金華麗,姜海洋*
基于氮摻雜碳球生長(zhǎng)金的酶?jìng)鞲衅鳈z測(cè)蔬菜中的克百威
金華麗,姜海洋*
(河南工業(yè)大學(xué)糧油食品學(xué)院,河南 鄭州 450001)
以氮摻雜碳球(nitrogen doped carbon spheres,N-Cs)為基質(zhì),制備新型的氮摻雜碳球生長(zhǎng)金納米復(fù)合材料(N-Cs-Au),采用交聯(lián)法制備新型的基于N-Cs-Au修飾玻碳電極(glassy carbon electrode,GCE)的乙酰膽堿酯酶(acetylcholinesterase,AChE)生物傳感器(AChE/N-Cs-Au/GCE)并用于菠菜中克百威的定量分析。結(jié)果表明:N-Cs-Au具有較好的導(dǎo)電性和電催化活性,能夠有效地促進(jìn)電子轉(zhuǎn)移,提高AChE/N-Cs-Au/GCE的靈敏度。利用AChE/N-Cs-Au/GCE對(duì)菠菜中的克百威進(jìn)行檢測(cè)分析,克百威質(zhì)量濃度的負(fù)對(duì)數(shù)與其對(duì)AChE/N-Cs-Au/GCE的抑制率在2.3×10-10~2.3×10-5g/L的線性范圍內(nèi)呈良好的線性關(guān)系,線性方程為Y/%=-8.246 7X+93.867 6(X為克百威質(zhì)量濃度的負(fù)對(duì)數(shù)),R2為0.992 9,按抑制率10%計(jì)算,檢出限為6.763 9×10-11g/L,用AChE/N-Cs-Au/GCE對(duì)菠菜中的克百威進(jìn)行檢測(cè)分析,樣品回收率在91.417 7%~95.859 7%之間,精密度較高,符合實(shí)驗(yàn)要求,且該傳感器對(duì)常見(jiàn)的重金屬Pb、Cu、Cd和Mn有較好的抗干擾能力,為食品中克百威的檢測(cè)提供了一種新方法。
克百威;氮摻雜碳球生長(zhǎng);傳感器;檢測(cè)
克百威,別名呋喃丹,化學(xué)名稱為2,3-二氫-2,2-二甲基-7-苯并呋喃基甲氨基甲酸酯,分子式為C12H15NO3是一種常用的高效氨基甲酸酯類殺蟲(chóng)劑和殺螨劑[1]??税偻捎诰哂袕V譜性、觸殺、胃毒等作用被廣泛應(yīng)用于棉花、甘蔗、茶樹(shù)、稻、玉米、馬鈴薯、花生、谷物、香蕉等80多種作物害蟲(chóng)的防治??税偻梢院腿梭w內(nèi)的膽堿酯酶發(fā)生不可逆的結(jié)合[2],因此毒性很高,而且在土壤中、昆蟲(chóng)以及捕食昆蟲(chóng)的鳥(niǎo)類、家禽等體內(nèi)殘效期較長(zhǎng),其在土壤中的半衰期一般為30~60 d,極易造成二次中毒[3]。近些年來(lái),由于克百威農(nóng)藥過(guò)度以及不合理的使用對(duì)人們的飲食安全和生態(tài)環(huán)境造成了嚴(yán)重的威脅[4],因此研究一種方便、快捷的檢測(cè)方法對(duì)食品中的克百威進(jìn)行現(xiàn)場(chǎng)快速、有效地檢測(cè)分析具有重要的意義。
目前,關(guān)于克百威檢測(cè)的傳統(tǒng)方法有氣相色譜法、高效液相色譜法、質(zhì)譜法等。這些方法雖然具有靈敏度、精密度高,準(zhǔn)確度好等優(yōu)點(diǎn),但其操作復(fù)雜,儀器價(jià)格昂貴而且需要專業(yè)人員操作[5-8],因此不適合對(duì)克百威農(nóng)藥現(xiàn)場(chǎng)、快速地檢測(cè)分析?;诿?jìng)鞲衅鞯碾娀瘜W(xué)分析法由于具有操作簡(jiǎn)單、方便、快捷等優(yōu)點(diǎn),因此,在對(duì)克百威現(xiàn)場(chǎng)快速篩查等方面存在較大的應(yīng)用潛力[9],是對(duì)克百威進(jìn)行快速檢測(cè)的理想方法之一。
氮摻雜碳球(nitrogen doped carbon spheres,N-Cs)納米復(fù)合材料,由于碳球具有較大的比表面積,因此,為酶的附著提供了較好的結(jié)合位點(diǎn),有利于酶促反應(yīng)的進(jìn)行[10-13],同時(shí)納米金的引入進(jìn)一步提高了N-Cs的導(dǎo)電性。目前,雖然關(guān)于N-Cs納米復(fù)合材料已有報(bào)道,但關(guān)于N-Cs生長(zhǎng)金納米復(fù)合材料的報(bào)道鮮見(jiàn)發(fā)表。因此,本實(shí)驗(yàn)以N-Cs-Au為基質(zhì),制備酶?jìng)鞲衅鱽?lái)對(duì)克百威進(jìn)行快速、有效的定量分析。
1.1 材料與試劑
菠菜購(gòu)自鄭州市高新區(qū)丹尼斯便利店;氯化乙酰膽堿(acetylcholine chloride,ATCl)、C3389型乙酰膽堿酯酶(acetylcholinesterase,AChE,236 U/mg) 美國(guó)Sigma公司;克百威 中國(guó)食品藥品檢定研究院;氯化鉀洛陽(yáng)昊化化學(xué)試劑有限公司;亞鐵氰化鉀 天津市光復(fù)精細(xì)化工研究所;鐵氰化鉀 洛陽(yáng)市化學(xué)試劑廠;實(shí)驗(yàn)中所用到的試劑均為分析純。
1.2 儀器與設(shè)備
CHI-660E電化學(xué)工作站 上海辰華儀器有限公司;JSM-7001F場(chǎng)發(fā)射掃描電子顯微鏡 日本JEOL公司;KQ-100E型超聲波清洗器 昆山市超聲儀器有限公司;S25-2型恒溫磁力攪拌器 上海司樂(lè)儀器有限公司;ATY224型電子分析天平 島津國(guó)際貿(mào)易(上海)有限公司;移液槍 賽默飛世爾(上海)儀器有限公司。
1.3 方法
1.3.1 N-Cs-Au的制備
N-Cs納米材料參考文獻(xiàn)[14]制備。準(zhǔn)確稱取N-Cs納米材料0.010 3 g于50 mL的具塞錐形瓶中,加入20.00 mL超純水,超聲分散2~3 h,使其分散均勻。在劇烈攪拌條件下,向N-Cs分散液中加入0.60 mL 1 g/100 mL的HAuCl4和0.20 mL 0.20 mol/L的K2CO3溶液,然后再迅速加入新鮮配制的0.04 mol/L的NaBH4溶液0.40 mL,重復(fù)滴加3~5 次,繼續(xù)攪拌5 min,即得納米金顆粒。
將上述懸濁液靜置,除去上清液,用超純水洗滌3 次,然后再稀釋到20.00 mL,在磁力攪拌條件下再加入0.10 mL 1 g/100 mL的HAuCl4和0.5 mL 0.04 mol/L的NH2OH·HCl溶液,繼續(xù)攪拌20 min,即得N-Cs-Au,然后于10 000 r/min、室溫條件下離心5 次,每次10 min,用超純水對(duì)離心產(chǎn)物洗滌3~5次,60 ℃條件下干燥,備用。
1.3.2 傳感器的制備
將玻碳電極(glassy carbon electrode,GCE)用1 000 目砂紙打磨后,分別用0.3 μm和0.05 μm的氧化鋁粉拋光至鏡面,然后依次用無(wú)水乙醇、二次蒸餾水進(jìn)行超聲清洗3 次,每次3~5 min,在常溫條件下讓其自然干燥,備用[15-17]。用10 μL移液槍吸取4.0 μL的1.0 mg/mL的N-Cs-Au修飾液滴于GCE表面,然后用燒杯罩在上面(防止其被污染),常溫自然干燥,即得N-Cs-Au/GCE。然后再取1.0 μL 0.5 g/100 mL的殼聚糖溶液和2.0 μL 0.1 U/μL AChE以及1.0 μL 1 g/100 mL牛血清蛋白混合均勻,取其混合液滴加在N-Cs-Au/GCE電極表面,室溫條件下干燥,即得AChE/N-Cs-Au/GCE生物傳感器[18-20]。
1.3.3 樣品處理和測(cè)定
選用菠菜作為實(shí)際樣品對(duì)克百威進(jìn)行加標(biāo)實(shí)驗(yàn)。準(zhǔn)確稱取菠菜10.000 0 g,用搗碎機(jī)搗碎混勻,然后轉(zhuǎn)移至潔凈的表面皿中并用微量注射器吸取100 μL 5.103 5×10-3g/L克百威標(biāo)準(zhǔn)溶液,均勻噴撒在準(zhǔn)備好的樣品上,蓋上保鮮膜,在4 ℃冰箱中放置1 h,然后用丙酮萃取過(guò)濾并轉(zhuǎn)移至100 mL容量瓶中定容,取一定量的上述溶液于5 mL磷酸鹽緩沖溶液(phosphate buffer saline,PBS)中分別制備5.103 5×10-6、5.103 5×10-7g/L和5.103 5×10-8g/L克百威溶液,對(duì)其進(jìn)行定量分析。
2.1 不同材料的形貌表征
由圖1A可知,制備好的N-Cs納米復(fù)合材料呈球形,且表面無(wú)任何物質(zhì)存在;由圖1B可知,經(jīng)生長(zhǎng)過(guò)金的N-Cs納米復(fù)合材料表面被負(fù)載了一層顆粒狀的物質(zhì),且相對(duì)均勻,這說(shuō)明金納米顆粒已經(jīng)很好地被負(fù)載到了N-Cs表面。
圖1 N-Cs(A)和N-Cs-Au(B)的掃描電鏡圖Fig. 1 SEM images of N-Cs (A) and N-Cs-Au (B)
2.2 電極的電化學(xué)表征
在10 mmol/L的[Fe(CN)6]3-溶液(含0.1 mol/L KCl)中分別對(duì)GCE、N-Cs-Au/GCE和AChE/N-Cs-Au/GCE進(jìn)行交流阻抗分析,結(jié)果見(jiàn)圖2。
圖2 GCE(a)、N-Cs-Au/GCE(b)、AChE/N-Cs-Au/GCE(c)在10 mmol/L的[Fe(CN)6]3-(含0.1 mol/L KCl)溶液中的交流阻抗圖譜Fig. 2 Electrochemical impedance spectra of GCE (a), N-Cs-Au/GCE (b)and AChE/N-Cs-Au/GCE (c) in 10 mmol/L [Fe(CN)6]3- containing 0.1 mol/L KCl
由圖2可知,GCE電阻為375.5 Ω,N-Cs-Au/GCE電阻為195.5 Ω,與GCE相比電阻降低了47.94%,這說(shuō)明N-Cs表面生長(zhǎng)金以后,能夠有效提高電子的轉(zhuǎn)移速率,減小電極表面的阻抗,增加電極的導(dǎo)電性;當(dāng)?shù)渭由螦ChE以后電阻增大到481.3 Ω,與N-Cs-Au/GCE相比電阻增大了146.19%,這是因?yàn)锳ChE是不導(dǎo)電的生物大分子,阻礙了電子的傳遞,從而增加了電極表面的電阻,這同時(shí)也說(shuō)明AChE已經(jīng)很好地被固定到電極表面[21]。
2.3 ATCl在不同電極上的電化學(xué)行為
以pH 7.5的PBS(0.1 mol/L)為支持電解質(zhì),分別用AChE/GCE和AChE/N-Cs-Au/GCE對(duì)1 mmol/L的ATCl溶液進(jìn)行差分脈沖掃描,其結(jié)果如圖3所示。
圖3 AChE/GCE(a)和AChE/N-Cs-Au/GCE(b)在1.0 mmol/L的ATCl溶液中的差分脈沖曲線Fig. 3 Differential pulse voltammetry curves of AChE/GCE (a) and AChE/N-Cs-Au/GCE (b) in 1.0 mmol/L ATCl
由圖3可知,AChE/GCE的氧化峰電流為1.033 μA,AChE/N-Cs-Au/GCE氧化峰電流為2.329 μA,與AChE/GCE相比氧化峰電流增加了1.254 6 倍,這說(shuō)明AChE/N-Cs-Au/GCE具有較高的電催化活性,N-Cs-Au能夠有效地降低電極表面的阻抗,促進(jìn)電子地轉(zhuǎn)移速率,提高傳感器的靈敏度。
2.4 不同交聯(lián)劑的選擇
分別以1 μL 0.5g/100 mL戊二醛和0.5 g/100 mL殼聚糖為交聯(lián)劑,制備AChE/N-Cs-Au/GCE生物傳感器,對(duì)1 mmol/L的ATCl進(jìn)行差分脈沖掃描,其結(jié)果如圖4所示。
圖4 不同交聯(lián)劑條件下的差分脈沖曲線Fig. 4 Differential pulse voltammetry curves of sensors made with different crosslinking agents
由圖4可知,不用交聯(lián)劑制備的生物傳感器測(cè)得的氧化峰電流為1.625 μA;以0.5 g/100 mL戊二醛為交聯(lián)劑制備的生物傳感器測(cè)得的氧化峰電流為2.014 μA,與不用交聯(lián)劑制備的生物傳感器相比氧化峰電流提高了23.94%,這說(shuō)明戊二醛能夠起到很好的交聯(lián)作用,防止酶分子從電極表面脫落,增加電極表面的響應(yīng)信號(hào)。以0.5 g/100 mL殼聚糖為交聯(lián)劑制備的生物傳感器測(cè)得的氧化峰電流為2.392 μA,與以0.5 g/100 mL的戊二醛為交聯(lián)劑制備的生物傳感器測(cè)得的氧化峰電流相比提高了18.77%,這是因?yàn)槲於╇m然能夠?qū)γ钙鸬胶芎玫慕宦?lián)作用,但其有一定的毒性,抑制了酶分子的活性[22],而殼聚糖是天然的生物分子,無(wú)毒,具有較好的成膜特性,不僅能夠?qū)γ阜肿悠鸬胶芎玫慕宦?lián)作用,還能夠防止酶分子的聚集,因此具有較好的交聯(lián)效果,能夠有效促進(jìn)酶促反應(yīng)的進(jìn)行,增加響應(yīng)信號(hào)[23]。因此,本實(shí)驗(yàn)選取0.5 g/100 mL殼聚糖為交聯(lián)劑制備的生物傳感器。
2.5 修飾量的選擇
以pH 7.5的PBS(0.1 mol/L)為支持電解質(zhì),分別以2.0、3.0、4.0、5.0、6.0 μL和7.0 μL的N-Cs-Au修飾GCE制備AChE/N-Cs-Au/GCE傳感器,對(duì)1.00 mmol/L的ATCl進(jìn)行差分脈沖掃描,其結(jié)果如圖5所示。
由圖5可知,隨著N-Cs-Au修飾量的增加,AChE/N-Cs-Au/GCE傳感器在1.00 mmol/L的ATCl中測(cè)得的氧化峰電流呈現(xiàn)先增加后減小的趨勢(shì),且當(dāng)修飾量為4 μL時(shí)氧化峰電流達(dá)到最大為2.384 μA。這是因?yàn)楫?dāng)電極表面涂層過(guò)厚時(shí)會(huì)影響到反應(yīng)物和生成物的傳質(zhì)過(guò)程,同時(shí)厚度的增大,也會(huì)增加電極表面的阻抗,阻礙電極表面電子的轉(zhuǎn)移過(guò)程,致使電極響應(yīng)變得遲緩,響應(yīng)電流隨之降低。因此,N-Cs-Au的修飾量選取4 μL。
圖5 N-Cs-Au修飾量對(duì)AChE/N-Cs-Au/GCE傳感器的影響Fig. 5 Effect of N-Cs-Au loading on the response of AChE/N-Cs-Au/GCE biosensor
2.6 pH值優(yōu)化
圖6 pH值對(duì)AChE/N-Cs-Au/GCE傳感器的影響Fig. 6 Effect of pH on the response of AChE/N-Cs-Au/GCE biosensor
分別以pH6.0、6.5、7.0、7.5、8.0和8.5的PBS(0.1 mol/L)為支持電解質(zhì)溶液,對(duì)1.00 mmol/L的ATCl進(jìn)行差分脈沖掃描,其結(jié)果如圖6所示。由圖6可知,隨著PBS pH值的升高,氧化峰電流呈現(xiàn)先增大后減小的趨勢(shì),且當(dāng)pH 7.5時(shí),氧化峰電流達(dá)到最大為2.328 μA,這是因?yàn)檫^(guò)強(qiáng)的酸堿性會(huì)對(duì)酶分子產(chǎn)生可逆或不可逆性的破壞,影響酶促反應(yīng)的進(jìn)行[24]。因此,本實(shí)驗(yàn)選取pH 7.5的PBS為支持電解質(zhì)。
2.7 抑制時(shí)間的選擇
圖7 克百威作用時(shí)間與抑制率之間的關(guān)系曲線Fig. 7 Relationship between percentage inhibition and incubation time with carbofuran
將制備好的AChE/N-Cs-Au/GCE生物傳感器置于1.00 mmol/L的ATCl溶液中,然后用2.3×10-5g/L的克百威對(duì)其進(jìn)行抑制,記錄不同抑制時(shí)間的氧化峰電流,根據(jù)抑制前后峰電流值的變化計(jì)算出其抑制率,其結(jié)果如圖7所示。
由圖7可知,當(dāng)加入2.3×10-5g/L的克百威后,克百威對(duì)AChE的抑制作用隨著時(shí)間的延長(zhǎng)逐漸增大,且當(dāng)抑制時(shí)間達(dá)到10 min后逐漸趨于平緩。因此克百威對(duì)AChE/N-Cs-Au/GCE生物傳感器的抑制時(shí)間選取10 min。
2.8 克百威質(zhì)量濃度與其抑制率間的關(guān)系
在最佳實(shí)驗(yàn)條件下分別用2.3×10-11~2.3×10-4g/L的克百威對(duì)AChE/N-Cs-Au/GCE進(jìn)行抑制測(cè)定,其結(jié)果如圖8所示。
圖8 克百威質(zhì)量濃度與其抑制率間的關(guān)系曲線Fig. 8 Relationship curve between percentage inhibition and carbofuran concentration
由圖8可知,克百威質(zhì)量濃度的負(fù)對(duì)數(shù)與其對(duì)AChE/N-Cs-Au/GCE的抑制率在2.3×10-10~2.3×10-5g/L的范圍內(nèi)呈良好的線性關(guān)系,線性范圍較寬,按抑制率10%計(jì)算,檢出限為6.763 9×10-11g/L,滿足實(shí)驗(yàn)要求。與之前的文獻(xiàn)報(bào)道[25-28]相比,本實(shí)驗(yàn)所構(gòu)建的AChE/N-Cs-Au/GCE生物傳感器明顯優(yōu)于其他生物傳感器,結(jié)果如表1所示。
表1 AChE/N-Cs-Au/GCE生物傳感器與其他傳感器的結(jié)果比較Table 1 Performance comparison of AChE/N-Cs-Au/GCE for carbofuran detection with other biosensors
2.9 實(shí)際樣品的檢測(cè)結(jié)果
對(duì)實(shí)際樣品菠菜中的克百威進(jìn)行檢測(cè),由建立的標(biāo)準(zhǔn)曲線計(jì)算出克百威的含量,平行測(cè)定3 次,做回收率實(shí)驗(yàn),其結(jié)果如表2所示。
由表2可知,克百威加標(biāo)回收率在91.417 7%~95.859 7%之間,精密度較高,符合實(shí)驗(yàn)要求,適用于實(shí)際樣品中克百威的檢測(cè)分析。
表2 菠菜中克百威的檢測(cè)結(jié)果Table 2 Detection of carbofuran in actual spinach samples
2.10 傳感器的抗干擾分析
常見(jiàn)的重金屬元素可能會(huì)影響到酶的活性,進(jìn)而影響到傳感器的穩(wěn)定性,影響其靈敏度,因此本實(shí)驗(yàn)探討了常見(jiàn)重金屬Cr(50.00 mmol/L)、Pb(50.00 mmol/L)、Cu(50.00 mmol/L)、Cd(50.00 mmol/L)和Mn(50.00 mmol/L)[29-30]對(duì)傳感器的影響,結(jié)果如圖9所示。
圖9 不同重金屬對(duì)傳感器的影響Fig. 9 Effects of different heavy metals on the response of AChE/N-Cs-Au/GCE biosensor
由圖9可知,加入重金屬Pb、Cu、Cd和Mn后AChE/N-Cs-Au/GCE測(cè)得的氧化峰電流保持在空白電流的91.65%~103.68%之間,這說(shuō)明Pb、Cu、Cd和Mn對(duì)傳感器的干擾較?。划?dāng)加入重金屬Cr后電流值為原來(lái)的79.27%,降低了20.73%,這說(shuō)明AChE/N-Cs-Au/GCE生物傳感器對(duì)Cr的抗干擾能力較差。
在N-Cs的基礎(chǔ)上制備了N-Cs-Au納米復(fù)合材料,采用交聯(lián)法制備了新型的AChE/N-Cs-Au/GCE傳感器并用于菠菜中克百威的定量分析。結(jié)果表明:N-Cs-Au具有較好的導(dǎo)電性和電催化活性,能夠有效地促進(jìn)電子的轉(zhuǎn)移,提高AChE/N-Cs-Au/GCE傳感器的靈敏度。利用AChE/N-Cs-Au/GCE傳感器對(duì)菠菜中的克百威進(jìn)行檢測(cè)分析,樣品回收率在91.417 7%~95.859 7%之間,精密度較高,符合實(shí)驗(yàn)要求,且該傳感器對(duì)常見(jiàn)的重金屬Pb、Cu、Cd和Mn有較好的抗干擾能力,穩(wěn)定性較好,適用于克百威的現(xiàn)場(chǎng)檢測(cè)分析。
[1] SAMPHAO A, SUEBSANOH P, WONGS Y, et al. Alkaline phosphatase inhibition-based amperometric biosensor for the detection of carbofuran[J]. International Journal of Electrochemical Science,2013, 8(3): 3254-3264.
[2] DOUNINA V, ANTHONY J, HOLGER S V, et al. Disposable electrochemical printed gold chips for the analysis of acetylcholinesterase inhibition[J]. Analytica Chimica Acta, 2010,669(1/2): 63-67. DOI:10.1016/j.aca.2010.04.037.
[3] 劉麗. 固定化漆酶降解克百威與毒死蜱的研究[D]. 沈陽(yáng): 沈陽(yáng)工業(yè)大學(xué), 2015: 13.
[4] YANG L, WANG G C, LIU Y J, et al. Development of a biosensor based on immobilization of acetylcholinesterase on NiO nanoparticlescarboxylic graphene-nafion modified electrode for detection of pesticides[J]. Talanta, 2013, 113(113C): 135-141. DOI:10.1016/j.talanta.2013.03.025.
[5] WANG X D, YANG Y Y, DONG J, et al. Lanthanum-functionalized gold nanoparticles for coordination-bonding recognition and colorimetric detection of methyl parathion with high sensitivity[J].Sensors and Actuators B Chemical, 2014, 204∶ 119-214. DOI∶10.1016/j.snb.2014.07.093.
[6] SUN X, DU S Y, WANG X Y. Amperometric immunosensor for carbofuran detection based on gold nanoparticles and PB-MWCNTs-CTS composite film[J]. European Food Research and Technology,2012, 235(3)∶ 469-477. DOI∶10.1007/s00217-012-1774-z.
[7] JEYAPRAGASAM T, SARASWATHI R. Electrochemical biosensing of carbofuran based on acetylcholinesterase immobilized onto iron oxide-chitosan nanocomposite[J]. Sensors and Actuators B Chemical,2014, 191(6/7): 681-687. DOI:10.1016/j.snb.2013.10.054.
[8] TAN X C, HU Q, WU J W, et al. Electrochemical sensor based on molecularly imprinted polymer reduced graphene oxide and gold nanoparticles modified electrode for detection of carbofuran[J].Sensors and Actuators B Chemical, 2015, 220: 216-221. DOI:10.1016/j.snb.2015.05.048.
[9] WANG G C, TAN X C, ZHOU Q. Synthesis of highly dispersed zinc oxide nanoparticles on carboxylic graphene for development a sensitive acetylcholinesterase biosensor[J]. Sensors and Actuators B Chemical, 2014, 190(1): 730-736. DOI:10.1016/j.snb.2013.09.042.
[10] YU Y Y, GUO C X, YONG Y C. Nitrogen doped carbon nanoparticles enhanced extracellular electron transfer for high-performance microbial fuel cells anode[J]. Chemosphere, 2015, 140: 26-33.DOI:10.1016/j.chemosphere.2014.09.070.
[11] GONG K P, DU F, XIA Z H, et al. Nitrogen-doped carbon nanotube arrays with high electrocatalytic activity for oxygen reduction[J].Science, 2009, 323: 760-764. DOI:10.1126/science.1168049.
[12] ZAHOOR A, CHRISTY M, HWANG Y J, et al. Improved electrocatalytic activity of carbon materials by nitrogen doping[J].Applied Catalysis B: Environmental, 2014, 147(5): 633-641.DOI:10.1016/j.apcatb.2013.09.043.
[13] SOARES O, ROCHA R, GONCALVES A G, et al. Easy method to prepare N-doped carbon nanotubes by ball milling[J]. Carbon, 2015,91: 114-121. DOI:10.1016/j.carbon.2015.04.050.
[14] 李曉偉. 基于氮摻雜碳球的電化學(xué)傳感器對(duì)鉛,鎘的檢測(cè)研究[D].鄭州: 河南工業(yè)大學(xué), 2016: 13.
[15] LEE P M, WANG Z M, LIU X X, et al. Glassy carbon electrode modified by graphene-gold nanocomposite coating for detection of trace lead ions in acetate buffer solution[J]. Thin Solid Films, 2015,584: 85-89. DOI:10.1016/j.tsf.2015.03.017.
[16] CHEN T, TIAN L L, CHEN Y, et al. A facile one-pot synthesis of Au/Cu2O nanocomposites for nonenzymatic detection of hydrogen peroxide[J]. Nanoscale Research Letters, 2015, 10(1): 252-259.DOI:10.1186/s11671-015-0935-y.
[17] MINH P, NGOC B. Electrochemical analysis of parathion-ethyl using zirconium oxide-laponite nanocomposites-modified glassy carbon electrode[J]. Journal of Applied Electrochemistry, 2015, 45(4): 365-373. DOI:10.1007/s10800-015-0789-0.
[18] WEI M, WANG J J. A novel acetylcholinesterase biosensor based on ionic liquids-AuNPs-porous carbon composite matrix for detection of organophosphate pesticides[J]. Sensors and Actuators B Chemical,2015, 211: 291-296. DOI:10.1016/j.snb.2015.01.112.
[19] HUO D Q, LI Q, ZHANG Y C, et al. A highly efficient organophosphorus pesticides sensor based on CuO nanowires-SWCNTs hybrid nanocomposite[J]. Sensors and Actuators B:Chemistry, 2014, 199(4): 410-417. DOI:10.1016/j.snb.2014.04.016.
[20] ZHAI C, GUO Y M, SUN X, et al. An acetylcholinesterase biosensor based on graphene-gold nanocomposite and calcined layered double hydroxide[J]. Enzyme and Microbial Technology, 2014, 58/59: 8-13.DOI:10.1016/j.enzmictec.2014.02.004.
[21] WEI M, WANG J J, GUO J X, et al. Nanoparticles-polyanilinemultiwalled carbon nanotubes for determination of organophosphate pesticides[J]. Asian Journal of Chemistry, 2014, 26(15): 4679-4683.
[22] 曾高英. 基于納米金復(fù)合材料傳感器的有機(jī)磷農(nóng)藥檢測(cè)研究[D].鄭州: 河南工業(yè)大學(xué), 2013: 32-34.
[23] YANG L, WANG G C, LIU Y J. An acetylcholinesterase biosensor based on platinum nanoparticles-carboxylic graphene-nafion-modified electrode for detection of pesticides[J]. Analytical Biochemistry, 2013,437(2): 144-149. DOI:10.1016/j.ab.2013.03.004.
[24] ZHU W X, LIN W, LI T B, et al. Facile green synthesis of grapheme-Au nanorod nanoassembly for on-line extraction and sensitive stripping analysis of methyl parathion[J]. Electrochimica Acta, 2014,146: 419-428. DOI:10.1016/j.electacta.2014.09.085.
[25] SUN X, ZHU Y, WANG X Y. Amperometric immunosensor based on deposited gold nanocrystals/4,4?-thiobisbenzenethiol for determination of carbofuran[J]. Food Control, 2012, 28(1): 184-191. DOI:10.1016/j.foodcont.2012.04.027.
[26] DONG J, LIU T, MENG X M, et al. Amperometric biosensor based on immobilization of acetylcholinesterase via specific binding on biocompatible boronic acid-functionalized Fe@Au magnetic nanoparticles[J]. Journal of Solid State Electrochemistry, 2012, 16(12):3783-3790. DOI:10.1007/s10008-012-1812-6.
[27] YANG L, WANG G C, LIU Y J, et al. Development of a stable biosensor based on a SiO2nanosheet-Nafion-modified glassy carbon electrode for sensitive detection of pesticides[J]. Analytical and Bioanalytical Chemistry, 2013, 405(8): 2545-2552. DOI:10.1007/s00216-012-6634-y.
[28] YIN H S, AI S Y, XU J, et al. Amperometric biosensor based on immobilized acetylcholinesterase on gold nanoparticles and silk fibroin modified platinum electrode for detection of methyl paraoxon,carbofuran and phoxim[J]. Journal of Electroanalytical Chemistry,2009, 637(1/2): 21-27. DOI:10.1016/j.jelechem.2009.09.025.
[29] ZHOU Q, YANG L, WANG G C, et al. Acetylcholinesterase biosensor based on SnO2nanoparticles-carboxylic grapheme-nafion modified electrode for detection of pesticides[J]. Biosensors and Bioelectronics,2013, 49(2): 25-31. DOI:10.1016/j.bios.2013.04.037.
[30] CHAUHAN N, PUNDIR C S. An amperometric biosensor based on acetylcholinesterase immobilized onto iron oxide nanoparticles/multiwalled carbon nanotubes modified gold electrode for measurement of organophosphorus insecticides[J]. Analytica Chimica Acta, 2011,701(1): 66-74. DOI:10.1016/j.aca.2011.06.014.
Development of Acetylcholinesterase Biosensor for Detection of Carbofuran in Vegetables Based on Nitrogen-Doped Carbon Sphere-Gold Nanoparticles Composite Modified Electrode
JIN Huali, JIANG Haiyang*
(College of Grain and Oil, Henan University of Technology, Zhengzhou 450001, China)
An acetylcholinesterase (AChE) biosensor was prepared by cross-linking AChE and bovine serum albumin(BSA) onto nitrogen doped carbon sphere-gold (N-Cs-Au) nanoparticles composite modified glassy carbon electrode(GCE) and used for detecting carbofuran in spinach. The results showed that N-Cs-Au had a good electrical conductivity and catalytic activity, effectively promoting electron transfer and consequently improving the sensitivity of AChE/N-Cs-Au/GCE. It was found that there was a good linear relationship between the negative common logarithm of carbofuran concentration (X) in the range from 2.3 × 10-10to 2.3 × 10-5g/L and the percentage inhibition of the peak current by carbofuran (Y) as indicated by the equation∶ Y/% = -8.246 7X + 93.867 6 (R2= 0.992 9). As calculated by 10% inhibition,the limit of detection (LOD) for carbofuran was 6.763 9 × 10-11g/L. The sensor showed recoveries of 91.417 7%–95.859 7%for carbofuran in spiked spinach and high precision, which could meet the analytical requirements. Moreover, the sensor was free from the interference of common heavy metals such as Pb, Cu, Cd and Mn and could provide a new method for detecting carbofuran in foods.
carbofuran; nitrogen doped-carbon spheres-gold nanoparticles; sensor; detection
DOI∶10.7506/spkx1002-6630-201724048
TS207.7
A
1002-6630(2017)24-0296-06
金華麗, 姜海洋. 基于氮摻雜碳球生長(zhǎng)金的酶?jìng)鞲衅鳈z測(cè)蔬菜中的克百威[J]. 食品科學(xué), 2017, 38(24): 296-301.
10.7506/spkx1002-6630-201724048. http://www.spkx.net.cn
JIN Huali, JIANG Haiyang. Development of acetylcholinesterase biosensor for detection of carbofuran in vegetables based on nitrogen-doped carbon sphere-gold nanoparticles composite modified electrode[J]. Food Science, 2017, 38(24)∶ 296-301.(in Chinese with English abstract) DOI∶10.7506/spkx1002-6630-201724048. http∶//www.spkx.net.cn
2016-11-25
金華麗(1966—),女,教授,碩士,研究方向?yàn)槭称饭こ膛c品質(zhì)安全控制。E-mail:jinhuali66@163.com
*通信作者:姜海洋(1990—),男,碩士研究生,研究方向?yàn)槭称饭こ膛c品質(zhì)安全控制。E-mail:jianghaiyang523@163.com