李非田 戴春富
外周性眩暈的年發(fā)病率約為8.4%[1]。部分患者除眩暈、平衡不穩(wěn)等前庭癥狀外,還易伴發(fā)情緒行為改變,臨床常見焦慮、抑郁、軀體形式障礙等,其中又以伴發(fā)焦慮最為常見,約占所有外周性眩暈患者的46%[2]。有學(xué)者報道焦慮患者發(fā)生良性陣發(fā)性位置性眩暈(benign paroxysmal positional vertigo, BPPV)的風(fēng)險較正常人高[3]。另有報道對于BPPV成功復(fù)位后仍感到眩暈的患者使用抗焦慮藥依替唑倫后患者眩暈障礙評分顯著降低,眩暈癥狀得到改善[4]。我們的前期研究顯示伴發(fā)焦慮患者在改善前庭癥狀后,焦慮水平較治療前下降;焦慮患者繼發(fā)外周性眩暈的概率也較普通人高[5]。據(jù)此我們認(rèn)為大腦中的前庭神經(jīng)核及處理焦慮情緒相關(guān)核團(tuán)的活動相互影響。
近年來,外周性眩暈與焦慮共病吸引了越來越多學(xué)者的關(guān)注?;A(chǔ)實(shí)驗(yàn)動物主要采用Wistar大鼠、C57BL/6小鼠,研究內(nèi)容主要為干預(yù)中縫核、藍(lán)斑核、臂旁核、終紋床核、海馬等情緒相關(guān)核團(tuán),觀察其與前庭神經(jīng)核之間的神經(jīng)纖維投射關(guān)系或功能聯(lián)系。核團(tuán)干預(yù)手段包括藥理遺傳學(xué)手段設(shè)計藥物特異性激活設(shè)計受體(designer receptors exclusively activated by designer drugs, DREADD)及光遺傳學(xué)技術(shù)(optogenetics)[6-7]。目前用于動物行為檢測的方法主要有檢測焦慮水平的曠場實(shí)驗(yàn)(open field test,OFT)、高架十字(elevated plus maze, EPM)、黑白箱實(shí)驗(yàn)(light-dark test, LDT)[8-10]及檢測平衡功能的轉(zhuǎn)棒實(shí)驗(yàn)(rotarod test, RT)、水平梁實(shí)驗(yàn)(beam balance test, BBT)[11-12]等。而臨床研究主要通過采用眩暈及情緒調(diào)查問卷來探討眩暈與焦慮的相關(guān)性、疾病分布與焦慮程度[13-14]。另有學(xué)者使用磁共振技術(shù)識別可能參與外周性眩暈與焦慮共病發(fā)生的腦區(qū)。
現(xiàn)有研究認(rèn)為眩暈與焦慮共病是由于中樞神經(jīng)系統(tǒng)傳遞前庭及情緒信息的通路相互重疊所致。目前認(rèn)為與眩暈、焦慮共病關(guān)系密切的情緒相關(guān)中樞結(jié)構(gòu)有中縫背核、藍(lán)斑核及海馬、終紋床核等,這些核團(tuán)與前庭神經(jīng)核之間均有結(jié)構(gòu)或功能上的聯(lián)系[15-17]。
1.1中縫背核中縫背核(dorsal raphe nucleus,DRN)是腦內(nèi)5-羥色胺(5-hydroxytryptamine, 5-HT)的主要來源場所,而5-HT是最早研究與焦慮情緒產(chǎn)生有關(guān)的遞質(zhì)。Halberstadt等[18-19]將5-HT類似物5,7-雙羥色胺注射入大鼠DRN以損毀5-HT能神經(jīng)元,隨后行鼠腦切片染色發(fā)現(xiàn)來自DRN的5-HT能神經(jīng)纖維投射到前庭神經(jīng)核。其中細(xì)髓鞘5-HT能纖維投射部位主要在前庭內(nèi)側(cè)核室旁區(qū),而粗髓鞘5-HT能纖維主要投射于前庭神經(jīng)核的外側(cè)。為觀察前庭神經(jīng)核向DRN的神經(jīng)投射分布,Cuccurazzu等[20]向前庭神經(jīng)核注射示蹤劑生物素化葡聚糖胺后發(fā)現(xiàn),來自前庭神經(jīng)核的纖維投射在DRN腹內(nèi)側(cè)及外側(cè)。這些研究證實(shí)了DRN與前庭神經(jīng)核之間的雙向投射關(guān)系。
研究發(fā)現(xiàn),當(dāng)動物處于可引起其焦慮的環(huán)境下,DRN尾部及中上部的c-fos蛋白及色氨酸羥化酶表達(dá)增多;系統(tǒng)性應(yīng)用可產(chǎn)生焦慮癥狀的藥物(如腺苷受體拮抗劑咖啡因)也可導(dǎo)致DRN尾部及中上部5-HT能神經(jīng)元活動增加,而電刺激DRN尾部及中上部可產(chǎn)生抗焦慮作用[21]。對前庭性眩暈伴發(fā)焦慮患者給予選擇性血清素再吸收抑制劑(selective serotonin reuptake inhibitors, SSIR)氟西汀可改善患者的眩暈及焦慮癥狀[22]。這些解剖及功能上的研究提示,外周前庭受到刺激后可能通過前庭神經(jīng)核向DRN傳遞信息而引起其5-HT能神經(jīng)元放電活動增加,5-HT釋放增多而引起焦慮。
1.2藍(lán)斑核藍(lán)斑核(locus coeruleus, LC)是一個均質(zhì)性核團(tuán),90%的神經(jīng)元為去甲腎上腺素能神經(jīng)元,為腦內(nèi)去甲腎上腺素的主要來源。已有研究[23]應(yīng)用化學(xué)遺傳技術(shù)證實(shí)前庭神經(jīng)核及LC之間具有雙向神經(jīng)纖維投射。LC向前庭神經(jīng)核的投射主要分布在前庭內(nèi)、外側(cè)核及前庭上核,而前庭神經(jīng)核主要投射于LC尾部[24]。
有研究[25-26]通過大鼠冷熱水試驗(yàn)觀察到大鼠前庭受刺激后LC放電活動受抑制。Lai等[27]利用垂直軸旋轉(zhuǎn)的方法刺激大鼠橢圓囊,隨后觀察與前庭神經(jīng)核有關(guān)聯(lián)的各個核團(tuán)fos蛋白的表達(dá)密度,發(fā)現(xiàn)大鼠前庭受到刺激后LC與對照組相比fos蛋白表達(dá)增加。Baizer等[28]刺激貓及松鼠猴的前庭器官得到相似結(jié)果。McCall等[29]應(yīng)用光遺傳技術(shù)激活小鼠LC去甲腎上腺素能神經(jīng)元后,行為學(xué)檢測發(fā)現(xiàn)小鼠焦慮水平上升,而激活來自杏仁核中投射到LC兼具有分泌促腎上腺皮質(zhì)激素釋放激素(corticotropin releasing hormone, CRH)功能的神經(jīng)元后LC放電活動增加,小鼠出現(xiàn)焦慮樣行為。這些研究提示LC與前庭神經(jīng)核存在功能上的聯(lián)系,前庭疾病導(dǎo)致的外周性眩暈可能通過前庭神經(jīng)核傳遞信息直接影響LC放電或作為一種應(yīng)激源促使機(jī)體CRH分泌增加,間接影響LC放電,從而導(dǎo)致焦慮樣行為的產(chǎn)生。
1.3海馬海馬(hippocampus)作為大腦邊緣系統(tǒng)的一部分,是中樞情緒處理的核心。目前關(guān)于海馬是否與前庭神經(jīng)核有直接投射關(guān)系尚無報道。大鼠實(shí)驗(yàn)證實(shí)腹側(cè)海馬-內(nèi)側(cè)前額葉通路介導(dǎo)焦慮的產(chǎn)生[30]。Zhao等[31]在研究中發(fā)現(xiàn)海馬JNK信號通路在中藥逍遙散改善大鼠焦慮癥狀中起介導(dǎo)作用。另有研究報道電刺激大鼠前庭可抑制海馬細(xì)胞增殖及神經(jīng)再生;雙側(cè)前庭受損后,海馬谷氨酸能神經(jīng)元細(xì)胞受體亞型表達(dá)發(fā)生變化[32-33]。海馬是否參與外周性眩暈與焦慮共病的發(fā)生尚缺乏明確證據(jù),但根據(jù)現(xiàn)有研究,我們推斷前庭病變可能通過干擾海馬神經(jīng)元,尤其是谷氨酸能神經(jīng)元的正?;顒佣鴮?dǎo)致情緒障礙。
1.4終紋床核終紋床核(bed nucleus of stria terminalis, BST)被認(rèn)為是杏仁核周邊區(qū)的重要組成部分,它在應(yīng)激反應(yīng)發(fā)生時信息的整合、傳遞過程中起重要作用。但是Ni等[34]應(yīng)用熒光金逆行示蹤法對樹鼩BST進(jìn)行全腦投射分析發(fā)現(xiàn),BST與前庭神經(jīng)核之間并沒有直接投射關(guān)系。Luyck等[35]研究發(fā)現(xiàn),條件反射焦慮大鼠模型BST受到電刺激后,曠場實(shí)驗(yàn)示中央?yún)^(qū)域活動時間增加,焦慮水平下降;與損毀BST效果類似。BST是近年來焦慮研究的熱點(diǎn)核團(tuán),上述解剖學(xué)研究顯示樹鼩BST與前庭核沒有結(jié)構(gòu)上的聯(lián)系,這可能存在種屬上的差異,期待未來有更多的大、小鼠神經(jīng)解剖學(xué)研究來明確BST與前庭神經(jīng)核之間的結(jié)構(gòu)聯(lián)系。BST與前庭神經(jīng)核之間的功能聯(lián)系也不明確,這給我們提供了新的研究方向。
外周性眩暈患者可發(fā)生多種情緒障礙及認(rèn)知功能損害,目前臨床上常采用調(diào)查問卷的形式來了解情緒障礙的分布特征。Eckhardt-Henn等[36]利用結(jié)構(gòu)化訪談(structured interviews)、癥狀自評量表(SCL90R)、焦慮狀態(tài)/特性詢問表(state-trait anxiety inventory)對189例外周性眩暈患者進(jìn)行調(diào)查發(fā)現(xiàn),16.8%的患者并發(fā)情緒障礙,常見的有焦慮、抑郁、體感形式障礙,其中又以焦慮最多見。Zhai等[5]利用醫(yī)院焦慮抑郁量表(hospital anxiety and depression scale)、焦慮自評量表(self-rating anxiety scale)、抑郁自評量表(self-rating depression scale)、癥狀自評量表(SCL90R)對26例難治性外周性眩暈患者(其中梅尼埃病24例、遲發(fā)型膜迷路積水2例)分別進(jìn)行治療前、后問卷調(diào)查,結(jié)果顯示外周性眩暈患者焦慮、抑郁水平較正常人高,而治療后焦慮、抑郁水平較之前下降;其中梅尼埃病A、B級的患者經(jīng)過治療后焦慮、抑郁癥狀改善更顯著,提示盡早干預(yù),眩暈癥狀療效更佳。Balaban等[37]采用眩暈障礙量表(dizziness handicap inventory, DHI)、貝克抑郁量表(Beck depression inventory, BDI)、Spielberger焦慮狀態(tài)/特性詢問表(Spielberger state-trait anxiety inventory, STAI)對544例眩暈患者進(jìn)行調(diào)查顯示,20%的眩暈患者同時患有情緒障礙。上述研究提示,長時間眩暈患者應(yīng)排除焦慮癥的可能,若同時合并焦慮應(yīng)在治療眩暈的同時對情緒障礙進(jìn)行干預(yù)。
1996年Vitte等[38]對10例健康受試者進(jìn)行單側(cè)冷熱水試驗(yàn),結(jié)束后30 s內(nèi)立即使用血氧水平依賴(blood oxygenation level dependent, BOLD)功能磁共振成像技術(shù)行顱腦掃描,結(jié)果顯示與冷熱水試驗(yàn)同側(cè)的海馬活動增強(qiáng),并且這種現(xiàn)象可重復(fù)。Vita等[39]通過Meta分析認(rèn)為精神疾病患者海馬體積通常較正常人小。2012年Seo等[40]對20例精神分裂癥患者及其健康親屬行顱腦磁共振掃描發(fā)現(xiàn),左側(cè)海馬體積較小者,情緒應(yīng)激反應(yīng)更加強(qiáng)烈。Seo等[41]應(yīng)用顱腦磁共振對38例梅尼埃病確診患者進(jìn)行檢查并與正常人的顱腦影像對比發(fā)現(xiàn),梅尼埃病患者雙側(cè)海馬體積較正常人顯著減小,尤其是左側(cè)海馬體積縮小與聽力下降、受累側(cè)前庭功能損傷程度密切相關(guān),這類患者也易患情緒障礙。因此海馬與前庭核之間存在功能上的聯(lián)系,且在外周性眩暈并發(fā)焦慮的發(fā)病過程中起一定的作用。結(jié)合既往研究可知,海馬參與外周性眩暈與焦慮共病的機(jī)制可能是當(dāng)發(fā)生前庭疾患時,傳入海馬的前庭信息減少,從而抑制海馬細(xì)胞增殖,隨后海馬體積縮小,功能發(fā)生變化,從而產(chǎn)生焦慮等情緒障礙。
目前的基礎(chǔ)研究尚不能明確外周性眩暈與焦慮共病的發(fā)病機(jī)制,有許多問題亟待解決。前庭損傷是否通過已知的與焦慮相關(guān)的神經(jīng)核團(tuán)介導(dǎo)而導(dǎo)致動物焦慮水平上升,這些核團(tuán)之間的聯(lián)系,發(fā)揮作用的主次,通過什么遞質(zhì)發(fā)揮作用,核團(tuán)通過哪些信號通路參與前庭損傷與焦慮的共病都給我們提供了新的研究思路。隨著光遺傳技術(shù)及不同轉(zhuǎn)基因動物等的開發(fā),精確干預(yù)目標(biāo)核團(tuán),從而探索核團(tuán)之間聯(lián)系成為可能。隨著核團(tuán)之間關(guān)系的揭示,有望從中樞層面干預(yù),從而阻斷眩暈、焦慮之間的惡性循環(huán)。
[ 1 ]Bigelow RT, Semenov YR, du Lac S, et al. Vestibular vertigo and comorbid cognitive and psychiatric impairment: the 2008 National Health Interview Survey[J]. J Neurol Neurosurg Psychiatry, 2016,87(4):367-372.
[ 2 ]Lahmann C, Henningsen P, Brandt T, et al. Psychiatric comorbidity and psychosocial impairment among patients with vertigo and dizziness[J]. J Neurol Neurosurg Psychiatry, 2015,86(3):302-308.
[ 3 ]Chen ZJ, Chang CH, Hu LY, et al. Increased risk of benign paroxysmal positional vertigo in patients with anxiety disorders: a nationwide population-based retrospective cohort study[J]. BMC Psychiarty, 2016,16:238.
[ 4 ]Hahn JJ, Ja WK, Chong SK, et al. Anxiolytics reduce residual dizziness after successful canalith repositioning maneuvers in benign paroxysmal positional vertigo[J]. Acta Otolaryngologica, 2012,132(3):277-284.
[ 5 ]Zhai F, Wang J, Zhang Y, et al. Quantitative analysis of psychiatric disorders in intractable peripheral vertiginous patients: a prospective study[J]. Otol Neurotol 2016,37(5):539-544.
[ 6 ]Roth BL. DREADDs for neuroscientists[J]. Neuron, 2016,89(4):683-694.
[ 7 ]Shirai F,Hayashi-Takagi A. Optogenetics: Applications in psychiatric research[J]. Psychiatry Clin Neurosci, 2017,71(6):363-372
[ 8 ]Seibenhener ML, Wooten MC. Use of the Open Field Maze to measure locomotor and anxiety-like behavior in mice[J]. Vis Exp, 2015 (96):e52434.
[ 9 ]Kulesskaya N, Voikar V. Assessment of mouse anxiety-like behavior in the light-dark box and open-field arena: role of equipment and procedure[J]. Physiol Behav, 2014,133:30-38.
[10]Costa AA, Morato S, Roque AC, et al. A computational model for exploratory activity of rats with different anxiety levels in elevated plus-maze[J]. J Neurosci Methods, 2014,236:44-50.
[11]Shiotsuki H, Yoshimi K, Shimo Y, et al. A rotarod test for evaluation of motor skill learning[J]. J Neurosci Methods, 2010,189(2):180-185.
[12]Luong TN, Carlisle HJ, Southwell A, et al. Assessment of motor balance and coordination in mice using the balance beam[J]. Vis Exp, 2011, 49:2376.
[13]Eckhardt-Henn A, Breuer P, Thomalske C, et al. Anxiety disorders and other psychiatric subgroups in patients complaining of dizziness[J]. J Anxiety Disord, 2003,17(4):369-388.
[14]Kutay O, Akdal G, Keskinoglu P, et al. Vestibular migraine patients are more anxious than migraine patients without vestibular symptoms[J]. Neurol, 2017,264(1148):1432-1459.
[15]Kim SK, Kim YB, Park IS, et al. Clinical analysis of dizzy patients with high levels of depression and anxiety[J]. J Audiol Otol, 2016,20(3):174-178.
[16]Balaban CD, Thayer JF. Neurological bases for balance-anxiety links[J]. J Anxiety Disord, 2001,15(1/2):53-79.
[17]Gurvich C, Maller JJ, Lithgow B, et al. Vestibular insights into cognition and psychiatry[J]. Brain Res, 2013,1537:244-259.
[18]Halberstadt AL, Balaban CD. Anterograde tracing of projections from the dorsal raphe nucleus to the vestibular nuclei[J]. Neuroscience, 2006,143(2):641-654.
[19]Halberstadt AL, Balaban CD. Selective anterograde tracing of the individual serotonergic and nonserotonergic components of the dorsal raphe nucleus projection to the vestibular nuclei[J]. Neuroscience, 2007,147(1):207-223.
[20]Cuccurazzu B, Halberstadt AL. Projections from the vestibular nuclei and nucleus prepositus hypoglossi to dorsal raphe nucleus in rats[J]. Neurosci Lett, 2008,439(1):70-74.
[21]Wscieklica T, Silva MSCF, Lemes JA, et al. Deep brain stimulation of the dorsal raphe inhibits avoidance and escape reactions and activates forebrain regions related to the modulation of anxiety/panic[J]. Behav Brain Res, 2017,321:193-200.
[22]Simon NM, Parker SW, Wernick-Robinson M, et al. Fluoxetine for vestibular dysfunction and anxiety: a prospective pilot study[J]. Psychosomatics, 2005,46(4):334-339.
[23]Schwarz LA, Miyamichi K, Gao XJ, et al. Viral-genetic tracing of the input-output organization of a central noradrenaline circuit[J]. Nature, 2015,524(7563):88-92.
[24]Schuerger RJ, Balaban CD. Organization of the coeruleo-vestibular pathway in rats, rabbits, and monkeys[J]. Brain Res Brain Res Rev, 1999,30(2):189-217.
[25]Nishiike S, Takeda N, Kubo T, et al. Neurons in rostral ventrolateral medulla mediate vestibular inhibition of locus coeruleus in rats[J]. Neuroscience, 1997,77(1):219-232.
[26]Nishiike S, Nakamura S, Arakawa S, et al. GABAergic inhibitory response of locus coeruleus neurons to caloric vestibular stimulation in rats[J]. Brain Res, 1996,712(1):84-94.
[27]Lai CH, Tse YC, Shum DK, et al. Fos expression in otolith-related brainstem neurons of postnatal rats following offvertical axis rotation[J]. Comp Neurol 2004,470(3):282-296.
[28]Baizer JS, Corwin WL, Baker JF. Otolith stimulation induces c-Fos expression in vestibular and precerebellar nuclei in cats and squirrel monkeys[J]. Brain Res, 2010,1351:64-73.
[29]McCall JG, Al-Hasani R, Siuda ER, et al. CRH engagement of the locus coeruleus noradrenergic system mediates stress-induced anxiety[J]. Neuron, 2015,87(3):605-620.
[30]Schoenfeld TJ, Kloth AD, Hsuch B, et al. Gap junctions in the ventral hippocampal-medial prefrontal pathway are involved in anxiety regulation[J]. J Neurosci, 2014,34:15679-15688.
[31]Zhao HB, Jiang YM, Li XJ, et al. Xiao Yao San improves the anxiety-like behaviors of rats induced by chronic immobilization stress: the involvement of the jnk signaling pathway in the hippocampus[J]. Biol Pharm Bull, 2017,40(2):187-194.
[32]Smith PF, Zheng Y. Principal component analysis suggests subtle changes in glutamate receptor subunit expression in the rat hippocampus following bilateral vestibular deafferentation[J]. Neurosci Lett, 2013,548:265-268.
[33]Zheng Y, Geddes L, Sato G, et al. Galvanic vestibular stimulation impairs cell proliferation and neurogenesis in the rat hippocampus but not spatial memory[J]. Hippocampus, 2014,24(5):541-552.
[34]Ni RJ, Luo PH, Shu YM, et al. Whole-brain mapping of afferent projections to the bed nucleus of the stria terminalis in tree shrews[J]. Neuroscience, 2016,333:162-180.
[35]Luyck K, Tambuyzer T, Deprez M, et al. Electrical stimulation of the bed nucleus of the stria terminalis reduces anxiety in a rat model[J]. Transl Psychiatry, 2017,7(2):e1033.
[36]Eckhardt-Henn A, Best C, Bense S, et al. Psychiatric comorbidity in different organic vertigo syndromes[J]. Neurol, 2008,255(3):420-428.
[37]Balaban CD, Jacob RG, Furman JM. Neurologic bases for comorbidity of balance disorders, anxiety disorders and migraine: neurotherapeutic implications[J]. Expert Rev Neurother, 2011,11(3):379-394.
[38]Vitte E, Derosier C, Caritu Y, et al. Activation of the hippocampal formation by vestibular stimulation: a functional magnetic resonance imaging study[J]. Exp Brain Res, 1996,112(3):523-526.
[39]Vita A, de Peri L, Silenzi C, et al. Brain morphology in first-episode schizophrenia: a meta-analysis of quantitative magnetic resonance imaging studies[J]. Schizophr Res, 2006,82(1):75-88.
[40]Collip D, Habets P, Marcelis M, et al. Hippocampal volume as marker of daily life stress sensitivity in psychosis[J]. Psychol Med, 2013,43(7):1377-1387.
[41]Seo YJ, Kim J, Kim SH. The change of hippocampal volume and its relevance with inner ear function in Meniere's disease patients[J]. Auris Nasus Larynx, 2016,43(6):620-625.