0、50、100、150、200 mg;NaCl質(zhì)量0、0.5、1.0、1.5、2.0 g;無(wú)水CH3COONa質(zhì)量0、0.5、1.0、1.5、2.0 g;甲酸體積分?jǐn)?shù)0%、2%、4%、6%、8%,當(dāng)考察因素變化時(shí)其余因素均固定為中心水平,結(jié)果如圖4所示。最終選擇的條件為PSA吸附劑質(zhì)量0 mg、NaCl質(zhì)量1.0 g、無(wú)水CH3COONa質(zhì)量0.5 g、甲酸體積分?jǐn)?shù)0%。
圖4 各單因素對(duì)提取率的影響Fig. 4 Individual effect of variables on the extraction efficiency
2.4 中心組合設(shè)計(jì)與響應(yīng)面試驗(yàn)結(jié)果
根據(jù)Plackett-Burman試驗(yàn)和單因素優(yōu)化試驗(yàn)確定的試驗(yàn)因素和水平,采用中心組合設(shè)計(jì)試驗(yàn)對(duì)加標(biāo)雞蛋進(jìn)行四因素五水平的響應(yīng)面分析(表4),以減少操作過(guò)程中偶然誤差的影響。
表4 中心組合試驗(yàn)設(shè)計(jì)結(jié)果Table 4 Central composite design with response variable
對(duì)表4中所得數(shù)據(jù)進(jìn)行二次多元回歸擬合,整理得到對(duì)試驗(yàn)因素一次項(xiàng)、交互項(xiàng)和二次項(xiàng)進(jìn)行評(píng)估的回歸方程如下:
STC提取率=73.77-1.78A+2.19B+2.48C-0.42D+0.80AB-0.047AC+0.52AD+0.58BC-0.044BD-0.28CD-0.22A2-1.01B2-1.00C2-0.038D2
對(duì)上述結(jié)果進(jìn)行方差分析,表5顯示該擬合方程模型項(xiàng)為極顯著,失擬項(xiàng)為不顯著,在模型系數(shù)項(xiàng)中,所有一次項(xiàng)除D項(xiàng)為顯著水平外其余均為極顯著水平,交互項(xiàng)中AB、AD和BC為顯著,二次項(xiàng)B2、C2為極顯著水平。多項(xiàng)式模型方程的擬合程度和模型質(zhì)量由確定系數(shù)(R2)表示,模型擬合良好一般要求R2至少大于0.8[29],本試驗(yàn)中R2為0.969 9,調(diào)整確定系數(shù)(R2Adj)為0.941 9,表明生成的方程與試驗(yàn)數(shù)據(jù)擁有96.99%的符合度,能夠解釋94.19%的變化效應(yīng),對(duì)響應(yīng)值的預(yù)測(cè)能力優(yōu)秀,可信度較高[30]。
根據(jù)回歸方程利用軟件作不同因素交互項(xiàng)的響應(yīng)面圖(圖5),可直觀地反映出各因素交互作用對(duì)STC提取率的影響。在響應(yīng)面圖中2 個(gè)考察因素的變化范圍從-α水平到α水平,而其他因素則維持在中心水平。
表5 二次方差模型的方差分析Table 5 Analysis of variance of the quadratic equation model
圖5 各因素交互作用對(duì)雞蛋中STC提取率影響的響應(yīng)面圖Fig. 5 Response surface plots showing the interactive effect of variables on the extraction efficiency of sterigmatocystin
由圖5a可知,當(dāng)甲酸體積分?jǐn)?shù)最低,NaCl質(zhì)量在1.5 g水平左右時(shí),STC提取率最高。上述現(xiàn)象可解釋為酸性條件不利于STC提取,而適當(dāng)?shù)柠}度增強(qiáng)了離子效應(yīng),促進(jìn)鹽析分層有利于提高STC提取率。由圖5b可知,當(dāng)甲酸和PSA均處于最低水平時(shí)提取率曲面達(dá)到最高點(diǎn),即在本實(shí)驗(yàn)中不加入甲酸和PSA效果更好。圖5c結(jié)果顯示,NaCl和無(wú)水CH3COONa兩種鹽的添加量均與STC提取率呈正相關(guān)。
在得到的二次回歸方程進(jìn)行響應(yīng)面分析后,為獲取最高的STC提取率,利用軟件的Numerical Solutions功能求擬合方程中的響應(yīng)值Y的最大值,分別對(duì)各變量求一階偏導(dǎo),計(jì)算得到最佳條件為:0%甲酸、1.43 g NaCl、0.95 g無(wú)水CH3COONa和0 mg PSA。
2.5 方法學(xué)驗(yàn)證結(jié)果
2.5.1 基質(zhì)效應(yīng)與線性
本實(shí)驗(yàn)選取5 份不同的空白雞蛋進(jìn)行測(cè)試,結(jié)果顯示:方法平均絕對(duì)基質(zhì)效應(yīng)為83.6%,RSD為3.8%。盡管絕對(duì)基質(zhì)效應(yīng)和相對(duì)基質(zhì)效應(yīng)均處于可接受范圍,后續(xù)實(shí)驗(yàn)仍采用基質(zhì)匹配曲線法來(lái)補(bǔ)償基質(zhì)效應(yīng)以獲得更加準(zhǔn)確的測(cè)定結(jié)果,線性范圍在0.125~1 000 ng/mL之間,所得線性相關(guān)系數(shù)為0.999 6。
2.5.2 準(zhǔn)確性、精密度與方法檢測(cè)限
準(zhǔn)確性及精密度結(jié)果如表6所示,該前處理方法測(cè)定雞蛋中STC的檢出限為0.1 μg/kg,定量限為0.5 μg/kg。
表6 準(zhǔn)確性及精密度結(jié)果Table 6 Accuracy and precision of the method
2.5.3 方法應(yīng)用與實(shí)際樣品測(cè)定結(jié)果
在最佳前處理?xiàng)l件下對(duì)45 份雞蛋樣品中的STC進(jìn)行測(cè)定,其中共10 份樣品檢測(cè)結(jié)果為陽(yáng)性(典型空白樣品與陽(yáng)性樣品如圖6所示),污染含量范圍在0.5~3 608 μg/kg(部分樣品檢測(cè)結(jié)果見(jiàn)表7),推測(cè)可能與母雞飼養(yǎng)方式及飼養(yǎng)環(huán)境有關(guān)。所有陽(yáng)性樣品均使用免疫親和柱法進(jìn)行復(fù)測(cè),將所得2 種方法測(cè)定結(jié)果進(jìn)行對(duì)比發(fā)現(xiàn)并未存在顯著性差異(P=0.941>0.05),說(shuō)明本實(shí)驗(yàn)提出的方法足夠準(zhǔn)確,無(wú)明顯系統(tǒng)誤差。
圖6 空白雞蛋樣品(A)與陽(yáng)性雞蛋樣品(B)多反應(yīng)監(jiān)測(cè)色譜圖Fig. 6 Multiple-reaction monitoring (MRM) chromatograms of blank egg sample (A) and positive egg sample (B)
表7 2 種方法的實(shí)際樣品測(cè)定結(jié)果對(duì)比Table 7 Comparison of two methods for the determination of sterigmatocystin in real samples
本研究建立了QuEChERS法提取凈化雞蛋中STC的分析方法,實(shí)驗(yàn)條件經(jīng)Plackett-Burman設(shè)計(jì)篩選后使用中心組合設(shè)計(jì)試驗(yàn)優(yōu)化。方法前處理速度快,無(wú)需復(fù)雜凈化手段,待測(cè)毒素提取率高,定量結(jié)果準(zhǔn)確,靈敏度和精密度較好。將陽(yáng)性樣品測(cè)定結(jié)果與GB 5009.25—2016方法進(jìn)行對(duì)比,顯示在2 種方法之間不存在顯著性差異。鑒于本研究發(fā)現(xiàn)雞蛋樣品中較高的STC污染率,且有高污染濃度樣本被檢出,建議在適當(dāng)范圍內(nèi)擴(kuò)大對(duì)雞蛋中STC的監(jiān)測(cè),并以此為基礎(chǔ)開(kāi)展STC污染源以及體內(nèi)代謝機(jī)理的研究調(diào)查,為食品中STC風(fēng)險(xiǎn)評(píng)估工作的開(kāi)展提供一定參考依據(jù)。
[1] RYCHLIK M, LEPPER H, WEIDNER C H, et al. Risk evaluation of the Alternaria mycotoxin tenuazonic acid in foods for adults and infants and subsequent risk management[J]. Food Control, 2016, 68:181-185. DOI:10.1016/j.foodcont.2016.03.035.
[2] MALLY A, SOLFRIZZO M, DEGEN G H. Biomonitoring of the mycotoxin Zearalenone: current state-of-the art and application to human exposure assessment[J]. Archives of Toxicology, 2016, 90(6):1281-1292. DOI:10.1007/s00204-016-1704-0.
[3] ALSHANNAQ A, YU J H. Occurrence, toxicity, and analysis of major mycotoxins in food[J]. International Journal of Environmental Research and Public Health, 2017, 14(6): 632-652. DOI:10.3390/ijerph14060632.
[4] JESTOI M, ROKKA M, J?RVENP?? E, et al. Determination of Fusarium mycotoxins beauvericin and enniatins (A, A1, B, B1)in eggs of laying hens using liquid chromatography-tandem mass spectrometry (LC-MS/MS)[J]. Food Chemistry, 2009, 115(3): 1120-1127. DOI:10.1016/j.foodchem.2008.12.105.
[5] TANGNI E K, WAEGENEERS N, VAN OVERMEIRE I, et al.Mycotoxin analyses in some home produced eggs in Belgium reveal small contribution to the total daily intake[J]. The Science of the Total Environment, 2009, 407(15): 4411-4418. DOI:10.1016/j.scitotenv.2008.10.060.
[6] 朱閏月, 趙志勇, 楊憲立, 等. 基質(zhì)固相分散-液相色譜串聯(lián)質(zhì)譜法同時(shí)檢測(cè)雞蛋中15 種真菌毒素生物標(biāo)志物[J]. 分析化學(xué), 2015, 43(7):994-1000.
[7] YOGENDRARAJAH P, JACXSENS L, LACHAT C, et al. Public health risk associated with the co-occurrence of mycotoxins in spices consumed in Sri Lanka[J]. Food and Chemical Toxicology, 2014, 74:240-248. DOI:10.1016/j.fct.2014.10.007.
[8] ZHENG R, XU H, WANG W, et al. Simultaneous determination of aflatoxin B(1), B(2), G(1), G(2), ochratoxin A, and sterigmatocystin in traditional Chinese medicines by LC-MS-MS[J]. Analytical and Bioanalytical Chemistry, 2014, 406(13): 3031-3039. DOI:10.1007/s00216-014-7750-7.
[9] TURNER P C, BURLEY V J, ROTHWELL J A, et al.Deoxynivalenol: rationale for development and application of a urinary biomarker[J]. Food Additives & Contaminants, 2008, 25(7): 864-871.DOI:10.1080/02652030801895040.
[10] ZHU R, ZHAO Z, WANG J, et al. A simple sample pretreatment method for multi-mycotoxin determination in eggs by liquid chromatography tandem mass spectrometry[J]. Journal of Chromatography A, 2015, 1417:1-7. DOI:10.1016/j.chroma.2015.09.028.
[11] BETINA V. Mycotoxins: chemical, biological and environmental aspects[J]. Elsevier, 1989, 395(5): 463-503. DOI:10.7506/spkx1002-6630-201506039.
[12] HE J, LI X Z, ZHOU T. Sample clean-up methods, immunoaffinity chromatography and solid phase extraction, for determination of deoxynivalenol and deepoxy deoxynivalenol in swine serum[J].Mycotoxin Research, 2009, 25(2): 89-94. DOI:10.1007/s12550-009-0013-3.
[13] WEN J, KONG W, WANG J, et al. Simultaneous determination of four aflatoxins and ochratoxin A in ginger and related products by HPLC with fluorescence detection after immunoaffinity column clean-up and postcolumn photochemical derivatization[J]. Journal of Separation Science, 2013, 36(23): 3709-3716. DOI:10.1002/jssc.201300885.
[14] AFZALI D, GHANBARIAN M, MOSTAFAVI A, et al. A novel method for high preconcentration of ultra trace amounts of B(1),B(2), G(1) and G(2) aflatoxins in edible oils by dispersive liquidliquid microextraction after immunoaffinity column clean-up[J].Journal of Chromatography A, 2012, 1247: 35-41. DOI:10.1016/j.chroma.2012.05.051.
[15] REN Y, ZHANG Y, SHAO S, et al. Simultaneous determination of multi-component mycotoxin contaminants in foods and feeds by ultraperformance liquid chromatography tandem mass spectrometry[J].Journal of Chromatography A, 2007, 1143(1/2): 48-64. DOI:10.1016/j.chroma.2006.12.064.
[16] WANG R G, SU X O, CHENG F F, et al. Determination of 26 mycotoxins in feedstuffs by multifunctional clean-up column and liquid chromatography-tandem mass spectrometry[J]. Chinese Journal of Analytical Chemistry, 2015, 43(2): 264-270. DOI:10.1016/s1872-2040(15)60807-6.
[17] SUGITA-KONISHI Y, TANAKA T, NAKAJIMA M, et al. The comparison of two clean-up procedures, multifunctional column and immunoaffinity column, for HPLC determination of ochratoxin A in cereals, raisins and green coffee beans[J]. Talanta, 2006, 69(3):650-655. DOI:10.1016/j.talanta.2005.10.036.
[18] ARROYO-MANZANARES N, HUERTAS-PEREZ J F, GAMIZGRACIA L, et al. Simple and efficient methodology to determine mycotoxins in cereal syrups[J]. Food Chemistry, 2015, 177: 274-279.DOI:10.1016/j.foodchem.2015.01.040.
[19] LIU Y, HAN S, LU M, et al. Modified QuEChERS method combined with ultra-high performance liquid chromatography tandem mass spectrometry for the simultaneous determination of 26 mycotoxins in sesame butter[J]. Journal of Chromatography B, 2014, 970: 68-76.DOI:10.1016/j.jchromb.2014.06.033.
[20] XU J J, ZHOU J, HUANG B F, et al. Simultaneous and rapid determination of deoxynivalenol and its acetylate-derivatives in wheat flour and rice by ultra high performance liquid chromatography with photo diode array detection[J]. Journal of Separation Science, 2016,39(11): 2028-2036. DOI:10.1002/jssc.201501316.
[21] LAI X, LIU R, RUAN C, et al. Occurrence of aflatoxins and ochratoxin A in rice samples from six provinces in China[J]. Food Control, 2015, 50: 401-404. DOI:10.1016/j.foodcont.2014.09.029.
[22] ARROYO-MANZANARES N, HUERTAS-PEREZ J F, GAMIZGRACIA L, et al. A new approach in sample treatment combined with UHPLC-MS/MS for the determination of multiclass mycotoxins in edible nuts and seeds[J]. Talanta, 2013, 115: 61-67. DOI:10.1016/j.talanta.2013.04.024.
[23] ZHOU J, XU J J, HUANG B F, et al. High-performance liquid chromatographic determination of multi-mycotoxin in cereals and bean foodstuffs using interference-removal solid-phase extraction combined with optimized dispersive liquid-liquid microextraction[J]. Journal of Separation Science,2017, 40(10): 2141-2150. DOI:10.1002/jssc.201601326.
[24] 曲斌. QuEChERS在動(dòng)物源性食品獸藥殘留檢測(cè)中的研究進(jìn)展[J].食品科學(xué), 2013, 34(5): 327-331. DOI:10.7506/spkx1002-6630-201305068.
[25] WALORCZYK S. Development of a multi-residue method for the determination of pesticides in cereals and dry animal feed using gas chromatography-tandem quadrupole mass spectrometry Ⅱ. improvement and extension to new analytes[J]. Journal of Chromatography A, 2008,1208(1/2): 202-214. DOI:10.1016/j.chroma.2008.08.068.
[26] FRENICH A G, ROMERO-GONZáLEZ R, GóMEZ-PéREZ M L,et al. Multi-mycotoxin analysis in eggs using a QuEChERS-based extraction procedure and ultra-high-pressure liquid chromatography coupled to triple quadrupole mass spectrometry[J]. Journal of Chromatography A, 2011, 1218(28): 4349-4356. DOI:10.1016/j.chroma.2011.05.005.
[27] VISWANATHAN C T, BANSAL S, BOOTH B, et al. Workshop/conference report-quantitative bioanalytical methods validation and implementation: best practices for chromatographic and ligand binding assays[J]. Journal of the American Association of Pharmaceutical Scientists, 2007, 9(1): 30-42.
[28] 湛東銳, 李連強(qiáng), 曹娜, 等. 鹽生海蘆筍內(nèi)生真菌Salicorn 35的分離鑒定與抗氧化發(fā)酵條件優(yōu)[J]. 食品科學(xué), 2013, 34(19): 158-165.DOI:10.7506/spkx1002-6630-201319034.
[29] RANJBARI E, HADJMOHAMMADI M R. Optimization of magnetic stirring assisted dispersive liquid-liquid microextraction of rhodamine B and rhodamine 6G by response surface methodology∶ application in water samples, soft drink, and cosmetic products[J]. Talanta, 2015,139∶ 216-225. DOI∶10.1016/j.talanta.2015.02.051.
[30] ASADOLLAHZADEH M, TAVAKOLI H, TORAB-MOSTAEDI M, et al. Response surface methodology based on central composite design as a chemometric tool for optimization of dispersivesolidification liquid-liquid microextraction for speciation of inorganic arsenic in environmental water samples[J]. Talanta, 2014, 123∶ 25-31.DOI∶10.1016/j.talanta.2013.11.071.
Optimization and Validation of QuEChERS Extraction for Determination of Sterigmatocystin in Eggs by Response Surface Methodology
ZHOU Jian1,2, XU Jiaojiao1,*, JIN Micong2, CAI Zengxuan1, HUANG Baifen1, REN Yiping3
(1. Department of Physicochemical & Toxicology, Zhejiang Provincial Centre for Disease Control and Prevention, Hangzhou 310051, China;2. Zhejiang Provincial Key Lab of Health Risk Appraisal for Trace Toxic Chemicals, Ningbo Municipal Centre for Disease Control and Prevention, Ningbo 315010, China; 3. Zhejiang Yangtze Delta Region Institute of Tsinghua University, Application Technology Cooperation Center of National Center for Food Safety Risk Assessment, Jiaxing 314006, China)
A quick, easy, cheap, effective, rugged, and safe (QuEChERS) extraction procedure was presented andoptimized for the determination of sterigmatocystin in eggs by high performance liquid chromatography-mass spectrometry (HPLC-MS).The analyte was extracted from samples with aqueous acetonitrile solution, followed by salting out using anhydrous NaSO4,NaCl and CH3COONa,and then purification and concentration with C18sorbent and anhydrous Na2SO4before analysis.Optimization of experimental conditions for maximum extraction efficiency was carried out using Plackett-Burman design,one-factor-at-a-time method and response surface methodology. The matrix-matched external standard calibration was employed for quantification. Moreover, all positive sampleswere confirmed by immunoaffinity column chromatography. The results of validation showed that good linearity with a correlation coefficient (R2) > 0.999 6 was achieved within the range from 0.125 to 1 000 ng/mL. The limit of detection (LOD) and the limit of quantification (LOQ) for sterigmatocystin in eggs were 0.1 and 0.5 μg/kg, respectively. Satisfactory recovery (86.8%-90.4%) and inter-day reproducibility (RSD, 1.5%-6.2%)were obtained with blank egg matrices at three spiked levels. Finally, the established method was applied to analyze 45 real samples, 10 of which were positive at concentrations of 0.5 to 3 608 μg/kg.
egg; sterigmatocystin; QuEChERS extraction; response surface methodology; high performance liquid chromatography-mass spectrometry
10.7506/spkx1002-6630-201724047
O657.63
A
1002-6630(2017)24-0288-08
2017-03-02
周健(1991—),男,碩士,主要從事真菌毒素研究。E-mail:1428541555@qq.com
*通信作者:許嬌嬌(1987—),女,碩士,主要從事食品安全檢驗(yàn)技術(shù)研究。E-mail:jjxucdc@163.com
周健, 許嬌嬌, 金米聰, 等. 響應(yīng)面試驗(yàn)優(yōu)化QuEChERS法提取雞蛋中雜色曲霉毒素工藝及方法學(xué)驗(yàn)證[J]. 食品科學(xué),2017, 38(24): 288-295.
10.7506/spkx1002-6630-201724047. http://www.spkx.net.cn
ZHOU Jian, XU Jiaojiao, JIN Micong, et al. Optimization and validation of QuEChERS extraction for determination of sterigmatocystin in eggs by response surface methodology[J]. Food Science, 2017, 38(24)∶ 288-295. (in Chinese with English abstract) DOI∶10.7506/spkx1002-6630-201724047. http∶//www.spkx.net.cn