泮宸帥 朱賢平 滕曉 丁凌志
肩袖是由肩胛下肌、岡上肌、岡下肌、小圓肌的肌腱在肱骨頭前、上、后方形成的袖套樣肌腱結(jié)構(gòu)[1]。這些肌腱的運(yùn)動導(dǎo)致肩關(guān)節(jié)各方向活動,這些肌腱也將肱骨頭穩(wěn)定于肩胛盂上,對維持肩關(guān)節(jié)的穩(wěn)定和活動起著極其重要的作用。隨著全民運(yùn)動的普及,更多老年人參與到運(yùn)動中來,運(yùn)動損傷也相應(yīng)增多,其中肩袖損傷是非常常見的一種。據(jù)統(tǒng)計(jì)[2],肩袖損傷在60歲以上人群中的發(fā)病率高達(dá)25%。肩袖損傷可導(dǎo)致肩關(guān)節(jié)疼痛,活動受限等一系列的功能障礙。本文對近年來國內(nèi)外相關(guān)文獻(xiàn)進(jìn)行篩選和分析,對肱骨近端骨質(zhì)疏松對肩袖損傷修復(fù)影響的研究進(jìn)展綜述如下。
骨質(zhì)疏松是由多因素引起代謝變化而導(dǎo)致骨生成障礙的綜合征,臨床表現(xiàn)為周身骨骼疼痛、骨骼彎曲和易發(fā)生骨折,其特點(diǎn)為單位體積內(nèi)骨量減少,骨皮質(zhì)變薄,海綿骨骨小梁數(shù)目及大小均減少,髓腔增寬,骨荷載功能減弱[3]。有研究表明,骨質(zhì)疏松與年齡、性別、絕經(jīng)等因素相關(guān)[4]。許多研究表明,肱骨近端局部的骨質(zhì)疏松與肩袖損傷相關(guān)[5-11]。Meyer等[5]對14例尸體的肩關(guān)節(jié)進(jìn)行研究(其中7例伴有肩袖損傷,7例肩袖完整),通過高分辨CT來測量肩關(guān)節(jié)的骨密度,結(jié)果示伴有肩袖損傷的肱骨頭大結(jié)節(jié)處的骨密度較無肩袖損傷的肱骨頭低至少50%。Jiang等[6]對22具尸體標(biāo)本進(jìn)行X線測量骨密度,比較肩袖損傷尸體肱骨頭及無肩袖損傷肱骨頭的骨密度,分析肩袖損傷與肱骨近端骨密度的關(guān)系,得出結(jié)論:肩袖損傷與骨表面退變及大結(jié)節(jié)處骨質(zhì)廢用性減低相關(guān)。Braunstein等[7]研究發(fā)現(xiàn)肱骨大結(jié)節(jié)處骨質(zhì)疏松會隨著慢性肩袖損傷的病程發(fā)展而加速。Cadet等[8]對27例伴有肩袖損傷患者進(jìn)行研究分析,通過測量肱骨大結(jié)節(jié)處的骨質(zhì)疏松評分,來估計(jì)骨質(zhì)疏松程度。該研究表明,在肩袖損傷患者中,大結(jié)節(jié)處的骨質(zhì)疏松程度與肩袖回縮程度及病程相關(guān),急性損傷及肩袖輕、中度回縮的患者骨密度要明顯高于慢性損傷及肩袖重度回縮的患者。但Oh等[9]研究認(rèn)為,肱骨大結(jié)節(jié)處的骨質(zhì)疏松與有癥狀的肩袖損傷相關(guān),但與肩袖損傷類型及撕裂大小無關(guān)。有研究認(rèn)為,肩袖損傷后大結(jié)節(jié)處骨質(zhì)疏松的原因在于局部失去了肩袖牽拉的刺激[10]。Kannus等[11]發(fā)現(xiàn),對于在保守治療階段能改善其肩關(guān)節(jié)功能的患者,其局部骨丟失量要明顯少。
目前有文獻(xiàn)應(yīng)用腰、髖的骨質(zhì)疏松測量來評估肱骨近端的骨質(zhì)疏松[12]。Park等[13]對 175例患者(74例男性,101例女性)的肱骨大結(jié)節(jié)、肱骨頭、解剖頸進(jìn)行骨密度的測量,得出肱骨近端的骨密度和腰、髖骨密度高度相關(guān)。但有研究認(rèn)為,腰、髖的骨密度來預(yù)測肱骨近端是不可靠的,作者認(rèn)為應(yīng)用重塑理論,肱骨的骨密度決定于肩袖的完整及肩關(guān)節(jié)的負(fù)荷水平,雖然在解剖上肩、髖的結(jié)構(gòu)類似,但肩關(guān)節(jié)為非負(fù)重關(guān)節(jié),這一點(diǎn)可能決定了其骨密度和腰、髖骨密度無明顯相關(guān)[9]。Almeida等[10]通過對比應(yīng)用腰、髖骨質(zhì)疏松指數(shù)來估計(jì)肱骨近端骨質(zhì)疏松的方法及直接測量肱骨近端骨質(zhì)疏松后認(rèn)為,兩種方法會得到不同的測量結(jié)果。目前有較多測量肱骨近端局部骨密度的方法,Mather等[14]對108例患者進(jìn)行肱骨近端雙能X線吸收計(jì)量法,通過其測量肱骨近端皮質(zhì)骨的厚度及評估肱骨近端礦物質(zhì)密度,認(rèn)為此法對于排除骨質(zhì)疏松是有效、安全、廉價(jià)的方法。其他一些研究也支持應(yīng)用測量皮質(zhì)骨厚度來評估肱骨近端骨質(zhì)疏松的方法[15-16]。有研究通過高分辨CT對肱骨近端骨質(zhì)進(jìn)行檢測并行骨質(zhì)疏松相關(guān)研究[7,17-18]。大結(jié)節(jié)處骨密度高低分布決定了修復(fù)過程中錨釘置入位置,但眾多研究結(jié)果仍存在爭議。Kirchhoff等[18]通過對CT測量,作者在大結(jié)節(jié)上設(shè)立內(nèi)外側(cè)的前、中、后共6個(gè)圓柱狀觀測區(qū),測量各觀察區(qū)中骨量體積比值、骨小梁厚度、骨小梁間隙等數(shù)值,得出結(jié)論:大結(jié)節(jié)內(nèi)側(cè)的骨質(zhì)明顯優(yōu)于外側(cè)骨質(zhì)。但是Ho等[9]對65例肩袖損傷的患者應(yīng)用雙能X線吸收計(jì)量法、測量大結(jié)節(jié)處的骨密度,作者把大結(jié)節(jié)按前、后,內(nèi)、外共分為四個(gè)區(qū)域,得出結(jié)論:后外側(cè)骨密度最高,而內(nèi)側(cè)的骨密度最低。這兩個(gè)研究的結(jié)論相矛盾,作者認(rèn)為兩個(gè)研究的標(biāo)本不同,一個(gè)為尸體研究,一個(gè)為臨床患者研究,這也間接證明肩袖損傷與繼發(fā)性的骨質(zhì)疏松相關(guān)。
肩袖修復(fù)可靠性受各種因素影響[7],其中骨質(zhì)疏松帶來的骨密度下降可能造成錨釘松動和脫離。Pietschmann等[19]應(yīng)用3種錨釘對非骨質(zhì)疏松的肱骨頭與骨質(zhì)疏松的肱骨頭進(jìn)行錨釘拔出力對比,結(jié)果示非骨質(zhì)疏松患者的肱骨頭錨釘拔出力要明顯大于骨質(zhì)疏松患者的肱骨頭。錨釘固定位置也與拔出力相關(guān)。Tingart等[17]通過對20具尸體肱骨頭進(jìn)行內(nèi)外側(cè)的前、中、后共6個(gè)區(qū)域劃分,并進(jìn)行高分辨率CT測量各區(qū)域骨小梁及皮質(zhì)骨骨密度,并對各個(gè)區(qū)域行錨釘固定并測量錨釘?shù)陌纬隽ΓY(jié)果示內(nèi)側(cè)尤其是內(nèi)前、中這兩個(gè)區(qū)域的骨密度最高,且錨釘拔出力最強(qiáng)。因此,對于骨質(zhì)疏松患者,錨釘固定的難度較非骨質(zhì)疏松患者要大得多,臨床上可以通過改進(jìn)固定方式,選用合適的錨釘類型改善錨釘在疏松骨質(zhì)中的固定效果。目前很多的研究表明,當(dāng)錨釘置入方向與骨面呈45°時(shí),拔出力最大,且失敗率最低[20-21]。在錨釘選擇上,根據(jù)材料可分為金屬錨釘和可吸收生物錨釘。Tingart等[22]發(fā)現(xiàn)應(yīng)用生物錨釘隨時(shí)間推移固定作用會明顯降低,而金屬錨釘在拔出力方面要明顯優(yōu)于生物型錨釘,特別是在骨質(zhì)疏松的肱骨近端。Uruc等[23]以綿羊肱骨頭為實(shí)驗(yàn)材料,通過應(yīng)用新的外排螺釘(螺釘長度更長,螺紋更深,并加用墊片的外排釘)對比普通外排螺釘,測試肩袖修補(bǔ)后的螺釘拔出力,結(jié)果示新方法螺釘拔出力明顯更大,(121.10±10.17)N 對比(176.10±10.34) N。
很多因素都可以影響肩袖修復(fù)術(shù)后愈合[24-25],其中肱骨近端骨質(zhì)疏松是影響肩袖修復(fù)的獨(dú)立因素[26]。Chen等[27]將實(shí)驗(yàn)兔分為三組,分別為對照組、骨質(zhì)疏松組及骨質(zhì)增強(qiáng)組。在應(yīng)用相應(yīng)藥物8周后對岡上肌腱及骨之間的附著力以及骨腱界面局部切片進(jìn)行比較,發(fā)現(xiàn)對照組及骨質(zhì)增強(qiáng)組在腱骨附著力上大于骨質(zhì)疏松組,且對照組切片中可觀察到厚而整齊的4層腱骨愈合界面,包括肌腱層、未礦化纖維軟骨層、礦化纖維軟骨層以及骨組織層,在骨質(zhì)增強(qiáng)組中,未礦化纖維軟骨層、礦化纖維軟骨層明顯較對照組厚,而骨質(zhì)疏松組腱骨愈合界面則相對薄而且紊亂,進(jìn)而得出肱骨近端骨密度的增加會提高腱骨界愈合的結(jié)論。在局部骨質(zhì)疏松的情況下,容易出現(xiàn)骨床松動和肩袖附著點(diǎn)固定強(qiáng)度不夠,無法提供良好的微環(huán)境來促進(jìn)腱骨愈合。
骨質(zhì)疏松患者通常伴隨著維生素D的缺乏[28]。Angeline等[29]將實(shí)驗(yàn)小鼠分為兩組,分為骨質(zhì)疏松組及對照組,對所有小鼠實(shí)施肩袖修復(fù)術(shù),術(shù)后2周測量其失效負(fù)荷,發(fā)現(xiàn)骨質(zhì)疏松組失效負(fù)荷要明顯低于對照組,術(shù)后4周組織切片觀察,發(fā)現(xiàn)骨質(zhì)疏松組骨組織形成與膠原纖維形成較對照組少。Oh等[30]研究發(fā)現(xiàn),維生素D的缺乏會導(dǎo)致肌肉脂肪化及肌力下降,而Goden è che等[31]發(fā)現(xiàn),肌肉脂肪化和肩袖修復(fù)后肩關(guān)節(jié)評分及再撕裂率明顯相關(guān),即脂肪化程度越高,肩袖術(shù)后功能評分越低,再撕裂率越高。Dougherty等[32]對維生素D及肩袖損傷相關(guān)性研究進(jìn)行綜述,得出結(jié)論:維生素D在肩袖損傷修復(fù)后,可以減少局部炎癥,增加骨、肌肉、腱-骨界面的愈合。但是Ryu等[33]對91例肩袖全層撕裂的患者進(jìn)行研究,發(fā)現(xiàn)術(shù)前血清維生素D含量與術(shù)后肩關(guān)節(jié)評分無明顯相關(guān)性。Alkhenizan等[34]對沙特阿拉伯首都利雅得的居民進(jìn)行社區(qū)調(diào)查,發(fā)現(xiàn)血清維生素D含量與骨質(zhì)疏松水平、性別、種族等無明顯相關(guān)性。
對于伴有局部骨質(zhì)疏松的肩袖損傷患者,肩袖修復(fù)術(shù)后需將康復(fù)訓(xùn)練計(jì)劃延遲,給予6 周左右的肩關(guān)節(jié)制動,使已修復(fù)的肩袖有良好的腱骨愈合環(huán)境,之后再逐漸恢復(fù)康復(fù)訓(xùn)練[3]。Parsons等[35]對43例肩袖全層撕裂的患者制動6周后開始行功能鍛煉,并檢測1年后患者的肩關(guān)節(jié)功能評分及活動度,得出早期制動不會導(dǎo)致遠(yuǎn)期的肩關(guān)節(jié)僵硬的結(jié)論。Chen等[36]認(rèn)為延期的功能鍛煉與早期鍛煉相比,術(shù)后3、6、12個(gè)月患者抬臂能力無明顯差異,而延期功能鍛煉組在再撕裂比率方面較早期功能鍛煉組低。Yi等[37]通過對肩袖損傷患者早期和延期功能鍛煉的比較,發(fā)現(xiàn)兩者術(shù)后功能恢復(fù)無明顯差異。但Mazuquin等[38]認(rèn)為,早期功能鍛煉對于肩關(guān)節(jié)術(shù)后恢復(fù)有較大幫助,特別是針對中小型肩袖撕裂的患者。
總結(jié):肩袖損傷往往伴有肱骨近端局部的骨質(zhì)疏松,對肩袖損傷修復(fù)增加了挑戰(zhàn)。肱骨近端骨質(zhì)疏松的影響因素很多,既有全身因素,又可因局部應(yīng)力刺激減少所致。肱骨近端特別是大結(jié)節(jié)處的骨質(zhì)疏松會導(dǎo)致肩袖損傷修復(fù)過程中錨釘固定不牢靠、拔出率增加等,對術(shù)后的康復(fù)愈合也是一個(gè)不利因素。骨質(zhì)疏松患者常伴有維生素D缺乏,而維生素D在肩袖術(shù)后愈合的很多方面起了積極作用,其具體的機(jī)制需要進(jìn)一步研究。
[1] 閔楠,薛慶云. 肩袖損傷治療進(jìn)展[J/CD]. 中華肩肘外科電子雜志, 2013, 1(1):61-64.
[2] Yamamoto A, Takagishi K, Osawa T, et al. Prevalence and risk factors of a rotator cuff tear in the general population[J]. J Shoulder Elbow Surg,2010 ,19(1):116-120.
[3] 張陽洋, 楊星光, 趙金忠. 伴有骨質(zhì)疏松的肩袖損傷治療進(jìn)展[J]. 國際骨科學(xué)雜志, 2016, 37(4):214-218.
[4] Clavert P, Boucha?b J, Sommaire C, et al. Does bone density of the greater tuberosity change in patients over 70? [J]. Orthop Traumatol Surg Res, 2014 ,100(1):109-111.
[5] Meyer DC, Fucentese SF, Koller B, et al. Association of osteopenia of the humeral head with full, thickness rotator cuff tears[J]. J Shoulder Elbow Surg, 2004, 13(3): 333-337.
[6] Jiang YB, Zhao J, Van Holsbeeck MT, et al. Trabecular microstructure and surface changes in the greater tuberosity in rotator cuff tears[J]. Skeletal Radiol, 2002, 31(9): 522-528.
[7] Braunstein V, Ockert B, Windolf M. et al.Increasing pullout strength of suture anchors in osteoporotic bone using augmentation:a cadaver study[J]. Clin Biomech (Bristol,Avon), 2015, 30(3): 243-247.
[8] Cadet ER, Hsu JW, Levine WN, et al. The relationship between greater tuberosity osteopenia and the chronicity of rotator cuff tears[J]. J Shoulder Elbow Surg, 2008, 17(1): 73-77.
[9] Oh JH, Song BW, Lee YS. Measurement of volumetric bone mineral density in proximal humerus using quantitative computed tomography in patients with unilateral rotator cuff tear[J]. J Shoulder Elbow Surg, 2014, 23(7): 993-1002.
[10] Almeida A, Atti V, Agostini DC, et al. Comparative analysis on arthroscopic sutures of large and extensive rotator cuff injuries in relation to the degree of osteopenia[J]. Rev Bras Ortop, 2015,50(1): 83-88.
[11] Kannus P, Lepp?l? J, Lehto M, et al. A rotator cuff rupture produces permanentosteoporosis in the affected extremity,but not in those withwhom shoulder function has returned to normal[J].J Bone Miner Res, 1994, 10(8):1263-1271.
[12] Levy JC, Ashukem MT, Formaini NT. Factors predicting postoperative range of motion for anatomic total shoulder arthroplasty[J]. J Shoulder Elbow Surg, 2016, 25(1): 55-60.[13] Park JY, Kim MH. Changes in bone mineral density of the proximal humerus in Koreans: Suture anchor in rotator cuff repair[J].Orthopedics, 2004, 27(8): 857-861.
[14] Mather J, Macdermid JC, Faber KJ, et al. Proximal humerus cortical bone thickness correlates with bone mineral density and can clinically rule out osteoporosis[J]. J Shoulder Elbow Surg,2013, 22(6): 732-738.
[15] Spross C, Kaestle N, Benninger EA, et al. Deltoid tuberosity index:a simple radiographic Tool to assess local bone quality in proximal humerus fractures[J]. Clin Orthop Relat Res, 2015, 473(9):3038-3045.
[16] Helfen T, Sprecher CM, Eberli U, et al. High-Resolution Tomography-Based quantification of cortical porosity and cortical thickness at the surgical neck of the humerus during aging[J].Calcif Tissue Int, 2017, 101(3):271-279.
[17] Tingart MJ, Apreleva M, Zurakowski D, et al. Pullout strength of suture anchors used in rotator cuff repair[J]. J Bone Joint Surg Am, 2003(11): 2190-2198.
[18] Kirchhoff C, Kirchhoff S, Sprecher CM, et al. X-treme CT analysis of cancellous bone at the rotator cuff insertion in human individuals with osteoporosis: superficial versus deep quality[J].Arch Orthop Trauma Surg, 2013, 133(3): 381-387.
[19] Pietschmann MF, Fr?hlich V, Ficklscherer A, et al. Suture anchor fixation strength in osteopenic versus non-osteopenic bone for rotator cuff repair[J]. Arch Orthop Trauma Surg, 2009, 129(3):373-379.
[20] Liporace FA, Penny K, Bono CM, et al. The mechanical effects of suture anchor insertion angle for rotator cuff repair[J].Orthopedics, 2002, 25(4): 399-402.
[21] Strauss E, Frank D, Kubiak E, et al. The effect of the angle of suture anchor insertion on fixation failure at the tendon-suture interface after rotator cuff repair: deadman's angle revisited[J].Arthroscopy, 25(6):597-602.
[22] Tingart MJ, Apreleva M, Lehtinen J, et al. Anchor design and bone mineral density affect the pull-out strength of suture anchors in rotator cuff repair: which anchors are best to use in patients with low bone quality? [J]. Am J Sports Med, 2004, 32(6):1466-1473.
[23] Uruc V, Ozden R, Dogramaci Y, et al. A new anchor augmentation technique with a cancellous screw in osteoporotic rotator cuff repair: an in vitro biomechanical study on sheep humerus specimens[J]. Arthroscopy, 2014, 30(1):16-21.
[24] Mulligan EP, Devanna RR, Huang M, et al. Factors that impact rehabilitation strategies after rotator cuff repair[J]. Phys Sportsmed, 2012, 40(4): 102-114.
[25] Mall NA, Tanaka MJ, Choi LS, et al. Factors affecting rotator cuff healing[J]. J Bone Joint Surg Am, 2014, 96(9): 778-788.
[26] Chung SW, Oh JH, Gong HS, et al. Factors affecting rotator cuff healing after arthroscopic repair osteoporosis as one of the independent risk factors[J]. Am J Sports Med, 2011, 39(10):2099-2107.
[27] Chen X, Giambini H, Ben-Abraham E, et al. Effect of bone mineral density on rotator cuff tear: an osteoporotic rabbit model[J].PLoS One, 2015, 10(10): e0139384.
[28] Nikolaidou O, Migkou S, Karampalis C. Rehabilitation after rotator cuff repair[J]. Open Orthop J, 2017, 28(11): 154-162.
[29] Angeline ME, Ma R, Pascual-Garrido C, et al. Effect of dietinduced vitamin D deficiency on rotator cuff healing in a ratmodel[J]. Am J Sports Med, 2014, 42(1): 27-34.
[30] Oh JH, Kim SH, Kim JH, et al. The level of vitamin D in the serum correlates with fatty degeneration of the muscles of the rotator cuff[J]. J Bone Joint Surg Br, 2009, 91(12): 1587-1593.
[31] Goden è che A, Elia F, Kempf JF, et al. Fatty infiltration of stage 1 or higher significantly compromises long-term healing of supraspinatus repairs[J]. J Shoulder Elbow Surg,2017,26(10):1818-1825.
[32] Dougherty KA, Dilisio MF, Agrawal DK. Vitamin D and the immunomodulation of rotator cuff injury[J]. J Inflamm Res,2016, 14(9): 123-131.
[33] Ryu KJ, Kim BH, Lee Y, et al. Low serum vitamin D is not correlated with the severity of a rotator cuff tear or retear after arthroscopic repair[J]. Am J Sports Med, 2015, 43(7): 1743-1750.
[34] Alkhenizan A, Mahmoud A, Hussain A, et al. The relationship between 25 (OH) D levels (vitamin D) and bone mineral density(BMD) in a saudi population in a Community-Based setting[J].PLoS One, 2017, 12(1): e0169122.
[35] Parsons BO, Gruson KI, Chen DD, et al. Does slower rehabilitation after arthroscopic rotator cuff repair lead to long-term stiffness? [J].J Shoulder Elbow Surg, 2010, 19(7):1034-1039.
[36] Chen L, Peng K, Zhang D, et al. Rehabilitation protocol after arthroscopic rotator cuff repair: early versus delayed motion[J].Int J Clin Exp Med, 2015, 8(6): 8329-8338.
[37] Yi A, Villacis D, Yalamanchili R, et al. A comparison of rehabilitation methods after arthroscopic rotator cuff repair:a systematic review[J]. Sports Health, 2015, 7(4): 326-334.
[38] Mazuquin BF, Wright AC, Russell S, et al. Effectiveness of early compared with conservative rehabilitation for patients having rotator cuff repair surgery:an overview of systematic reviews[J].Br J Sports Med, 2018, 52(2):111-121.