郭京霞,馮蓮蓮,張起佳,李云云,曾 濤,王 果
不同鈣質(zhì)鈍化劑對稻田土壤溶液中Cd濃度的影響
郭京霞,馮蓮蓮,張起佳,李云云,曾 濤,王 果*
(福建農(nóng)林大學(xué)資源與環(huán)境學(xué)院,福建省土壤環(huán)境健康與調(diào)控重點實驗室,福州 350002)
為探討不同鈣質(zhì)鈍化劑對稻田土壤溶液中Cd濃度的影響,以一種Cd嚴(yán)重污染的農(nóng)田土壤和兩個水稻品種(臺粳8號、Ⅱ優(yōu)3301)為試驗材料,采用盆栽試驗法研究了三種鈣質(zhì)鈍化劑(石灰石粉、白云石粉和消石灰)對土壤溶液Cd濃度以及相應(yīng)的土壤Eh值和土壤溶液pH、Fe、Mn、TOC濃度動態(tài)變化的影響進行研究,并探討了鈣質(zhì)鈍化劑降低植稻土壤Cd有效性的機理。結(jié)果表明,在植稻期間,三種鈍化劑均顯著提高了土壤溶液的pH值,降低了土壤溶液中Cd、TOC、Fe和Mn的濃度和土壤的Eh值,降低了根表鐵膜數(shù)量、鐵膜Cd含量和水稻根系Cd含量。統(tǒng)計分析表明,土壤溶液Cd濃度與土壤Eh值、土壤溶液的TOC、Fe、Mn濃度之間均呈顯著正相關(guān),與土壤溶液pH值呈顯著負(fù)相關(guān),表明在酸性Cd污染的植稻土壤上,鈣質(zhì)鈍化劑通過提高土壤pH值、促進土壤的還原、抑制Fe/Mn氧化物的還原溶解、減少水溶態(tài)有機物的形成等途徑降低了土壤Cd的溶解性。鈣質(zhì)鈍化劑抑制了水稻根表鐵膜的形成、降低了鐵膜對Cd的富集,從而也降低了水稻根系對Cd的吸收。在鈍化劑種類、移栽時間和水稻品種三個外部因素中,水稻品種對土壤溶液中Cd的影響較大。在pH、Eh、TOC、水溶性Fe和Mn濃度等土壤因素中,水溶性Fe濃度成為影響水溶性Cd的主要因素(成熟期)。研究表明,三種鈣質(zhì)鈍化劑對土壤溶液中Cd濃度的影響無顯著差異,對根系Cd含量的降低效果因水稻品種而變。在提高土壤溶液pH方面,白云石粉的效果總體強于石灰石粉和消石灰。
石灰石;消石灰;白云石;土壤;水稻;土壤溶液;Cd
重金屬污染是我國農(nóng)業(yè)土壤面臨的一個嚴(yán)峻的環(huán)境問題,其中重金屬Cd污染問題比較突出?!度珖寥牢廴緺顩r調(diào)查公報》顯示,我國土壤Cd的點位超標(biāo)率達到了7.0%[1]。土壤中Cd的累積可以通過食物鏈對人類健康產(chǎn)生潛在嚴(yán)重威脅。水稻是世界第二大、我國第一大糧食作物[2]。長期以來,礦山開采及有色金屬冶煉等人為活動使得大量Cd釋放到環(huán)境中,導(dǎo)致了較嚴(yán)重的農(nóng)地土壤的Cd污染[3],引起農(nóng)產(chǎn)品中重金屬的超標(biāo)[4]。在我國南方,已有不少地方出現(xiàn)稻米Cd超標(biāo)的現(xiàn)象[5-8]。湖南省湘江流域,約60%的稻米中Cd含量超標(biāo),11%的稻米中Cd含量高于1 mg·kg-1[3]。可見農(nóng)產(chǎn)品、特別是稻米Cd污染已經(jīng)成為影響我國食品安全的突出問題。
重金屬污染的農(nóng)業(yè)土壤主要修復(fù)方法包括鈍化法、植物提取法、化學(xué)淋洗法、電動力學(xué)法和客土法等[9]?;瘜W(xué)鈍化是國內(nèi)外普遍使用的方法之一[10],土壤鈍化材料主要有含鈣材料、含磷材料、有機質(zhì)和含硅材料等[11-22]。石灰石粉、消石灰和白云石粉是常用的重金屬污染的酸性土壤的鈍化劑。Tyler等[13-15]研究發(fā)現(xiàn),消石灰和石灰石粉是通過施用后提高土壤pH和促進土壤中Cd的沉淀,而降低了土壤中有效Cd含量,進而降低玉米、茶葉、豆莢及水稻對Cd的吸收[16-18]。但從土壤溶液化學(xué)組成變化的角度來研究鈣質(zhì)鈍化劑對土壤Cd的有效性的影響尚少見。有鑒于此,本文采用盆栽試驗,研究了三種鈣質(zhì)鈍化劑對植稻期間土壤溶液中Cd濃度變化的影響及其機理,以期為鈣質(zhì)鈍化劑的應(yīng)用提供新的理論支持。
盆栽土壤采自福建省三明市大田縣某礦區(qū)周邊重金屬污染的稻田表層土壤。采集的土壤經(jīng)過風(fēng)干、研磨、過1 cm尼龍篩混合均勻后備用。由表1可知,供試土壤呈酸性,有機質(zhì)含量較高,保肥能力較強,土壤Cd污染嚴(yán)重。供試的鈍化劑是消石灰[Ca(OH)2]、石灰石粉(CaCO3)和白云石粉[Mg、Ca(CO3)2],均購自河北省鑫川礦產(chǎn)品加工廠。供試水稻品種為臺粳8號(粳稻)和Ⅱ優(yōu)3301(秈稻),分別由莆田農(nóng)科所和福建農(nóng)嘉種業(yè)股份有限公司提供。
盆栽試驗于2016年6月23日—10月21日在盆栽房中進行。盆栽試驗分為兩組,第一組的水稻品種為臺粳8號,第二組的水稻品種為Ⅱ優(yōu)3301。以Ca(OH)2用量為基數(shù),計算 CaCO3用量(等 Ca量),資料顯示白云石粉和石灰石粉鈍化效果相似,故白云石粉用量與石灰石粉一致。每組設(shè)置4個處理:對照、白云石粉(2.7 g·kg-1)、消石灰(2.0 g·kg-1)和石灰石粉(2.7g·kg-1),共8個處理,每個處理3個重復(fù)。每盆(內(nèi)徑25 cm、高25 cm)加入風(fēng)干土7.5 kg,在水稻移栽之前分別添加三種鈣質(zhì)鈍化劑與肥料(尿素2.1 g、NH4H2PO41.2 g、K2SO42.1 g),混合均勻,然后淹水放置30 d。挑選顆粒飽滿的水稻種子用30%H2O2浸泡30 min,去離子水洗凈后繼續(xù)浸種10 h進行催芽。種子發(fā)芽后用無重金屬污染土壤培養(yǎng)。23 d后,挑選長勢一致的秧苗移栽到盆內(nèi),每盆3株。水稻移栽之前,將土壤溶液采集器(RHIZON MOM,10 cm,Wageningen Netherlands)埋入盆栽土壤中。水稻生長過程中持續(xù)澆灌去離子水,使土壤始終保持淹水狀態(tài)(水深2~3 cm)。每15 d采集一次土壤溶液。待水稻成熟后,采集水稻根、莖、葉、籽粒和大約100 g的土壤樣品。水稻植株用去離子水洗凈,根系提取根表鐵膜后與莖、葉一起烘干(70℃)至恒重測定干重,然后用不銹鋼粉粹機將植物組織粉粹。土壤經(jīng)風(fēng)干、磨碎后分別過2 mm和0.149 mm的尼龍篩,供分析使用。
表1 供試土壤、鈍化劑物理化學(xué)性質(zhì)Table 1 Basic properties of the soil and the amendments
土壤Cd全量用四酸(鹽酸、硝酸、氫氟酸和高氯酸)消煮,電感耦合等離子體質(zhì)譜儀(ICP-MS,Nex-ION300X,PerkinElmer)測定[19]。水稻根表鐵膜中重金屬含量用 DCB(Dithionite-Citrate-Bicarbonate)法浸提[20],ICP-MS,NexION300X,Perkin Elmer測定。根、莖、葉和糙米中重金屬的含量采用混酸消煮[21],ICP-MS,NexION300X,Perkin Elmer測定。采集的土壤溶液一部分立即測定其pH,剩余土壤溶液過濾后加入2%HNO3[22-27],用 ICP-MS,NexION300X,Perkin Elmer測定其中Cd濃度,用火焰原子分光光度計測定其中的Fe、Mn、Ca、Mg濃度,用總有機碳分析儀(TOC-VCPH,日本島津)測定其中TOC含量[28]。土壤pH值用pH計(Mettler Seven Compact)測定(水土比 2.5∶1);土壤機械組成采用激光粒度儀(BT-9300ST)測定[29];土壤有機C采用元素分析儀(Vario Max Cube,Elementar)測定;土壤氧化還原電位(Eh)采用(FJA-6型氧化還原電位去極化法自動測定儀)原位測定[30]??瞻缀屯寥溃℅BW-07402)、水稻標(biāo)準(zhǔn)物質(zhì)(GBW-10023,國家標(biāo)準(zhǔn)物質(zhì)中心)的處理與樣品同步進行,回收率在95%~107%之間,以保證結(jié)果的準(zhǔn)確。
采用Microsoft excel 2010、Windows SPSS 19.0和SigmaPlot 12.5軟件進行數(shù)據(jù)的計算、統(tǒng)計與處理。差異顯著性分析采用LSD法,差異顯著水平為5%。
表2顯示植稻期間土壤氧化還原電位的變化。由表2可見,在水稻移栽后45~90 d期間,土壤Eh值總體呈下降趨勢,移栽后90 d土壤Eh值最低。兩種水稻品種之間Eh值下降幅度差異較大,Ⅱ優(yōu)3301土壤的Eh值較臺粳8號土壤Eh值降幅更大。臺粳8號土壤的Eh值從437 mV降低到164 mV,降低了62.5%,其中以石灰石粉處理最低,白云石粉處理次之,消石灰處理最高。Ⅱ優(yōu)3301土壤的Eh值則從353 mV降低到47 mV,降低了86.6%,以消石灰處理最低,白云石處理次之,石灰石粉處理最高且低于對照。
植稻期間土壤溶液中pH的變化如表3所示。從表3可見,在植稻期間,土壤溶液pH總體呈升高-降低-再升高的趨勢,水稻移栽后45~60 d土壤溶液pH最低。與對照相比,鈣質(zhì)鈍化劑顯著提高了土壤溶液的pH,且提高幅度以白云石粉最大,消石灰次之,石灰石粉最小。臺粳8號土壤溶液pH的波動比Ⅱ優(yōu)3301更為明顯。鈍化劑、水稻品種和植稻時間對土壤溶液pH的影響的3因素方差分析結(jié)果:F鈍化劑=75.98(p<0.01),F時間=3.61(P=0.02),F(xiàn)品種=0.68(P=0.44),表明鈍化劑處理對土壤溶液pH的影響最大,其次是植稻時間。
表2 植稻期間土壤Eh值的變化(mV)Table 2 Changes in Eh values of the soils during rice cultivation(mV)
土壤溶液中的Fe和Mn濃度如表4所示。鈣質(zhì)鈍化劑顯著降低了土壤溶液中Fe和Mn的濃度,但三種鈍化劑的效果差異不顯著。隨著淹水時間的延長,兩個水稻品種對照土壤溶液中的Fe濃度均呈先升后降的趨勢。臺粳8號對照土壤溶液中Fe濃度的升幅較小且持續(xù)時間較短,而Ⅱ優(yōu)3301對照土壤溶液中Fe濃度的升幅較大且持續(xù)時間較長。對鈍化劑、水稻品種和種植時間進行3因素方差分析:對土壤溶液中 Fe而言,F(xiàn)鈍化劑=172.4(p<0.01),F(xiàn)時間=33.78(P=0.16),F(xiàn)品種=6.42(P=0.04),表明鈍化劑處理對土壤溶液中Fe濃度的影響最大,其次是水稻品種;而對土壤溶液 Mn 而言,F(xiàn)鈍化劑=156.8(p<0.01),F(xiàn)時間=5.97(P=0.05),F(xiàn)品種=1.84(P=0.22),鈍化劑處理的影響最大,其次是植稻時間。
表3 植稻期間土壤溶液中pH值的變化Table 3 Changes in pH of the soil solution during rice cultivation
植稻期間土壤溶液中TOC含量如表5所示。由表5可知,在植稻期間,土壤溶液中TOC含量總體呈波動式降低,從移栽到90 d,臺粳8號土壤溶液中TOC 濃度從 247.3 mg·L-1降低到 161.5mg·L-1,降低了34.7%,鈣質(zhì)鈍化劑處理與對照之間總體無顯著差異。Ⅱ優(yōu)3301土壤溶液中TOC濃度則從276.3 mg·L-1降低到44.4 mg·L-1,降低了83.9%,在水稻移栽后75~90 d,鈣質(zhì)鈍化劑處理與對照差異顯著。不同水稻品種的土壤溶液中TOC含量差異顯著。Ⅱ優(yōu)3301土壤溶液中TOC含量的降幅較臺粳8號大。在對照土壤溶液中,II優(yōu)3301的TOC濃度高于臺粳8號,但在鈣質(zhì)鈍化劑處理的土壤溶液中,兩個水稻品種的TOC濃度相近。鈍化劑、植稻時間和水稻品種對TOC的影響的3因素方差分析結(jié)果:F鈍化劑=7.72(p<0.01),F時間=7.74(P=0.02),F品種=0.08(P=0.79),表明水稻種植時間對土壤溶液中TOC含量影響最大,其次是鈍化劑。
表4 植稻期間土壤溶液中Fe、Mn濃度變化Table 4 Changes in the concentrations of Fe and Mn of soil solution during rice cultivation
表5 植稻期間土壤溶液中TOC含量(mg·L-1)Table 5 Changes in TOC contents of soil solution during rice cultivation(mg·L-1)
表6顯示植稻期間土壤溶液中Cd濃度的變化。從表6可見,在植稻期間,土壤溶液中Cd濃度呈波動式下降,到水稻移栽90 d,土壤溶液中Cd濃度趨于穩(wěn)定。水稻移栽前(第0 d),各鈍化劑均顯著降低了土壤溶液Cd的濃度,降幅以白云石處理最大、消石灰處理次之、石灰石粉處理最小。從第0 d到第15 d,對照土壤溶液Cd濃度急劇降低,鈍化劑處理的土壤溶液Cd濃度也顯著降低;此后土壤溶液Cd濃度雖然有所降低,但降幅不大。不同鈍化劑處理的土壤溶液Cd濃度無顯著差異,兩種水稻品種土壤溶液Cd濃度之間的差異亦不顯著。鈍化劑、植稻時間和水稻品種對土壤溶液Cd濃度的影響的3因素方差分析結(jié)果:F鈍化劑=1.04(P=0.40),F時間=2.54(P=0.06),F品種=6.43(P=0.04),表明水稻品種對土壤溶液Cd濃度影響較大。
不同鈣質(zhì)鈍化劑處理下根表鐵膜和水稻根系Cd含量的變化如表7所示。從表7中可知,與臺粳8號相比,三種鈣質(zhì)鈍化劑顯著降低了Ⅱ優(yōu)3301根表鐵膜-Cd含量,消石灰的降低效果大于其他兩種鈍化劑。消石灰顯著降低了稻根中Cd含量;石灰石粉顯著降低了Ⅱ優(yōu)3301稻根Cd含量,但對臺粳8號稻根Cd含量的降低不顯著;白云石粉對Ⅱ優(yōu)3301水稻品種根Cd含量的降低不顯著。
氧化還原電位對土壤中重金屬的溶解性和有效性有較大的影響[31]。在強烈還原條件下,土壤會形成較多的H2S、S2-與Cd2+形成硫化物沉淀,從而降低其有效性[32]。不同鈣質(zhì)鈍化劑處理降低了土壤Eh值(表2)。水稻移栽后60、75 d和90 d,各處理土壤Eh值(重復(fù)平均值)與同期土壤溶液中Cd含量之間均呈顯著正相關(guān),相關(guān)系數(shù)(r)分別為0.911**、0.815**和0.759**(n=8),這證明土壤Eh值的降低顯著降低了水溶態(tài)Cd的濃度,與王成文等[30,33-34]的研究結(jié)果相同。鈍化劑的施用降低了土壤的Eh值,因此,鈣質(zhì)鈍化劑促進土壤Eh的降低是降低土壤Cd的水溶性的機理之一。
表7 根表鐵膜Fe和Cd、根系Cd含量Table 7 Contents of Fe and Cd in iron plaques on root surface and Cd in rice roots
圖1 根表鐵膜Cd含量與根系Cd含量之間的關(guān)系Figure 1 Correlation between contents of Cd in iron plaque on root and in rice root
表6 植稻期間土壤溶液中Cd含量(μg·L-1)Table 6 Changes in Cd concentrations of soil solution during rice cultivation(μg·L-1)
從結(jié)果分析可知,鈣質(zhì)鈍化劑的施用提高了土壤溶液的pH值。統(tǒng)計結(jié)果表明,在水稻移栽后15、45 d和60 d,各處理土壤溶液pH值與Cd含量(重復(fù)平均值)之間均無顯著相關(guān);但在第30、75和90 d,各處理的土壤溶液pH值與土壤溶液中Cd含量(重復(fù)平均值)之間均呈極顯著負(fù)相關(guān),相關(guān)系數(shù)(r)分別為-0.763**、-0.925** 和-0.916**(n=8),表明在淹水植稻前期土壤溶液pH值與水溶態(tài)Cd濃度之間的相關(guān)性較差,而后期則相關(guān)性極顯著。土壤pH值的提高使土壤中Cd2+轉(zhuǎn)化為Cd(OH)2以及CdCO3等沉淀,從而降低了Cd的溶解性[35];同時因為增加土壤可變負(fù)電荷而增加了土壤對Cd2+的吸附,降低了土壤中可溶性Cd含量[36]。土壤溶液pH值與土壤溶液Cd濃度在淹水后期的相關(guān)性較顯著,可能說明由于土壤pH升高而導(dǎo)致的Cd溶解性的降低需要一定時間。
淹水條件會導(dǎo)致土壤形成較多的有機還原物質(zhì),有機還原物質(zhì)的水溶態(tài)部分(TOC)會與重金屬離子絡(luò)合而提高重金屬的水溶性[37]。水稻移栽后第75 d和90 d,土壤溶液中TOC濃度與Cd濃度(重復(fù)平均值)之間呈現(xiàn)極顯著正相關(guān),相關(guān)系數(shù)分別為0.949**和0.919**(n=8),這說明土壤溶液中TOC濃度也是影響水溶態(tài)Cd含量的一個因素。土壤溶液中TOC升高,水溶態(tài)Cd濃度也升高,這是由于TOC中的有機配位體可與Cd2+形成可溶性絡(luò)合物,從而提高了Cd的溶解性[38-39]。從前文的分析可知,添加鈣質(zhì)鈍化劑總體上降低了土壤溶液中的TOC濃度,不利于Cd的絡(luò)合溶解,這是鈣質(zhì)鈍化劑降低土壤溶液中Cd濃度的另一個機理。
在強烈還原條件下,土壤中的鐵錳氧化物會被還原溶解而釋放出水溶態(tài)Fe2+和Mn2+[40],同時也釋放出原來被Fe/Mn氧化物吸附固定的Cd2+,從而提高水溶態(tài)Cd的濃度。在施用鈣質(zhì)鈍化劑條件下,土壤pH的提高會促進水溶態(tài)Fe2+和Mn2+的沉淀。根據(jù)前文的分析,對照土壤溶液中Fe/Mn氧化物并未產(chǎn)生大量的還原溶解,但施用鈍化劑均顯著降低了土壤溶液中Fe、Mn的濃度,這表明鈣質(zhì)鈍化劑可以抑制Fe/Mn氧化物的還原溶解,促進水溶態(tài)Fe、Mn的沉淀。水稻移栽后第30、75 d和90 d,土壤溶液中Cd濃度與Fe濃度(重復(fù)平均值)之間呈顯著正相關(guān),相關(guān)系數(shù)(r)分別為 0.810*、0.987** 和 0.993**(n=8);水稻移栽后第75 d和90 d,土壤溶液中Cd濃度與Mn濃度(重復(fù)平均值)之間呈顯著正相關(guān),相關(guān)系數(shù)(r)分別為0.985**和0.982**(n=8)??梢?,鈣質(zhì)鈍化劑抑制了Fe/Mn氧化物的還原溶解,從而降低了土壤溶液中Cd的濃度,有利于減少水稻根系對Cd的吸收。這也是鈣質(zhì)鈍化劑降低土壤Cd的有效性的機理之一。
采用逐步回歸的方法,分析了成熟期(移栽后90 d)5 個變量(pH、Eh、Fe、Mn、TOC)對土壤溶液 Cd 濃度的影響,得到如下回歸模型:
以上模型表明,在淹水植稻末期,土壤溶液中Fe濃度是引起土壤溶液Cd濃度變化的主要因素,土壤溶液Cd濃度隨著Fe濃度的升高而升高,即Fe/Mn氧化物的還原溶解速率成為影響土壤溶液Cd濃度的主要因素。
從表7可見,三種鈣質(zhì)鈍化劑顯著降低了Ⅱ優(yōu)3301根表鐵膜數(shù)量,同時也顯著降低了根表鐵膜中Cd的含量,但對臺粳8號并沒有顯著影響。從圖1可知,較高的根表鐵膜含量有利于水稻根系對Cd的吸收;當(dāng)根表鐵膜中Cd濃度較低時(≤2 mg·kg-1),根系Cd濃度隨根表鐵膜中Cd含量的增加而迅速增加;當(dāng)根表鐵膜中Cd濃度繼續(xù)增加,根系Cd濃度則僅略有增加。這表明當(dāng)根表鐵膜中Cd濃度較低時,鐵膜中的Cd促進了根系Cd的吸收,而不是阻擋根系Cd的吸收;只有當(dāng)鐵膜中Cd含量高到一定程度時,鐵膜的屏障作用才比較明顯,其中機理有待于進一步探討。移栽后第90 d,土壤溶液中Cd濃度與根表鐵膜-Cd和稻根Cd含量(重復(fù)平均值)之間均呈極顯著正相關(guān)關(guān)系,相關(guān)系數(shù)分別為0.702**和0.890**(n=8)。鈣質(zhì)鈍化劑降低了根表鐵膜的數(shù)量,從而抑制了水稻根系對Cd的吸收,這是鈣質(zhì)鈍化劑降低土壤Cd生物有效性的另一個機理。
(1)施用三種鈣質(zhì)鈍化劑,顯著降低了土壤溶液中Cd的濃度。
(2)施用三種鈣質(zhì)鈍化劑,均提高了土壤溶液pH值、降低了土壤Eh值和土壤溶液中的TOC、Fe、Mn的濃度。鈣質(zhì)鈍化劑通過提高土壤pH值、促進植稻土壤的還原、抑制Fe/Mn氧化物的還原溶解、降低水溶態(tài)有機物的形成而降低了土壤Cd的生物有效性。
(3)施用鈣質(zhì)鈍化劑降低了水稻根表鐵膜的數(shù)量和鐵膜中Cd的含量。水稻根系Cd含量隨根表鐵膜Cd含量的升高而升高。鈣質(zhì)鈍化劑降低根表鐵膜的數(shù)量和鐵膜中Cd的含量,也是其降低土壤Cd生物有效性的機制之一。
(4)三種鈣質(zhì)鈍化劑對土壤Eh值的降低效果因水稻品種而變;對土壤溶液pH值的提高效果,白云石粉總體強于消石灰和石灰石粉;對土壤溶液中Fe、Mn、TOC和Cd的濃度以及根表鐵膜數(shù)量的影響無顯著差異;對根系Cd含量的降低效果因水稻品種而變。
[1]環(huán)境保護部,國土資源部.全國土壤污染狀況調(diào)查公報[R].北京:環(huán)境保護部,國土資源部,2014.Ministry of Environmental Protection,Ministry of Land and Resources.The investigation communique of soil pollution condition of China[R].Beijing:Ministry of Environmental Protection,Ministry of Land and Resources,2014.
[2]王 軍,朱金燕,周 勇,等.基于染色體單片段代換系的水稻粒QTL 定位[J].作物學(xué)報,2013,39(4):617-625.WANG Jun,ZHU Jin-yan,ZHOU Yong,et al.Mapping of QTLs for grain shape using chromosome single segment substitution lines in rice(Oryza sativa L.)[J].Acta Agronomica Sinica,2013,39(4):617-625.
[3]Zhao F J,Ma Y,Zhu Y G,et al.Soil contamination in China:Current status and mitigation strategies[J].Environmental Science&Technology,2015,49(2):750-759.
[4]Boisson J,Ruttens A,Mench M,et al.Evaluation of hydroxyapatite as a metal immobilizing soil additive for the remediation of polluted soils.Part 1.Influence of hydroxyapatite on metal exchange ability in soil,plant growth and plant metal accumulation[J].Environmental Pollution,1999,104(2):225-233.
[5]謝曉麗,陳仁忠,馮 曄.廣州市不同區(qū)域水稻質(zhì)量狀況及其污染源探討[J].生態(tài)環(huán)境學(xué)報,2002,11(3):264-267.XIE Xiao-li,CHEN Ren-zhong,FENG Ye.A discussion of the quality and pollution sources of paddy in different areas in Guangzhou City[J].Soil and Environment,2002,11(3):264-267.
[6]Yang Q W,Lan C Y,Wang H B,et al.Cadmium in soil-rice system and health risk associated with the use of untreated mining wastewater for irrigation in Lechang,China[J].Agricultural Water Management,2006,84(1/2):147-152
[7]王昌全,代天飛,李 冰,等.稻麥輪作下水稻土重金屬形態(tài)特征及其生物有效性[J].生態(tài)學(xué)報,2007,27(3):889-897.WANG Chang-quan,DAI Tian-fei,LI bing,et al.The speciation and bioavailability of heavy metals in paddy soils under the rice-wheat cultivation rotation[J].Acta Ecologica Sinica,2007,27(3):890-897.
[8]Zhai L M,Liao X Y,Chen T B,et al.Regional assessment of cadmium pollution in agricultural lands and the potential health risk related to intensive mining activities:A case study in Chenzhou City,China[J].Journal of Environmental Sciences,2008,20(6):696-703.
[9]Li J R,Xu Y M.Immobilization of Cd in paddy soil using moisture management and amendment[J].Environmental Science and Pollution Research,2015,122(7):131-136.
[10]Guo G L,Zhou Q X,Ma L Q.Availability and assessment of fixing additives for the in situ remediation of heavy metal contaminated soils:A review[J].Environmental Monitoring&Assessment,2006,116(1/2/3):513-528.
[11]黎大榮,吳麗香,寧曉君,等.不同鈍化劑對土壤有效態(tài)鉛和鎘含量的影響[J].環(huán)境保護科學(xué),2013,39(3):46-49.LI Da-rong,WU Li-xiang,NING Xiao-jun,et al.Effects of different amendments on contents of available Pb and Cd in soil[J].Environmental Protection Science,2013,39(3):46-49.
[12]曹心德,魏曉欣,代革聯(lián),等.土壤重金屬復(fù)合污染及其化學(xué)鈍化修復(fù)技術(shù)研究進展[J].環(huán)境工程學(xué)報,2011,5(7):1441-1453.CAO Xin-de,WEI Xiao-xin,DAI Ge-lian,et al.Combined pollution of heavy metals and their chemical immobilization in contaminated soil[J].Chinese Journal of Environmental Engineering,2011,5(7):1441-1453.
[13]Tyler L D,Mcbride M B.Influence of Ca,pH and humic acid on Cd uptake[J].Plant&Soil,1982,64(2):259-262.
[14]Lee T M,Lai H Y,Chen Z S.Effect of chemical amendments on the concentration of cadmium and lead in long-term contaminated soils[J].Chemosphere,2004,57(10):1459-1471.
[15]Mahar A,Wang P,Li R H,et al.Immobilization of lead and cadmium in contaminated soil using amendments:A review [J].PEDOSPHERE,2015,25(4):555-568.
[16]Hong C O,Lee D K,Chung D Y,et al.Liming effects on cadmium stabilization in upland soil affected by gold mining activity[J].Archives of Environmental Contamination&Toxicology,2007,52(4):496-502.
[17]Han W Y,Shi Y Z,Ma L F,et al.Effect of liming and seasonal variation on lead concentration of tea plant(Camellia sinensis,(L.)O.Kuntze)[J].Chemosphere,2007,66(1):84-90.
[18]Khan M J,Jones D L.Effect of composts,lime and diammonium phosphate on the phytoavailability of heavy metals in a copper mine tailing soil[J].Pedosphere,2009,19(5):631-641.
[19]中華人民共和國農(nóng)業(yè)部.GB/T 23739—2009土壤質(zhì)量有效態(tài)鉛和鎘的測定原子吸收法[S].北京:中國標(biāo)準(zhǔn)出版社,2009.The Ministry of Agriculture of the People′s Republic of China.GB/T 23739—2009 Soil quality.The analytical method of available lead and cadmium.Atomic absorption method[S].Beijing:Standards Press of China,2009.
[20]劉侯俊,胡向白,張俊伶,等.水稻根表鐵膜吸附鎘及植株吸收鎘的動態(tài)[J].應(yīng)用生態(tài)學(xué)報,2007,18(2):425-430.LIU Hou-jun,HU Xiang-bai,ZHANG Jun-ling,et al.Dynamics of Cd adsorption on rice seedlings root surface with iron coating and Cd uptake by plant[J].Chinese Journal of Applied Ecology,2007,18(2):425-430.
[21]張亞玉,孫 海,高 明,等.吉林省人參土壤中重金屬污染水平及生物有效性研究[J].土壤學(xué)報,2011,48(6):1306-1313.ZHANG Ya-yu,SUN Hai,GAO Ming,et al.Pollution level and bioavailability of heavy metals in ginseng soil Jilin Province[J].Acta Pedologica Sinica,2011,48(6):1306-1313.
[22]Chaudri A M,Knight B P,Barbosa-Jefferson V L,et al.Determination of acute Zn toxicity in pore water from soils previously treated with sewage sludge using bioluminescence assays[J].Environmental Science&Technology,1999,33(11):1880-1885.
[23]Shaheen S M,Rinklebe J,Rupp H,et al.Temporal dynamics of pore water concentrations of Cd,Co,Cu,Ni,and Zn and their controlling factors in a contaminated floodplain soil assessed by undisturbed groundwater lysimeters[J].Environmental Pollution,2014,191:223-231.
[24]Costello D M,Hammerschmidt C R,Burton G A.Copper sediment toxicity and partitioning during oxidation in a flow-through flume[J].Environmental Science&Technology,2015,49(11):6926-6933.
[25]Briant N,Elbaz-Poulichet F,Freydier R,et al.Deciphering As and Cu cyclinginsedimentporewatersinalargemarina(PortCamargue,Southern France)using a multi-tracer(Fe,Mn,U,Mo)approach[J].Applied Geochemistry,2016,66:242-249.
[26]Concas S,Ardau C,Bonito M D,et al.Field sampling of soil pore water to evaluate the mobile fraction of trace elements in the Iglesiente area(SW Sardinia,Italy)[J].Journal of Geochemical Exploration,2015,158:82-94.
[27]Ye H,Yang T,Zhu G R,et al.Pore water geochemistry in shallow sediments from the northeastern continental slope of the South China sea[J].Marine&Petroleum Geology,2016,75:68-82.
[28]Beesley L,Dickinson N.Carbon and trace element mobility in an urban soilamendedwithgreenwastecompost[J].JournalofSoilsandSediments,2010,10(2):215-222.
[29]鮑士旦.土壤農(nóng)化分析[M].三版.北京:中國農(nóng)業(yè)出版社,2000.BAO Shi-dan.Soil agricultural chemistry analysis[M].The third version.Beijing:China Agriculture Press,2000.
[30]Kashem M A,Singh B R.Metal availability in contaminated soils:I.Effects of floodingand organic matter on changes in Eh,pH and solubility of Cd,Ni and Zn[J].Nutrient Cycling in Agroecosystems,2001,61(3):247-255.
[31]Davranche M,Bollinger J C.Heavy metals desorption from synthesized and natural iron and manganese oxyhydroxides:Effect of reductive conditions[J].J Colloid Interface Sci,2000,227(2):531-539.
[32]Lindsay W L.Chemical equilibria in soils[J].Clays&Clay Minerals,1979,28(4):319-319.
[33]Mcbride M B.Environmental chemistry of soils[M]//Environmental chemistry of soils.New York:Oxford University Press,1994:70-71.
[34]王成文,許模,張俊杰,等.土壤pH和Eh對重金屬鉻(Ⅵ)縱向遷移及轉(zhuǎn)化的影響[J].環(huán)境工程學(xué)報,2016,10(10):6035-6041.WANG Cheng-wen,XU Mo,ZHANG Jun-jie,et al.Influence of soil pH and Eh on vertical migration and transformation of Cr(Ⅵ)[J].Chinese Journal of Environmental Engineering,2016,10(10):6035-6041.
[35]Lu H P,Li Z A,Fu S L,et al.Can biochar and phytoextractors be jointly used for cadmium remediation?[J].Plos One,2014,9(4):e95218.
[36]Tan W N,Li Z N,Qiu J,et al.Lime and phosphate could reduce cadmium uptake by five vegetables commonly grown in South China[J].Pedosphere,2011,21(2):223-229.
[37]Kalbitz K,Wennrich R.Mobilization of heavy metals and arsenic in polluted wetland soils and its dependence on dissolved organic matter[J].Science of the Total Environment,1998,209(1):27-39.
[38]王艮梅,周立祥.陸地生態(tài)系統(tǒng)中水溶性有機物動態(tài)及其環(huán)境學(xué)意義[J].應(yīng)用生態(tài)學(xué)報,2003,14(11):2019-2025.WANG Gen-mei,ZHOU Li-xiang.Dynamics of dissolved organic matter in terrestrial ecosystems and its environmental impact[J].Chinese Journal of Applied Ecology,2013(11):2019-2025.
[39]胡海清,陸昕,孫龍.土壤活性有機碳分組及測定方法[J].森林工程.2012(05):18-22.HU Hai-qing,LU Xin,SUN Long.Research review on soil active organic carbon Fractionation and analytical methods[J].Forest Engineering,2012,28(5):18-22.
[40]Jr W H P,Mahapatra I C.Transformation and availability to rice of nitrogen and phosphorus in waterlogged soils[J].Advances in Agronomy,1968,20:323-359.
Effects of limestone,slaked lime and dolomite on cadmium concentration in the solution of paddy rice soils
GUO Jing-xia,FENG Lian-lian,ZHANG Qi-jia,LI Yun-yun,ZENG Tao,WANG Guo*
(College of Resource and Environmental Science,Soil Environmental Health and Regulation,Key Laboratory of Fujian Province,Fujian A-griculture and Forestry University,Fuzhou 350002,China)
In order to better understand the effects of limestone,slaked lime and dolomite on cadmium concentration in the solution of paddy rice soils,a pot experiment was performed using Cd contaminated soil,three amendments(limestone,slaked lime and dolomite),and two rice varieties,Taigeng 8 andⅡ-You 3301,aimed to study the dynamic change in water-soluble Cd,soil Eh,pH,TOC,Fe and Mn in soil solution during rice growing period,and the mechanism of the amendments to reduce Cd availability in the soils.The results showed that the solution pH significantly increased,whereas Cd,Fe,Mn and TOC in the solution,and the amount of Fe-plaques on root surface,the Cd in the Feplaques and the roots were significantly decreased by the amendments.The water-soluble Cd was significantly and positively correlated with the soil Eh,TOC,Fe and Mn in the solution,while negatively correlated with the solution pH,indicating that the amendments decreased Cd solubility by increasing the soil pH,thereby,inhibiting the reduction-dissolution of Fe/Mn oxides and reduced the soluble organic matter content in the soils.The amendments reduced Fe-plaques on rice roots,and the Cd content in the Fe-plaques,which also decreased Cd uptake by rice roots.The rice varieties were more important than the amendments and the growing time in affecting water-soluble Cd.Among the various factors(pH,Eh,TOC,Fe and Mn contents in soil solutions),water-soluble Fe was the most significant for water-soluble Cd(90 days transplanting).Our results indicated that the effects of the three amendments on Cd concentration in soil solution were similar with each other whereas those on Cd contents in rice roots varied with rice varieties.
limestone;slaked lime;dolomite;soil;rice;soil solution;cadmium
X53
A
1672-2043(2017)10-1984-08
10.11654/jaes.2017-1030
郭京霞,馮蓮蓮,張起佳,等.不同鈣質(zhì)鈍化劑對稻田土壤溶液中Cd濃度的影響[J].農(nóng)業(yè)環(huán)境科學(xué)學(xué)報,2017,36(10):1984-1991.
GUO Jing-xia,FENG Lian-lian,ZHANG Qi-jia,et al.Effects of limestone,slaked lime and dolomite on cadmium concentration in the solution of paddy rice soils[J].Journal of Agro-Environment Science,2017,36(10):1984-1991.
2017-07-25 錄用日期:2017-09-12
郭京霞(1991—),女,碩士研究生,從事環(huán)境生態(tài)學(xué)研究。E-mail:862138433@qq.com
*通信作者:王 果 E-mail:1400619353@qq.com
國家自然科學(xué)基金促進海峽兩岸科技合作聯(lián)合基金項目(U1305232)
Project supported:The Key Program of the National Natural Science Foundation of China(U1305232)