薛南冬,劉寒冰,楊兵,蘇獻(xiàn)偉,王冬琦
毒死蜱(chlorpyrifos),化學(xué)名稱(chēng)O,O-二乙基-O-(3,5,6-三氯-2-吡啶基)硫代磷酸酯,是一種廣譜、高效有機(jī)磷殺蟲(chóng)劑。毒死蜱通過(guò)抑制乙酰膽堿酯酶的活性影響神經(jīng)系統(tǒng),導(dǎo)致生物死亡[1],因此,對(duì)非靶標(biāo)生物甚至人類(lèi)存在潛在毒性[2-3]。調(diào)查顯示,施用的毒死蜱只有不到1%能作用于靶標(biāo)生物[4],大部分將進(jìn)入大氣、土壤、水體環(huán)境[5-8]。土壤是毒死蜱在環(huán)境中的主要?dú)w宿,毒死蜱在土壤環(huán)境中的殘留可能帶來(lái)潛在生態(tài)風(fēng)險(xiǎn)[9-10]。毒死蜱在土壤介質(zhì)中的環(huán)境影響和環(huán)境行為日益受到關(guān)注[11-13],本文綜述了毒死蜱在土壤環(huán)境中的賦存和歸趨的研究進(jìn)展。
近年來(lái),毒死蜱的廣泛應(yīng)用,導(dǎo)致在許多國(guó)家和地區(qū)的土壤、河流、地下水、城市污水系統(tǒng)、雨水、空氣等環(huán)境中均檢測(cè)到其殘留。在一些國(guó)家,毒死蜱是環(huán)境中殘留檢出頻率最高的農(nóng)藥品種之一[14],甚至在農(nóng)作物中也檢測(cè)到其殘留[15]。在對(duì)水稻、玉米和大豆3種農(nóng)產(chǎn)品共計(jì)144個(gè)樣品的調(diào)查中發(fā)現(xiàn),毒死蜱的檢出率分別為64.6%、18.8%和2.08%,在谷物類(lèi)農(nóng)產(chǎn)品中的檢出率較高[16]。
曾阿瑩等[17]對(duì)中國(guó)福州某蔬菜基地43個(gè)土壤樣品有機(jī)磷類(lèi)農(nóng)藥殘留的檢測(cè)結(jié)果顯示,毒死蜱的最大殘留量為9.77 mg/kg,其檢出率高達(dá)97.7%。調(diào)查發(fā)現(xiàn),在美洲附近的海洋沉積物[18],甚至在北極圈土壤樣品中都有毒死蜱的檢出[14]。
1.1 毒死蜱在土壤環(huán)境中的半衰期
在土壤環(huán)境中,毒死蜱經(jīng)物理、化學(xué)和生物作用不斷消解,其消解速度與土壤pH值和環(huán)境溫度有關(guān)[19-20]。在堿性土壤中,溫度越低,毒死蜱半衰期越長(zhǎng);在同一溫度下,堿性土壤中毒死蜱半衰期較短,說(shuō)明堿性土壤可能有利于毒死蜱的降解[21]。在不同土壤pH值和溫度條件下毒死蜱的半衰期如表1所示。除此之外,土壤中毒死蜱的消解還與農(nóng)作物的種類(lèi)有關(guān)[22]。在種植蕹菜(Ipomoea aquatica Forsk.)的土壤中毒死蜱半衰期為25 d,在水稻田土壤中毒死蜱半衰期為6.7~16 d[23]。ZHANG等[24]報(bào)道了毒死蜱在春季種植卷心菜(Brassica oleracea L.var.capitata)和秋季種植小白菜(Brassica chinensis L.)土壤中的半衰期分別是2.0和4.7 d。不同作物類(lèi)型對(duì)毒死蜱半衰期的影響可能與其根系分泌物對(duì)土壤微環(huán)境的影響有關(guān),因此,研究不同類(lèi)型作物,特別是其根際微環(huán)境對(duì)毒死蜱的消解機(jī)制,對(duì)探明毒死蜱在土壤中的遷移轉(zhuǎn)化驅(qū)動(dòng)機(jī)制具有重要意義。
表1 不同環(huán)境條件下土壤中毒死蜱的半衰期Table 1 Chlorpyrifos half-life in soils under different environment conditions
1.2 毒死蜱在土壤環(huán)境中的歸趨
土壤是毒死蜱在農(nóng)田系統(tǒng)中遷移轉(zhuǎn)化的主要源和匯,毒死蜱在土壤中的環(huán)境行為,不僅與毒死蜱自身物理化學(xué)性質(zhì)有關(guān),也與土壤特點(diǎn)有關(guān)。毒死蜱與土壤顆粒、植物及沉積物產(chǎn)生不同作用,通過(guò)揮發(fā)、吸附解吸、非生物降解和生物降解等途徑在土壤環(huán)境中實(shí)現(xiàn)遷移轉(zhuǎn)化[28],如圖1所示。
2.1 吸附/解吸模型
毒死蜱通過(guò)土壤顆粒的吸附作用,一方面降低了在土壤中的生物活性和遷移性,另一方面增加了農(nóng)藥在土壤中的殘留。毒死蜱在土壤中的吸附/解吸行為通常用弗倫德利希(Freundlich)吸附模型和線性吸附模型擬合[29-33]。
Freundlich 吸附模型:Qe=Kf×Ce1/n;線性吸附模型:Qe=Kd×Ce。其中:Qe為平衡時(shí)的吸附量;Ce為平衡時(shí)的濃度;Kf、Kd為吸附平衡常數(shù);n為吸附過(guò)程中支持力的經(jīng)驗(yàn)常數(shù)。
Kf(Kd)是定量判斷毒死蜱在環(huán)境中遷移能力的重要因子。Kf(Kd)值越大,土壤對(duì)毒死蜱的吸附固定能力越強(qiáng),毒死蜱在土壤環(huán)境中遷移能力較弱;Kf(Kd)值越小,毒死蜱在土壤中的遷移能力越大。在不同土壤環(huán)境中毒死蜱Kf(Kd)值的變化,說(shuō)明不同土壤性質(zhì)對(duì)毒死蜱的吸附解吸能力產(chǎn)生了不同程度的影響。研究表明,毒死蜱在土壤中的吸附行為符合疏水有機(jī)物吸附理論:在低濃度下,毒死蜱在土壤中的吸附行為符合線性吸附模型,在高濃度下符合Freundlich吸附模型[28]。
2.2 毒死蜱在土壤中的吸附/解吸
自20世紀(jì)70年代以來(lái),研究者針對(duì)數(shù)十種不同區(qū)域、不同用途的土壤(pH 4.8~8.9,有機(jī)質(zhì)0.31%~75%)對(duì)毒死蜱的吸附行為開(kāi)展了研究[34-36]。毒死蜱在不同類(lèi)型土壤中的吸附/解吸特征見(jiàn)表2和表3。
對(duì)毒死蜱在土壤中的吸附/解吸研究分別采用Freundlich吸附模型和線性吸附模型。對(duì)于同一地區(qū)的土壤,其有機(jī)質(zhì)含量越高,吸附模型常數(shù)Kd(Kf)越大,如美國(guó)愛(ài)荷華州土壤有機(jī)質(zhì)從0.88%升高到4.56%,Kf從28.4升高到162;然而不同地區(qū)由于區(qū)域環(huán)境條件不同,即使土壤理化性質(zhì)相似,Kd(Kf)也可能產(chǎn)生較大差異,如荷蘭砂質(zhì)土對(duì)毒死蜱的Kd為110,而希臘砂質(zhì)土對(duì)毒死蜱的Kd為17。對(duì)比研究結(jié)果說(shuō)明,毒死蜱在土壤中的吸附/解吸行為的時(shí)空變化與土壤性質(zhì)顯著相關(guān),進(jìn)一步研究各個(gè)因素對(duì)其吸附解吸驅(qū)動(dòng)影響對(duì)掌握毒死蜱的環(huán)境行為規(guī)律具有重要意義。
2.3 吸附/解吸的影響因素
2.3.1 土壤有機(jī)質(zhì)
土壤有機(jī)質(zhì)含量是影響土壤對(duì)毒死蜱吸附解吸的重要因素,一般采用土壤有機(jī)碳-水分離常數(shù)(Koc)作為量化因子,計(jì)算土壤中有機(jī)質(zhì)對(duì)毒死蜱的吸附能力大小[37-38]。
Kd=Koc×Foc,其中Foc為土壤有機(jī)質(zhì)含量。
從表2中可以看出,在不同地域、不同類(lèi)型土壤中,毒死蜱的吸附能力都不相同。毒死蜱在土壤中的吸附行為不僅與自身理化性質(zhì)有關(guān),而且與土壤環(huán)境條件有關(guān)[20];土壤對(duì)毒死蜱的吸附平衡常數(shù)與有機(jī)質(zhì)含量呈顯著正相關(guān)(圖2),有機(jī)質(zhì)含量越高,吸附常數(shù)值越大。
圖1 毒死蜱在土壤環(huán)境中的遷移轉(zhuǎn)化Fig.1 Migration and transformation of chlorpyrifos in soil environment
圖2 有機(jī)質(zhì)含量與Kd值關(guān)系圖(n=47)Fig.2 Relationship between organic matter content and Kd
在含較低有機(jī)質(zhì)(質(zhì)量分?jǐn)?shù)為1.35%)的土壤(日本)中,毒死蜱的吸附常數(shù)值僅為13.4,而在含較高有機(jī)質(zhì)(質(zhì)量分?jǐn)?shù)為3.41%)的土壤(美國(guó)俄亥俄州)中,毒死蜱的吸附常數(shù)達(dá)1 036(表2)??梢?jiàn),土壤有機(jī)質(zhì)含量較高時(shí)可以吸附土壤水中大部分毒死蜱[34],從而有效降低毒死蜱的施用給土壤帶來(lái)的潛在生態(tài)威脅[36,39]。土壤有機(jī)質(zhì)包括水溶性和非水溶性有機(jī)質(zhì)2大類(lèi)。雖然有機(jī)質(zhì)類(lèi)型對(duì)土壤吸附能力的影響差異不顯著[40],但是當(dāng)土壤含水率較高
時(shí),毒死蜱能夠與土壤中的水溶性有機(jī)質(zhì)發(fā)生相互作用,進(jìn)入土壤液相介質(zhì)中[50]。普遍認(rèn)為毒死蜱在土壤中的吸附是土壤有機(jī)質(zhì)與液相部分相互競(jìng)爭(zhēng)作用的結(jié)果,土壤有機(jī)質(zhì)對(duì)毒死蜱的吸附作用減少了其在地下水中的遷移能力[51]。另外,共存有機(jī)物對(duì)毒死蜱在沉積物上的吸附也有影響,十二烷基硫酸鈉能明顯降低吸附量,而非離子型表面活性劑則能增加吸附量[52]。這一現(xiàn)象說(shuō)明土壤對(duì)毒死蜱的吸附主要是通過(guò)土壤顆粒中的疏水性位點(diǎn)對(duì)毒死蜱的物理吸附作用[53]。
表2 不同土壤對(duì)毒死蜱的吸附特征Table 2 Adsorption characteristics of chlorpyrifos in various kinds of soils
毒死蜱在土壤顆粒的解吸過(guò)程也與土壤有機(jī)質(zhì)含量顯著相關(guān),土壤有機(jī)質(zhì)含量越高,解吸常數(shù)越大,解吸量越少[54]。毒死蜱在土壤顆粒上的解吸過(guò)程是與表面吸附位點(diǎn)相關(guān)的物理解吸過(guò)程,與表面化學(xué)性質(zhì)無(wú)關(guān)。研究表明,被吸附的毒死蜱難以全部解吸,且解吸常數(shù)隨著解吸次數(shù)的增多而增大[55]。對(duì)于有機(jī)質(zhì)含量不同的土壤,毒死蜱在土壤顆粒中的解吸量均小于吸附量,使得毒死蜱在土壤中的遷移能力降低。
表3 不同類(lèi)型土壤對(duì)毒死蜱的解吸特征Table 3 Desorption characteristics of chlorpyrifos in various kinds of soils
2.3.2 土壤pH及土壤黏粒組分
土壤pH對(duì)毒死蜱Kd變化有影響,其關(guān)系如圖3A所示。對(duì)于大多數(shù)土壤而言,pH值在4~9之間,對(duì)Kd值變化影響不大;對(duì)少數(shù)土壤而言,pH值越大,Kd值越小,說(shuō)明酸性土壤在一定程度上有利于土壤對(duì)毒死蜱的吸附。這可能是因?yàn)橥寥纏H一方面會(huì)影響毒死蜱這類(lèi)非離子型化合物的氫鍵作用,另一方面pH還能改變土壤顆粒表面官能團(tuán)的存在狀態(tài),從而影響土壤對(duì)毒死蜱的吸附[39]。此外,土壤黏粒組分對(duì)Kd值變化也有一定影響(圖3B)。黏土與壤土和砂土相比具有較大的比表面積,解吸能力較弱,使得毒死蜱在黏土中較不易遷移[43,56]。黏粒組分占比越高,Kd值越小,可能是因?yàn)槠渲械牡V物含量高,有機(jī)質(zhì)含量少,導(dǎo)致土壤對(duì)毒死蜱吸附能力降低。
圖3 土壤pH(A)、土壤黏粒含量(B)與Kd的關(guān)系圖(n=47)Fig.3 Relationship between soil pH(A),clay fraction(B)and Kd
土壤理化性質(zhì)對(duì)毒死蜱吸附/解吸的影響并不是單一的,而是多因素的共同作用。將土壤有機(jī)質(zhì)含量、pH與吸附常數(shù)Kf(Kd)進(jìn)行數(shù)理統(tǒng)計(jì),發(fā)現(xiàn)Kf(Kd)與有機(jī)質(zhì)含量呈線性關(guān)系。而對(duì)Kf(Kd)、有機(jī)質(zhì)含量與pH進(jìn)行多元回歸分析發(fā)現(xiàn),在pH的影響下,Kf(Kd)與有機(jī)質(zhì)含量呈非線性關(guān)系[57]。這是由于pH的變化不僅改變了土壤組分特性,同時(shí)也對(duì)毒死蜱的分子形態(tài)產(chǎn)生一定影響,二者共同作用使得吸附發(fā)生改變。目前對(duì)多因素影響土壤吸附毒死蜱的研究還鮮有報(bào)道,因此,考慮多重因素對(duì)土壤吸附毒死蜱的綜合影響,建立多因素吸附模型對(duì)于探索毒死蜱環(huán)境行為具有重要意義。
目前我國(guó)高等職業(yè)教育規(guī)模大,培養(yǎng)的學(xué)生人數(shù)眾多。但是,目前我國(guó)絕大多數(shù)的高等職業(yè)院校還是采用傳統(tǒng)的教學(xué)模式,這個(gè)在一定程度上制約著高素質(zhì)應(yīng)用技術(shù)人才的培養(yǎng)。一方面我們培養(yǎng)的高等職業(yè)教育人才就業(yè)難,另一方面在社會(huì)上企業(yè)招收不到合格的員工,導(dǎo)致企業(yè)效益難以提高,出現(xiàn)這種情況的最主要原因是學(xué)生沒(méi)有熟練掌握專(zhuān)業(yè)技能,不能夠在企業(yè)一線進(jìn)行熟練的生產(chǎn),并不是所謂的“勞動(dòng)力過(guò)剩”或者“員工荒”。要解決這個(gè)矛盾,就必須在我國(guó)高等職業(yè)教育中采用雙元制教學(xué)模式培養(yǎng)一批高素質(zhì)應(yīng)用技術(shù)人才。
3.1 毒死蜱在土壤中的降解途徑
毒死蜱進(jìn)入土壤后,主要通過(guò)非生物降解(光解)和生物降解(微生物降解、植物降解)作用來(lái)進(jìn)行轉(zhuǎn)化和消解[58-59]。表層土壤中毒死蜱以光解、水解為主;深層土壤中毒死蜱以微生物降解為主。其中,土壤微生物對(duì)毒死蜱的降解起到主要作用,約78%~95%的毒死蜱在土壤中被微生物降解[60-61],表層土壤中僅少量毒死蜱發(fā)生光解[62]。
3.1.1 毒死蜱的光解
當(dāng)毒死蜱接受光輻射能后,光能轉(zhuǎn)化到分子鍵上導(dǎo)致相應(yīng)化學(xué)鍵斷裂而發(fā)生分解。毒死蜱在土壤中光解是C-C、C-H、C-O、C-N等化學(xué)鍵受光能作用而發(fā)生斷裂的內(nèi)部反應(yīng)過(guò)程。毒死蜱在自然光照下的半衰期一般為3~4周,但受土壤環(huán)境中光敏劑及土壤pH等因素的影響可以加速其在土壤中的光解。研究表明,在含有光敏劑(TiO2、ZnO)的土壤中,光照可以在20~40 min內(nèi)實(shí)現(xiàn)對(duì)毒死蜱100%的降解[63-64]。
此外,毒死蜱的光解效率還受到與其他農(nóng)藥在土壤環(huán)境中發(fā)生拮抗或協(xié)同作用的影響。如抗蚜威、丙烯菊酯等農(nóng)藥的存在對(duì)毒死蜱的光解有顯著的加速作用,而林丹、氟氯菊酯、殺螟松對(duì)毒死蜱有顯著的延緩光解作用[65]??傊?,雖然光解是農(nóng)藥在環(huán)境中消解的主要途徑之一,但因受到光照的限制,一般只發(fā)生在表層土壤中,對(duì)深層土壤中毒死蜱的作用較弱。
3.1.2 毒死蜱的生物降解
普遍認(rèn)為,毒死蜱主要通過(guò)共代謝和礦化作用進(jìn)行生物降解。共代謝降解是單一毒死蜱不能為微生物提供碳源,需與土壤中其他有機(jī)質(zhì)(如糖類(lèi)、醇類(lèi)等)共同為微生物提供碳源,使微生物降解毒死蜱。共代謝作用只是部分改變了毒死蜱母體結(jié)構(gòu),產(chǎn)生與母體近似的中間產(chǎn)物,并不能使毒死蜱徹底降解[66],早期從環(huán)境中篩選出的毒死蜱降解菌多通過(guò)共代謝途徑降解毒死蜱。礦化作用是微生物以毒死蜱為唯一碳源,將毒死蜱分解為CO2和H2O等無(wú)機(jī)物的過(guò)程。礦化作用能夠使毒死蜱消除其毒性,并且避免產(chǎn)生對(duì)環(huán)境具有潛在威脅的中間產(chǎn)物。
無(wú)論是共代謝作用還是礦化作用,毒死蜱降解的第一步都屬于水解反應(yīng)。水解反應(yīng)有2種途徑:中性水解和堿性水解。中性水解是由H2O分子中孤對(duì)電子的親核攻擊導(dǎo)致烴基斷裂;堿性水解是由-OH中的電子在磷原子處的親核攻擊導(dǎo)致醇基或酚基鍵斷裂。目前普遍認(rèn)為,毒死蜱在土壤中的降解途徑以堿性水解為主[67]。毒死蜱在土壤中的生物降解途徑如圖4所示。
3.2 毒死蜱在土壤中的降解動(dòng)力學(xué)
無(wú)論是非生物降解(如光解)還是生物降解,毒死蜱在土壤中的主要降解產(chǎn)物均是O,O-二乙基硫代磷酸酯(dicethylthiophospshate,DETP)和3,5,6-三氯吡啶-2-酚(3,5,6-trichloro-2-pyridinol,TCP),其中DETP可以直接被生物利用生成硫代磷酸和乙醇[68],因此毒死蜱降解產(chǎn)物在土壤中主要以TCP為主。TCP在土壤中降解難度大,降解周期長(zhǎng),其半衰期一般為65~360 d。有研究表明,在粉砂壤中TCP的降解周期是毒死蜱降解周期的4倍[69],對(duì)微生物群落的毒性是毒死蜱的2.5倍[42],且和毒死蜱可能存在協(xié)同效應(yīng),產(chǎn)生更大的生物毒性[70-71]。
其次,TCP水溶性大,在水中溶解度為80.9 mg/L(20℃),被美國(guó)環(huán)境保護(hù)署列為移動(dòng)性較強(qiáng)的農(nóng)藥,能夠進(jìn)入深層土壤及水體環(huán)境造成污染[72]。TCP由于其化學(xué)結(jié)構(gòu)穩(wěn)定,具有環(huán)境持久性。TCP對(duì)土壤中微生物群落生長(zhǎng)具有抑制作用,當(dāng)TCP濃度較高時(shí)可以抑制毒死蜱降解微生物的生長(zhǎng),降低毒死蜱的生物降解速率[73]。因此,TCP在土壤中甲基化而進(jìn)一步降解,最終完全礦化為CO2,被認(rèn)為是毒死蜱完全脫毒的關(guān)鍵[74]。
土壤微生物是TCP降解礦化的主要驅(qū)動(dòng)力,在不同環(huán)境條件下微生物對(duì)TCP的礦化途徑不同。在有氧條件下,好氧微生物將TCP氧化生成3,5,6-三氯-2-甲氧基-吡啶酚(3,5,6-trichloro-2-methpxy-pyridinone,TCMP)或 3,5,6-三氯-2-甲基吡啶(3,5,6-trichloro-2-methpxy-methylpyridine,TMP),最終礦化為CO2被完全降解[75](圖5A)。在缺氧/厭氧條件下,厭氧微生物可以脫掉TCP環(huán)結(jié)構(gòu)上的2個(gè)氯原子,生成吡啶酚,最終礦化生成CO2;或者直接脫掉環(huán)結(jié)構(gòu)上的3個(gè)氯原子,生成3,6-羥基吡啶-2,5-二酮[76](圖5B)。
圖4 毒死蜱在土壤中的生物降解途徑Fig.4 Degradation pathway of chlorpyrifos in soils
圖5 TCP在土壤中的降解途徑Fig.5 Degradation pathway of TCP in soils
3.3 毒死蜱降解菌
早期對(duì)微生物降解菌的研究,主要集中在細(xì)菌方面。黃桿菌(Flaobacterium sp.)是最早報(bào)道的毒死蜱降解菌[77]。SINGH等[78]繼2003年首次報(bào)道了在澳大利亞土壤中富集分離出了毒死蜱強(qiáng)化降解菌后,將這種菌的強(qiáng)化降解功能應(yīng)用到英國(guó)5種不同的毒死蜱污染場(chǎng)地中,發(fā)現(xiàn)在土壤pH>6.7條件下可保持降解菌90 d的降解時(shí)效;且研究發(fā)現(xiàn),分離出的這種降解菌的16S rRNA序列與假單胞菌相同,這種RNA序列可能是使該菌降解土壤中毒死蜱的主導(dǎo)基因。MOHAN等[79]將生物反應(yīng)器作為研究介質(zhì),分離出一種細(xì)菌,72 h內(nèi)可將土壤中3 000 μg/g的毒死蜱降解91%。KULSHRESTHA等[8]研究發(fā)現(xiàn),復(fù)合菌落30 d內(nèi)可以降解土壤中85%的毒死蜱,而單一菌種在相同時(shí)間內(nèi)只能降解土壤中77%的毒死蜱,復(fù)合微生物菌落(GCC134)更有利于降解土壤中的毒死蜱。
研究發(fā)現(xiàn),土壤中某些真菌同樣可以顯著提高對(duì)毒死蜱的降解速率[80-84]。FANG等[84]從土壤中分離出了一種輪枝菌(Verticillium),并用這種菌修復(fù)毒死蜱污染場(chǎng)地,發(fā)現(xiàn)添加這種菌后能顯著提高土壤中毒死蜱的降解效率,是對(duì)照土壤降解速率的1.10~3.61倍。
目前,對(duì)毒死蜱微生物降解研究多集中于不同菌種(包含細(xì)菌和真菌)對(duì)土壤中毒死蜱的降解,主要降解菌種及降解效果見(jiàn)表4。
土著微生物群落不僅能夠降解毒死蜱,還能進(jìn)一步降解毒死蜱的代謝產(chǎn)物TCP,徹底消除毒死蜱的毒性。MASSIHA等[85]利用野外實(shí)驗(yàn)研究了土壤土著降解菌對(duì)毒死蜱的降解作用,發(fā)現(xiàn)了土壤中細(xì)菌、真菌和放線菌的存在,可以在25 d內(nèi)將50 mg/kg毒死蜱降解為T(mén)CP,而殘留的TCP和相關(guān)副產(chǎn)物在6 d內(nèi)全部礦化為CO2和H2O。相反,毒死蜱的存在也會(huì)影響土壤中微生物菌落的活性。GILANI等[86]研究發(fā)現(xiàn),農(nóng)田表層土壤(毒死蜱質(zhì)量分?jǐn)?shù)為100~1 000 mg/kg)在1年內(nèi)沒(méi)有發(fā)生生物降解,且毒死蜱的存在對(duì)毒死蜱降解菌——芽孢桿菌(Bacillus sp.)的活性產(chǎn)生了一定的抑制作用。為了提高Bacillus sp.對(duì)毒死蜱的耐性,ZHANG等[87]引入了一種質(zhì)粒介導(dǎo)的生物添加技術(shù),這種技術(shù)將pDOC質(zhì)粒編碼的毒死蜱降解基因?qū)隑acillus sp.內(nèi),使降解菌在5 d內(nèi)通過(guò)pDOC編碼基因強(qiáng)化毒死蜱降解能力。因此,通過(guò)基因技術(shù)向土壤微生物中導(dǎo)入相應(yīng)編碼基因,可以顯著提高微生物在不同土壤中的毒死蜱降解效率。
毒死蜱是使用廣泛的有機(jī)磷農(nóng)藥,毒死蜱的環(huán)
境行為、歸趨和環(huán)境影響受到持續(xù)的關(guān)注。
表4 土壤中常見(jiàn)毒死蜱降解菌Table 4 Degradation bacteria of chlorpyrifos in soil
1)毒死蜱在土壤中的吸附/解吸與土壤有機(jī)質(zhì)含量顯著相關(guān),同時(shí)受土壤pH、環(huán)境溫度等多因素影響。考慮多重因素對(duì)土壤吸附毒死蜱的綜合影響,建立多因素吸附模型,對(duì)探索毒死蜱環(huán)境行為有重要意義。
2)微生物降解和光降解是土壤中毒死蜱降解的主要途徑。研究毒死蜱在土壤環(huán)境中不同途徑(光解、微生物降解)的降解機(jī)制,可以進(jìn)一步理解土壤中毒死蜱環(huán)境行為的驅(qū)動(dòng)機(jī)制。
3)通過(guò)基因?qū)爰夹g(shù),強(qiáng)化土壤微生物菌落的降解能力,通過(guò)細(xì)菌、真菌等土壤微生物的作用可以將毒死蜱主要降解產(chǎn)物TCP完全礦化。同時(shí),考慮到作物種植以及農(nóng)藥施用主要發(fā)生在土壤表層,強(qiáng)化光敏劑介導(dǎo)的毒死蜱光解,實(shí)現(xiàn)對(duì)土壤表層毒死蜱的快速降解。
表4 (續(xù)) Continuation of Table 4
[1] BERENSTEIN G,NASELLO S,BEIGUEL é,et al.Human and soil exposure during mechanical chlorpyrifos,myclobutanil and copper oxychloride application in a peach orchard in Argentina.Science of the Total Environment,2017,586:1254-1262.
[2] DOMINAH G A,MCMINIMY R A,KALLON S,et al.Acute exposure to chlorpyrifos caused NADPH oxidase mediated oxidative stress and neurotoxicity in a striatal cell model of Huntington’s disease.Neurotoxicology,2017,60:54-69.
[3] LI Q,KOBAYASHI M,KAWADA T.Chlorpyrifos induces apoptosis in human T cells.Toxicology,2009,255(1/2):53-57.
[4] PIMENTEL D.Amounts of pesticides reaching target pests:Environmental impacts and ethics.Journal of Agricultural and Environmental Ethics,1995,8(1):17-29.
[5] 王川,周巧紅,吳振斌.有機(jī)磷農(nóng)藥毒死蜱研究進(jìn)展.環(huán)境科學(xué)與技術(shù),2011,34(7):123-127.WANG C,ZHOU Q H,WU Z B.Research advances of a kind of organophosphate pesticide chlorpyrifos.Environment Science and Technology,2011,34(7):123-127.(in Chinese with English abstract)
[6] PANDEY S,SINGH D K.Soil dehydrogenase,phosphomonoesterase and arginine deaminase activities in an insecticide treated groundnut(Arachis hypogaea L.)field.Chemosphere,2006,63(5):869-880.
[7] DUTTA M,SARDAR D,PAL R,et al.Effect of chlorpyrifos on microbial biomass and activities in tropical clay loam soil.Environmental Monitoring and Assessment,2010,160(1/2/3/4):385-391.
[8] KULSHRESTHA G,KUMARIA.Fungaldegradationof chlorpyrifos by Acremonium sp.strain(GFRC-1)isolated from a laboratory-enriched red agricultural soil.Biology and Fertility of Soils,2011,47(2):219-225.
[9] SNYDER G H,CISAR J L.Mobility and persistence of turfgrass pesticides in a USGA-type green:IV.Dicamba and 2,4-D.International Turfgrass Society Research Journals,1997,8:205-211.
[10]SINGH P B,SHARMA S,SAINI H S,et al.Biosurfactant production by Pseudomonas sp.and its role in aqueous phase partitioning and biodegradation of chlorpyrifos.Letters in Applied Microbiology,2009,49(3):378-383.
[11]WHITNEY K D,SEIDLER F J,SLOTKIN T A.Developmental neurotoxicity of chlorpyrifos:Cellular mechanisms.Toxicology and Applied Pharmacology,1995,134(1):53-62.
[12]SHERMAN J D.Chlorpyrifos(Dursban)-associated birth defects:Report of four cases.Archives of Environmental Health:An International Journal,1996,51(1):5-8.
[13]SáNCHEZ-SANTED F,CA?ADAS F,FLORES P,et al.Longterm functional neurotoxicity of paraoxon and chlorpyrifos:Behavioural and pharmacological evidence.Neurotoxicology and Teratology,2004,26(2):305-317.
[14]TUNCEL S G,?ZTAS N B,ERDURAN M S.Air and groundwater pollution in an agricultural region of the Turkish Mediterranean coast.Journal of the Air&Waste Management Association,2008,58(9):1240-1249.
[15]HOFERKAMP L,HERMANSON M H,MUIR D C G.Current use pesticides in Arctic media:2000—2007.Science of the Total Environment,2010,408(15):2985-2994.
[16]LI R,HE L,WEI W,et al.Chlorpyrifos residue levels on field crops(rice,maize and soybean)in China and their dietary risks to consumers.Food Control,2015,51:212-217.
[17]曾阿瑩,翁玲玲,王珍,等.福州蔬菜基地土壤中有機(jī)磷農(nóng)藥殘留狀況調(diào)查.亞熱帶水土保持,2005,27(1):27-31.ZENG A Y,WENG L L,WANG Z,et al.Investigation on the organophosphorus pesticide residues in the soil of vegetable cultivation bases in Fuzhou municipality.Subtropical Soil and Water Conservation,2005,27(1):27-31.
[18]READMAN J W,KWONG L L W,MEE L D,et al.Persistent organophosphorus pesticides in tropical marine environments.Marine Pollution Bulletin,1992,24(8):398-402.
[19]RANI M S,DEVI K V L P S,MADHURI R J,et al.Isolation and characterization of a chlorpyrifos-degrading bacterium from agricultural soil and its growth response.African Journal of Microbiology Research,2008,2(2):26-31.
[20]NAWAZ K,HUSSAIN K,CHOUDARY N,et al.Eco-friendly role of biodegradation against agricultural pesticides hazards.African Journal of Microbiology Research,2011,5(3):177-183.
[21]YEN J H,LAW F H,WANG Y S,et al.Dissipation of organophosphorus insecticide chlorpyrifos in soil.Journal of the Chinese Agricultural Chemical Society,1997,35(3):310-318.
[22]BASKARAN S,KOOKANA R S,NAIDU R.Degradation of bifenthrin,chlorpyrifos and imidacloprid in soil and bedding materials at termiticidal application rates.Pesticide Science,1999,55(12):1222-1228.
[23]黃素芳,朱育菁,林抗美,等.毒死蜱在蕹菜及土壤中的殘留和消解動(dòng)態(tài)研究.農(nóng)業(yè)環(huán)境科學(xué)學(xué)報(bào),2006,25(增刊):269-271.HUANG S F,ZHU Y J,LIN K M,et al.Study on the residue of chlorpyrifos in Ipomoea aquatica Forsk and the soil.Journal of Agro-Environment Science,2006,25(Suppl.):269-271.(in Chinese with English abstract)
[24]ZHANG Z Y,LIU X J,YU X Y,et al.Pesticide residues in the spring cabbage(Brassica oleracea L.var.capitatal)grown in open field.Food Control,2007,18(6):723-730.
[25]CHAPMAN R A,COLE C M.Observations on the influence of water and soil pH on the persistence of insecticides.Journal of Environmental Science&Health Part B,1982,17(5):487-504.
[26]FRANK R,BRAUN H E,CHAPMAN N,et al.Degradation of parent compounds of nine organophosphorus insecticides in Ontario surface and ground waters under controlled conditions.Bulletin of Environmental Contamination and Toxicology,1991,47(3):374-380.
[27]MCCALL P J,LASKOWSKI D A,SWANN R L,et al.Estimation of environmental partitioning of organic chemicals in model ecosystems.Residue Reviews,1983:231-244.
[28]GEBREMARIAM S Y,BEUTEL M W,YONGE D R,et al.Adsorption and desorption of chlorpyrifos to soils and sediments//WHITACRE D M,FERNANDA M,GUNTHER F A.Reviews of Environmental Contamination and Toxicology.New York,USA:Springer,2012:123-175.
[29]PAPADOPOULOU E S,KARAS P A,NIKOLAKI S,et al.Dissipation and adsorption of isoproturon, tebuconazole,chlorpyrifosand theirmain transformation productsunder laboratory and field conditions.Science of the Total Environment,2016,569/570:86-96.
[30]PAROLO M E,SAVINI M C,LOEWY R M.Characterization of soil organic matter by FT-IR spectroscopy and its relationship with chlorpyrifos sorption. Journal of Environmental Management,2017,196:316-322.
[31]LAABS V,AMELUNG W,PINTO A,et al.Leaching and degradation of corn and soybean pesticides in an Oxisol of the Brazilian Cerrados.Chemosphere,2000,41(9):1441-1449.
[32]YU Y L,WU X M,LI S N,et al.An exploration of the relationship between adsorption and bioavailability of pesticides in soil.Environmental Pollution,2006,141(3):428-433.
[33]SHAROM M S,MILES J R W,HARRIS C R,et al.Behaviour of 12 insecticides in soil and aqueous suspensions of soil and sediment.Water Research,1980,14(8):1095-1100.
[34]FELSOT A,DAHM P A.Sorption of organophosphorus and carbamate insecticides by soil.Journal of Agricultural and Food Chemistry,1979,27(3):557-563.
[35]SPIESZALSKI W W,NIEMCZYK H D,SHETLAR D J.Sorption of chlorpyrifos and fonofos on four soils and turfgrass thatch using membrane filters.Journal of Environmental Science&Health Part B,1994,29(6):1117-1136.
[36]LI K,XING B,TORELLO W A.Effect of organic fertilizers derived dissolved organic matter on pesticide sorption and leaching.Environmental Pollution,2005,134(2):187-194.
[37]WAUCHOPE R D,BUTTLER T M,HORNSBY A G,et al.The SCS/ARS/CES pesticide properties database for environmental decision-making.Reviews of Environmental Contamination and Toxicology.New York,USA:Springer,1992:1-155.
[38]KARICKHOFF S W,BROWN D S,SCOTT T A.Sorption of hydrophobic pollutants on natural sediments.Water Research,1979,13(3):241-248.
[39]KANAZAWA J.Relationship between the soil sorption constants for pesticides and their physicochemical properties.Environmental Toxicology and Chemistry,1989,8(6):477-484.
[40]BEKB?LET M,YENIGüN O,YüCEL I.Sorption studies of 2,4-D on selected soil.Water,Air&Soil Pollution,1999,111(1/2/3/4):75-88.
[41]GARCíAAV,VICIANA M S,PRADAS E G,et al.Adsorption of chlorpyrifos on Almería soils.Science of the Total Environment,1992,123/124:541-549.
[42]BASKARANS,KOOKANARS,NAIDU R.Contrasting behaviour of chlorpyrifos and its primary metabolite,TCP(3,5,6-trichloro-2-pyridinol),with depth in soil profiles.Soil Research,2003,41(4):749-760.
[43]YU X Y,YING G G,KOOKANA R S.Reduced plant uptake of pesticides with biochar additions to soil.Chemosphere,2009,76(5):665-671.
[44]RAMOS L,SOJO L E,VREULS J J,et al.Study of the fast competitive adsorption of pesticides in soils by simultaneous filtration and solid-phase extraction with subsequent GC-MS.Environmental Science&Technology,2000,34(6):1049-1055.
[45]HUANG X,LEE L S.Effects of dissolved organic matter from animal waste effluent on chlorpyrifos sorption by soil.Journal of Environmental Quality,2001,30(4):1258-1265.
[46]ROMYEN S,LUEPROMCHAI E,HAWKER D,et al.Potential of agricultural by-product in reducing chlorpyrifos leaching through soil.Journal of Applied Sciences,2007,7(18):2686-2690.
[47]KRAVVARITI K,TSIROPOULOS N G,KARPOUZAS D G.Degradation and adsorption of terbuthylazine and chlorpyrifos in biobed biomixtures from composted cotton crop residues.Pest Management Science,2010,66(10):1122-1128.
[48]LAABS V,AMELUNG W.Sorption and aging of corn and soybean pesticides in tropical soils of Brazil.Journal of Agricultural and Food Chemistry,2005,53(18):7184-7192.
[49]GEBREMARIAM S Y,BEUTEL M W.Effects of drain-fill cycling on chlorpyrifos mineralization in wetland sediment-water microcosms.Chemosphere,2010,78(11):1337-1341.
[50]趙媛媛,付廣義,許友澤,等.毒死蜱在農(nóng)田土壤中的遷移能力研究.廣西科學(xué),2016,23(6):548-554.ZHAO Y Y,FU G Y,XU Y Z,et al.Migration ability of chlorpyrifosin differentagriculturalsoilprofiles.Guangxi Science,2016,23(6):548-554.(in Chinese with English abstract)
[51]韓興,李文朋,王玉軍.毒死蜱在土壤中的吸附行為研究.江蘇農(nóng)業(yè)科學(xué),2009(6):426-428.HAN X,LI W P,WANG Y J.Study on adsorption behavior of chlorpyrifos in soil.Jiangsu Agricultural Science,2009(6):426-428.(in Chinese)
[52]徐霞,朱利中.共存有機(jī)物對(duì)毒死蜱在沉積物上吸附的影響.中國(guó)環(huán)境科學(xué),2003,23(4):399-402.XU X,ZHU L Z.Effects of coexisted organic compounds on sorption of chlorpyrifos to sediments.China Environmental Science,2003,23(4):399-402.(in Chinese with English abstract)
[53]SEGER M R,MACIEL G E.NMR investigation of the behavior of an organothiophosphate pesticide,chlorpyrifos,sorbed on montmorillonite clays.Environmental Science& Technology,2006,40(2):797-802.
[54]YU Y L,FANG H,WANG X,et al.Characterization of a fungal strain capable ofdegrading chlorpyrifos and its use in detoxification of the insecticide on vegetables.Biodegradation,2006,17(5):487-494.
[55]SCRIBNER S L,BENZING T R,SUN S,et al.Desorption and unavailability of aged simazine residues in soil from a continuous corn field.Environmental Quality,1992,21(1):115-120.
[56]李界秋,黎曉峰,沈方科,等.毒死蜱在土壤中的環(huán)境行為研究.中國(guó)農(nóng)學(xué)通報(bào),2007,23(1):168-171.LI J Q,LI X F,SHEN F K,et al.Study on environmental behavior of chlorpyrifos in soil.Chinese Agricultural Science Bulletin,2007,23(1):168-171.(in Chinese with English abstract)
[57]KAH M,BROWN C D.Prediction of the adsorption of ionizable pesticides in soils.Journal of Agricultural and Food Chemistry,2007,55(6):2312-2322.
[58]程燕.毒死蜱的環(huán)境行為研究進(jìn)展.安徽農(nóng)學(xué)通報(bào),2008,14(8):75-76.CHENG Y.The progress of chlorpyrifos environmental behavior study.Anhui Agricultural Science Bulletin,2008,14(8):75-76.(in Chinese with English abstract)
[59]趙志強(qiáng),侯憲文,李勤奮,等.毒死蜱和丁硫克百威對(duì)香蕉根際土壤酶活性的影響.農(nóng)業(yè)環(huán)境科學(xué)學(xué)報(bào),2010,29(增刊):98-103.ZHAO Z Q,HOU X W,LI Q F,et al.Effects of chlorpyrifos and carbosulfan on soil enzymes activity in banana rhizosphere.Journal of Agro-Environment Science,2010,29(Suppl.):98-103.(in Chinese with English abstract)
[60]AKBAR S,SULTAN S.Soil bacteria showing a potential of chlorpyrifos degradation and plant growth enhancement.Brazilian Journal of Microbiology,2016,47(3):563-570.
[61]DAS S,ADHYA T K.Degradation of chlorpyrifos in tropical rice soils.Journal of Environmental Management,2015,152:36-42.
[62]劉騰飛,鄧金花,周峰杰,等.毒死蜱在土壤中的降解及分析研究進(jìn)展.中國(guó)農(nóng)學(xué)通報(bào),2014,30(9):26-34.LIU T F,DENG J H,ZHOU F J,et al.Progress on degradation and residue analysis of chlorpyrifos in soil.Chinese Agricultural Science Bulletin,2014,30(9):26-34.(in Chinese with English abstract)
[63] 岳永德,王如意,湯鋒,等.毒死蜱在土壤中的光催化降解.安徽農(nóng)業(yè)大學(xué)學(xué)報(bào),2002,29(1):1-3.YUE Y D,WANG R Y,TANG F,et al.Studies on the photodegradation of chlorpyrifos in soil.Journal of Anhui Agricultural University,2002,29(1):1-3.(in Chinese with English abstract)
[64]SASIKALA C,JIWAL S,ROUT P,et al.Biodegradation of chlorpyrifos by bacterial consortium isolated from agriculture soil.World Journal of Microbiology and Biotechnology,2011,28(3):1301-1308.
[65]李雪銀.TiO2和ZnO光催化有機(jī)磷農(nóng)藥敵百蟲(chóng)及毒死蜱的降解效應(yīng).南京:南京林業(yè)大學(xué),2015:33-39.LI X Y.The photocatalytic degradation of trichlorfon and chlorpyrifosby TiO2and ZnO.Nanjing:NanjingForestry University,2015:33-39.(in Chinese with English abstract)
[66]張錫輝,BAJPAI R.以關(guān)鍵酶為基礎(chǔ)共代謝模型的建立:以甲烷細(xì)菌共代謝三氯乙烯為例.環(huán)境科學(xué)學(xué)報(bào),2000,20(5):558-562.ZHANG X H,BAJPAI R.Development of a key-enzyme based model for cometabolism:A case study on cometabolism of trichloroethylene by methanotrohpic bacteria.Acta Scientiae Circumstantiae,2000,20(5):558-562.(in Chinese with English abstract)
[67]SINGH B K,WALKER A.Microbialdegradation of organophosphoruscompounds.FEMS MicrobiologyReviews,2006,30(3):428-471.
[68]SINGH BK,WALKERA,MORGANJAW,etal.Biodegradation of chlorpyrifos by enterobacter strain B-14 and its use in bioremediation of contaminated soils.Applied and Environmental Microbiology,2004,70(8):4855-4863.
[69]GETZIN L W.Degradation of chlorpyrifos in soil:Influence of autoclaving,soil moisture,and temperature.Journal of Economic Entomology,1981,74(2):158-162.
[70]CáCERES T,HE W,NAIDU R,et al.Toxicity of chlorpyrifos and TCP alone and in combination to Daphnia carinata:The influence of microbial degradation in natural water.Water Research,2007,41(19):4497-4503.
[71]余凱敏,馮為民,李國(guó)超,等.毒死蜱的環(huán)境生物學(xué)效應(yīng)分析.生物技術(shù)通報(bào),2015,31(8):225-230.YU K M,FENG W M,LI G C,et al.An analysis of environmental and biological effects of chlorpyrifos.Biotechnology Bulletin,2015,31(8):225-230.(in Chinese with English abstract)
[72]PETTY D G,SKOGERBOE J G,GETSINGER K D,et al.The aquatic fate of triclopyr in whole-pond treatments.Pest Management Science,2001,57(9):764-775.
[73]戴紅梅,鄧媛英,張辰,等.毒死蜱暴露對(duì)健康危害研究進(jìn)展.中國(guó)公共衛(wèi)生,2016,32(7):995-998.DAI H M,DENG Y Y,ZHANG C,et al.Review of exposure health hazards to chlorpyrifos.Chinese Journal of Public Health,2016,32(7):995-998.(in Chinese with English abstract)
[74]丁克強(qiáng).TCP污染土壤的植物修復(fù)及其毒性評(píng)價(jià).生態(tài)環(huán)境學(xué)報(bào),2009,18(1):167-171.DING K Q.The roles of phytoremediation and its toxicity evaluation in TCP contaminated soil.Ecology and Environmental Sciences,2009,18(1):167-171.(in Chinese with English abstract)
[75]AWASTHI M D,PRAKASH N B.Persistence of chlorpyrifos in soils under different moisture regimes.Pest Management Science,1997,50(1):1-4.
[76]LI J Q,LIU J,SHEN W J,et al.Isolation and characterization of 3,5,6-trichloro-2-pyridinol-degrading Ralstonia sp.strain T6.Bioresource Technology,2010,101(19):7479-7483.
[77]SETHUNATHAN N,YOSHIDA T.A Flavobacterium sp.that degrades diazinon and parathion. Canadian Journal of Microbiology,1973,19(7):873-875.
[78]SINGH D P,KHATTAR J I S,NADDA J,et al.Chlorpyrifos degradation by the cyanobacterium Synechocystis sp.strain PUPCCC 64.Environmental Science and Pollution Research,2011,18(8):1351-1359.
[79]MOHAN S V,SIRISHA K,RAO N C,et al.Degradation of chlorpyrifos contaminated soil by bioslurry reactor operated in sequencing batch mode:Bioprocess monitoring.Journal of Hazardous Materials,2004,116(1/2):39-48.
[80]XU G M,LI Y Y,ZHENG W,et al.Mineralization of chlorpyrifos by co-culture of Serratia and Trichosporon spp.Biotechnology Letters,2007,29(10):1469-1473.
[81]OMAR S A.Availability of phosphorus and sulfur of insecticide origin by fungi.Biodegradation,1998,9(5):327-336.
[82]GAO Y,CHEN S H,HU M Y,et al.Purification and characterization of a novel chlorpyrifos hydrolase from Cladosporium cladosporioides Hu-01.PLoS One,2012,7(6):e38137.
[83]BUMPUS J A,KAKAR S N,COLEMAN R D.Fungal degradation of organophosphorous insecticides.Applied Biochemistry and Biotechnology,1993,39(1):715-726.
[84]FANG H,XIANG Y Q,HAO Y J,et al.Fungal degradation of chlorpyrifos by Verticillium sp.DSP in pure cultures and its use in bioremediation of contaminated soil and pakchoi.International Biodeterioration&Biodegradation,2008,61(4):294-303.
[85]MASSIHA A,PAHLAVIANI M R M K,ISSAZADEH K.Microbial degradation of pesticides in surface soil using native strain in Iran.International Conference on Biotechnology and Environment Management,2011,18:76-81.
[86]GILANI S T S,AGEEN M,SHAH H,et al.Chlorpyrifos degradation in soil and its effect on soil microorganisms.Journal of Animal&Plant Sciences,2010,20(2):99-102.
[87]ZHANG Q,WANG B C,CAO Z Y,et al.Plasmid-mediated bioaugmentation for the degradation of chlorpyrifos in soil.Journal of Hazardous Materials,2012,221/222:178-184.
[88]YANG L,ZHAO Y H,ZHANG B X,et al.Isolation and characterization of a chlorpyrifos and 3,5,6-trichloro-2-pyridinol degrading bacterium.FEMS Microbiology Letters,2005,251(1):67-73.
[89]LIU Z Y,CHEN X,SHI Y,et al.Bacterial degradation of chlorpyrifos by Bacillus cereus//Advanced Materials Research.Zürich,Switzerland:Trans Tech Publications Ltd.,2012,356:676-680.
[90]ZHU J W,ZHAO Y,QIU J P.Isolation and application of a chlorpyrifos-degrading Bacillus licheniformis ZHU-1.African Journal of Microbiology Research,2010,4(22):2410-2413.
[91]ANWAR S,LIAQUAT F,KHAN Q M,et al.Biodegradation of chlorpyrifosand itshydrolysisproduct3,5,6-trichloro-2-pyridinol by Bacillus pumilus strain C2A1.Journal of Hazardous Materials,2009,168(1):400-405.
[92]SINGH B K,WALKER A,MORGAN J A W,et al.Effects of soil pH on the biodegradation of chlorpyrifos and isolation of a chlorpyrifos-degrading bacterium.Applied and Environmental Microbiology,2003,69(9):5198-5206.
[93]MALLICK K,BHARATI K,BANERJI A,et al.Bacterial degradation of chlorpyrifos in pure cultures and in soil.Bulletin of Environmental Contamination and Toxicology,1999,62(1):48-54.
[94]GHANEM I,ORFIM,SHAMMA M.Biodegradationof chlorpyrifos by Klebsiella sp.isolated from an activated sludge sample of waste water treatment plant in Damascus.Folia Microbiologica,2007,52(4):423-427.
[95]XU G M,ZHENG W,LI Y Y,et al.Biodegradation of chlorpyrifos and 3,5,6-trichloro-2-pyridinol by a newly isolated Paracoccus sp.strain TRP.International Biodeterioration&Biodegradation,2008,62(1):51-56.
[96]KORADE D L,FULEKAR M H.Rhizosphere remediation of chlorpyrifos in mycorrhizospheric soil using ryegrass.Journal of Hazardous Materials,2009,172(2/3):1344-1350.
[97]LAKSHMI C V,KUMAR M,KHANNA S.Biotransformation of chlorpyrifos and bioremediation of contaminated soil.International Biodeterioration&Biodegradation,2008,62(2):204-209.
[98]AWAD N S,SABIT H H,ABO-ABA S E M,et al.Isolation,characterization and fingerprinting of some chlorpyrifosdegrading bacterial strains isolated from Egyptian pesticidespolluted soils.African Journal of Microbiology Research,2011,5(18):2855-2862.
[99]LI X H,HE J,LI S P.Isolation of a chlorpyrifos-degrading bacterium,Sphingomonas sp.strain Dsp-2,and cloning of the mpd gene.Research in Microbiology,2007,158(2):143-149.
[100]YANG C,LIU N,GUO X,et al.Cloning of mpd gene from a chlorpyrifos-degrading bacterium and use of this strain in bioremediation of contaminated soil.FEMS Microbiology Letters,2006,265(1):118-125.
浙江大學(xué)學(xué)報(bào)(農(nóng)業(yè)與生命科學(xué)版)2017年6期