王子+朱朋勇
摘要: 關(guān)鍵詞: 中圖分類號(hào): 文獻(xiàn)標(biāo)志碼: A文章編號(hào): 2095-2163
Abstract: Remote fault diagnosis of fault monitoring data of compressor station power system is carried out through the control center of satellite communication transmission. Channel imbalance is often caused by multipath effect in the process of remote communication of fault data, and the error rate of data output is also higher. So in order to improve remote data transmission communication quality of the power system, the paper proposes the fault monitoring and remote data communication transmission channel optimization method of the power system based on a Potter interval equalization technology in the gas station system. In the research, construct the channel model of the power system fault monitoring and remote data communication, adopt multipath recombination and passive time mirror turning technology for intersymbol interference suppression, design Potter spaced equalizer based on minimum mean square error criterion for the judgment basis to realize communication channel equalization optimization. The simulation results show that the anti interference for communication is better than traditional method, channel balance is good, output error rate of fault monitoring data is low, therefore the communication quality is significantly improved.
0引言
在天然氣西氣東輸工程中,壓氣站是整個(gè)管網(wǎng)系統(tǒng)的重要節(jié)點(diǎn),天然氣壓氣站通過(guò)壓縮機(jī)為管道運(yùn)輸?shù)奶烊粴膺M(jìn)行增壓和分流控制,提高天然氣運(yùn)輸過(guò)程中的均衡配置和調(diào)度能力。天然氣壓氣站的電力系統(tǒng)是保障壓氣站中的壓縮機(jī)裝置設(shè)備穩(wěn)定可靠運(yùn)行的基礎(chǔ)設(shè)施,壓氣站的電力系統(tǒng)長(zhǎng)期處于高負(fù)荷工作狀態(tài)下,容易產(chǎn)生故障,需要對(duì)壓氣站電力系統(tǒng)進(jìn)行在線實(shí)時(shí)監(jiān)測(cè),并將監(jiān)測(cè)數(shù)據(jù)通過(guò)遠(yuǎn)程衛(wèi)星通信系統(tǒng)傳輸?shù)娇刂浦行?,進(jìn)行在線故障診斷分析,保障電力系統(tǒng)的穩(wěn)定可靠運(yùn)行。壓氣站電力系統(tǒng)故障監(jiān)測(cè)數(shù)據(jù)的遠(yuǎn)程衛(wèi)星通信傳輸信道中,由于擴(kuò)頻碼序列所占的帶寬較大,信道分配過(guò)程中容易產(chǎn)生多徑效應(yīng),引起碼間干擾,導(dǎo)致通信性能降低,電力系統(tǒng)的故障數(shù)據(jù)輸出誤碼較高,需要進(jìn)行遠(yuǎn)程通信信道優(yōu)化設(shè)計(jì),提高通信質(zhì)量,研究電力系統(tǒng)故障監(jiān)測(cè)數(shù)據(jù)遠(yuǎn)程通信傳輸信道優(yōu)化方法,在確保壓氣站電力系統(tǒng)的穩(wěn)定運(yùn)行具有重要意義[1]。
對(duì)電力系統(tǒng)故障監(jiān)測(cè)數(shù)據(jù)遠(yuǎn)程通信傳輸信道優(yōu)化的關(guān)鍵技術(shù)在于碼間干擾抑制和信道均衡設(shè)計(jì),傳統(tǒng)方法主要采用擴(kuò)頻編碼及信號(hào)調(diào)制濾波等方法實(shí)現(xiàn)干擾濾波和信道均衡[2-3],其中,文獻(xiàn)[4]中提出一種基于被動(dòng)時(shí)間反轉(zhuǎn)鏡的電力系統(tǒng)故障監(jiān)測(cè)數(shù)據(jù)遠(yuǎn)程通信信道均衡算法,采用垂直線列陣分布式傳感融合濾波方法進(jìn)行干擾抑制,提高信道的穩(wěn)定性,但該方法不能有效抵御信道多徑效應(yīng)的影響,通信抗干擾能力不強(qiáng)。文獻(xiàn)[5]中提出基于子信道載波調(diào)制的電力系統(tǒng)故障監(jiān)測(cè)數(shù)據(jù)遠(yuǎn)程通信信道均衡算法,采用分?jǐn)?shù)間隔均衡方法進(jìn)行信道均衡配置,該方法能有效防止輸出信號(hào)的相位畸變,降低輸出誤碼率,但隨著故障監(jiān)測(cè)數(shù)據(jù)規(guī)模的增大,通信信道的實(shí)時(shí)處理性能不好,計(jì)算開銷較大。
針對(duì)上述問(wèn)題,本文提出一種基于波特間隔均衡技術(shù)的壓氣站電力系統(tǒng)故障監(jiān)測(cè)數(shù)據(jù)遠(yuǎn)程通信傳輸信道優(yōu)化方法,首先構(gòu)建電力系統(tǒng)故障監(jiān)測(cè)數(shù)據(jù)遠(yuǎn)程通信的信道模型,采用多徑分量重組和被動(dòng)時(shí)間鏡翻轉(zhuǎn)技術(shù)進(jìn)行碼間干擾抑制,然后設(shè)計(jì)波特間隔均衡器進(jìn)行信道均衡優(yōu)化,最后進(jìn)行仿真實(shí)驗(yàn),實(shí)驗(yàn)結(jié)果顯示了本文方法在提高電力系統(tǒng)監(jiān)測(cè)數(shù)據(jù)的遠(yuǎn)程傳輸性能方面的優(yōu)越性。
1信道模型構(gòu)建和碼間干擾抑制
1.1電力系統(tǒng)故障監(jiān)測(cè)數(shù)據(jù)遠(yuǎn)程通信的信道模型
2信道均衡優(yōu)化實(shí)現(xiàn)
4結(jié)束語(yǔ)
為了提高電力系統(tǒng)數(shù)據(jù)遠(yuǎn)程傳輸通信質(zhì)量,本文提出了一種基于波特間隔均衡技術(shù)的壓氣站電力系統(tǒng)故障監(jiān)測(cè)數(shù)據(jù)遠(yuǎn)程通信傳輸信道優(yōu)化方法,構(gòu)建電力系統(tǒng)故障監(jiān)測(cè)數(shù)據(jù)遠(yuǎn)程通信的信道模型,采用多徑分量重組和被動(dòng)時(shí)間鏡翻轉(zhuǎn)技術(shù)進(jìn)行碼間干擾抑制,設(shè)計(jì)波特間隔均衡器,以最小均方誤差準(zhǔn)則為判決依據(jù)進(jìn)行通信信道均衡優(yōu)化。研究得知,采用該方法進(jìn)行壓氣站電力系統(tǒng)故障監(jiān)測(cè)數(shù)據(jù)遠(yuǎn)程通信傳輸?shù)目垢蓴_能力較強(qiáng),信道均衡性較好,故障監(jiān)測(cè)數(shù)據(jù)的輸出誤碼率較低,在電力系統(tǒng)故障監(jiān)測(cè)數(shù)據(jù)遠(yuǎn)程通信和診斷中具有較高的應(yīng)用價(jià)值。endprint
參考文獻(xiàn):
[1] 邸珩燁. 基于多徑碼間干擾濾波的短波通信優(yōu)化[J]. 物聯(lián)網(wǎng)技術(shù),2015,5(10):47-48,52.
[2] 龍清,胡光波. 基于自適應(yīng)噪聲抵消的無(wú)線傳感網(wǎng)絡(luò)信道優(yōu)化[J]. 智能計(jì)算機(jī)與應(yīng)用,2016,6(4):93-96.
[3] 馬雪. 基于FPGA嵌入式設(shè)計(jì)的水聲信號(hào)采集系統(tǒng)[J]. 艦船電子工程,2017,37(3):135-139.
[4] THOMAS Y, XYLOMENOS G, TSILOPOULOS C, et al. Objectoriented packet caching for ICN[C]//Proceedings of ACM SIGCOMM Workshop on ICN. San Francisco, CA, USA: ACM, 2015: 89-97.
[5] BENOUARET K, BENSLIMANE D, HADJALI A. On the use of fuzzy dominance for computing service skyline based on QoS[C]//IEEE International Conference on Web Services (ICWS). Washington:IEEE, 2011: 540-547.
[6] 鄧異,梁燕,周勇. 水聲換能器基陣信號(hào)采集系統(tǒng)優(yōu)化設(shè)計(jì)[J]. 物聯(lián)網(wǎng)技術(shù),2015,5(4):36-37,41.
[7] 徐騫,梁紅,胡光波. 基于二階統(tǒng)計(jì)量的近場(chǎng)源四維參數(shù)聯(lián)合估計(jì)[J]. 計(jì)算機(jī)工程與應(yīng)用,2011,47(23): 137-140.
[8] 劉家亮,王海燕,姜喆,等. 垂直線列陣結(jié)構(gòu)對(duì)PTRM陣處理空間增益的影響[J]. 魚雷技術(shù),2010,18(4): 263-267.
[9] 袁永,段奇智,張毅,等. 油井?dāng)?shù)據(jù)采集及高效DLL函數(shù)數(shù)據(jù)傳輸性能實(shí)現(xiàn)[J]. 計(jì)算機(jī)與數(shù)字工程,2013,41(10): 1628-1631,1635.
[10]段奇智,袁勇,張毅,等. 天然氣管道遠(yuǎn)程聲通信接收機(jī)系統(tǒng)設(shè)計(jì)方法研究[J]. 計(jì)算機(jī)與數(shù)字工程,2013,41(11): 1835-1839.
[11]郭曉艷. 油田管道不定衰減水聲信號(hào)的仿真分析[J]. 計(jì)算機(jī)仿真,2014,31(3):118-121.
[12]張薇,謝紅梅,王保平. 一種新型的分段Logistic混沌擴(kuò)頻通信算法[J]. 計(jì)算機(jī)科學(xué),2013,40(1): 59-62.endprint