鄧爽 彭昊
[摘要] 糖皮質(zhì)激素應(yīng)用是股骨頭壞死最常見的非創(chuàng)傷性原因,研究認(rèn)為其發(fā)生機(jī)制包含直接和間接兩重作用。直接作用包括:成骨細(xì)胞與破骨細(xì)胞前體生成抑制,成骨細(xì)胞與骨細(xì)胞凋亡,破骨細(xì)胞壽命延長(zhǎng),內(nèi)皮細(xì)胞凋亡;間接作用包括:促進(jìn)凝血活性,干擾血管再生,影響骨修復(fù),調(diào)節(jié)局部血管收縮,誘導(dǎo)骨髓脂肪生成,增高髓內(nèi)壓。多種途徑的激活使股骨頭血供減少,從而導(dǎo)致壞死發(fā)生。此外,激素性股骨頭壞死的發(fā)生還存在個(gè)體敏感性差異及其他的潛在機(jī)制,其患病模型為多重命中理論,風(fēng)險(xiǎn)因素越多則患病概率越大。應(yīng)更深入地認(rèn)識(shí)糖皮質(zhì)激素的詳細(xì)作用機(jī)制,從而為臨床治療提供更好的選擇。
[關(guān)鍵詞] 糖皮質(zhì)激素;股骨頭壞死;成骨細(xì)胞;破骨細(xì)胞;骨細(xì)胞;內(nèi)皮細(xì)胞;凋亡
[中圖分類號(hào)] R684 [文獻(xiàn)標(biāo)識(shí)碼] A [文章編號(hào)] 1673-7210(2017)12(a)-0029-04
[Abstract] The use of glucocorticoids is the most common non-traumatic cause of osteonecrosis of the femoral head. Studies have shown that glucocorticoids can act directly or indirectly. Direct effects include inhibition of osteoblast and osteoclast precursor formation, apoptosis of osteoblasts and osteocytes, prolongation of osteoclast lifespan and apoptosis of endothelial cells. Indirect effects include increasing the risk of clot formation, inhibiting angiogenesis, interfering with bone repair, causing local vessel contraction, promoting lipogenesis in the bone marrow and increasing intramedullary pressure. Multiple pathway activation leads to the decrease of blood supply of the femoral head, resulting in osteonecrosis. Besides, there are individual differences in steroid sensitivity and other underlying mechanisms. The disease model is a multiple hit theory. The more risk factors, the greater probability of disease. More work is needed to better discover the pathomechanisms of glucocorticoids in osteonecrosis, so as to provide better choice for clinical treatment.
[Key words] Glucocorticoid; Osteonecrosis of the femoral head; Osteoblast; Osteoclast; Osteocytes; Endothelial cell; Ap?鄄optosis
糖皮質(zhì)激素的應(yīng)用是股骨頭壞死最常見的非創(chuàng)傷因素[1]。Felson等[2]發(fā)現(xiàn)糖皮質(zhì)激素的每日平均用量每增加10 mg,股骨頭壞死的發(fā)生率就增加4.6倍。股骨頭壞死給患者日常行動(dòng)帶來諸多不便,嚴(yán)重影響患者生活質(zhì)量,給社會(huì)和患者家庭帶來沉重的經(jīng)濟(jì)負(fù)擔(dān)[3]。因此,探索股骨頭壞死與糖皮質(zhì)激素之間的關(guān)系意義重大。最新研究表明,不單是骨細(xì)胞在疾病進(jìn)程中發(fā)揮作用,內(nèi)皮細(xì)胞可能在股骨頭壞死的發(fā)生發(fā)展中起著同樣或更為重要的作用[4]。糖皮質(zhì)激素對(duì)股骨頭壞死的作用機(jī)制已有多種假說,其對(duì)骨及其他細(xì)胞的直接作用比間接作用更為重要。本文對(duì)糖皮質(zhì)激素在股骨頭壞死發(fā)生發(fā)展中的作用機(jī)制進(jìn)行綜述,為基礎(chǔ)研究及臨床工作提供參考。
1 對(duì)骨的影響
研究發(fā)現(xiàn),經(jīng)長(zhǎng)期糖皮質(zhì)激素治療后,股骨皮質(zhì)中大部分成骨細(xì)胞和骨細(xì)胞開始凋亡[5]。Calder等[6]在糖皮質(zhì)激素和酒精導(dǎo)致的股骨頭壞死患者中發(fā)現(xiàn)了同樣的病理變化。Weinstein等[7]發(fā)現(xiàn),糖皮質(zhì)激素過量導(dǎo)致的骨損失是由于糖皮質(zhì)激素直接作用于破骨細(xì)胞,延長(zhǎng)了它的壽命。破骨細(xì)胞的存活和分化受基質(zhì)細(xì)胞和成骨細(xì)胞產(chǎn)生的因子調(diào)控,關(guān)鍵因子是NFκB受體激動(dòng)劑(recepter activator of NFκB,RANK)配體,它是腫瘤壞死因子(tumor necrosis factor,TNF)配體家族的重要成員。在糖皮質(zhì)激素處理的成骨細(xì)胞中,TNF-α、RANK和骨保護(hù)素的水平上升,使得破骨細(xì)胞分化被抑制[5]。
過量的糖皮質(zhì)激素會(huì)影響骨細(xì)胞的產(chǎn)生速率。Weinstein等[8]用潑尼松龍?zhí)幚?月齡小鼠27 d,發(fā)現(xiàn)骨密度、血清骨鈣素有所下降,并且骨小梁面積降低,同時(shí)伴有骨生成減少,成骨細(xì)胞和破骨細(xì)胞損傷。因此,糖皮質(zhì)激素導(dǎo)致的骨疾病在某種程度上是因?yàn)楣撬柚谐晒羌?xì)胞和破骨細(xì)胞生成被抑制,使得成骨細(xì)胞和骨細(xì)胞凋亡增加,破骨細(xì)胞壽命延長(zhǎng)。糖皮質(zhì)激素導(dǎo)致的骨細(xì)胞凋亡破壞了骨細(xì)胞網(wǎng)絡(luò)的機(jī)械感知功能,而骨細(xì)胞網(wǎng)絡(luò)具有重要的修復(fù)作用,這勢(shì)必導(dǎo)致股骨頭塌陷,成骨細(xì)胞凋亡也會(huì)引起骨質(zhì)疏松,又加重塌陷骨折[9]。endprint
2 對(duì)內(nèi)皮細(xì)胞的影響
糖皮質(zhì)激素對(duì)連接血竇和血管內(nèi)層的內(nèi)皮細(xì)胞有重要影響。實(shí)驗(yàn)發(fā)現(xiàn),糖皮質(zhì)激素誘導(dǎo)的外周血壓升高與功能性微血管和毛細(xì)血管的數(shù)量降低有關(guān)[10]。糖皮質(zhì)激素能直接損害內(nèi)皮細(xì)胞,加重高凝狀態(tài)[11]。內(nèi)皮細(xì)胞的損傷可能導(dǎo)致動(dòng)脈閉塞部位的凝血異常和血栓形成,進(jìn)而導(dǎo)致股骨頭壞死[4]。
6-酮-前列腺素F1α(6-ketone prostaglandin F1α,6-keto-PGF1α)是前列腺素I2(prostaglandin I2,PGI2)的代謝產(chǎn)物,PGI2主要由血管內(nèi)皮細(xì)胞產(chǎn)生,它會(huì)極大地?cái)U(kuò)張血管,阻止血小板聚集。在內(nèi)毒素和糖皮質(zhì)激素誘導(dǎo)的股骨頭壞死兔模型中,6-keto-PGF1α的含量顯著降低,這表明糖皮質(zhì)激素介導(dǎo)了股骨頭壞死模型中的內(nèi)皮細(xì)胞損傷[12]。
3 其他作用
3.1 對(duì)凝血途徑的影響
低劑量的糖皮質(zhì)激素通過抑制血小板聚集來抑制動(dòng)脈血栓形成,但在較高劑量時(shí),這些作用被纖溶抑制抵消[13-17]。后者被證明是由于組織型纖溶酶原激活物(tissue plasminogen activator,t-PA)的降低以及血漿中纖溶酶原激活物抑制劑-1(plasminogen activator inhibitor-1,PAI-1)抗原水平的升高[13-14,18]。另外,Yamamoto等[19]推測(cè),炎癥條件(如地塞米松和TNF-α環(huán)境)可通過作用于血管內(nèi)皮細(xì)胞發(fā)揮促凝作用。
3.2 對(duì)血管再生和骨修復(fù)的影響
股骨頭壞死后,新生血管進(jìn)入壞死區(qū)域,啟動(dòng)股骨頭修復(fù)。血管內(nèi)皮生長(zhǎng)因子(vascular endothelial growth factor,VEGF)等重要因子直接作用于內(nèi)皮細(xì)胞進(jìn)行血管修復(fù)[20]。Yang等[20-21]利用VEGF基因轉(zhuǎn)染增強(qiáng)了兔股骨頭壞死模型中的骨修復(fù)。在骨髓來源的多能細(xì)胞系中,地塞米松能有效降低VEGF合成[22]。VEGF失調(diào)進(jìn)而影響骨修復(fù)過程,這可能是糖皮質(zhì)激素誘導(dǎo)股骨頭壞死的機(jī)制之一。
3.3 對(duì)血管活性物質(zhì)的影響
內(nèi)皮細(xì)胞通過釋放血管活性物質(zhì)調(diào)節(jié)血管平滑肌細(xì)胞的收縮性,進(jìn)而調(diào)節(jié)血流量。內(nèi)皮型一氧化氮(endothelial nitric oxide,eNO)是重要的血管舒張因子,糖皮質(zhì)激素過量會(huì)導(dǎo)致eNO失活,并通過降低內(nèi)皮型一氧化氮合酶(endothelial nitric oxide synthase,eNOS)的表達(dá)抑制eNO生成,導(dǎo)致血管阻力增加。eNO具有擴(kuò)張血管、抗血小板凝集及抑制單核細(xì)胞與內(nèi)皮細(xì)胞黏附等作用[23]。糖皮質(zhì)激素介導(dǎo)內(nèi)皮功能失調(diào),進(jìn)而導(dǎo)致外周血液循環(huán)障礙[24]。Drescher等[25]發(fā)現(xiàn),在長(zhǎng)期糖皮質(zhì)激素刺激下,離體骺外側(cè)動(dòng)脈(股骨頭主要血供)對(duì)內(nèi)皮素-1的反應(yīng)性增強(qiáng)。內(nèi)皮素-1可通過增加血管平滑肌細(xì)胞中的鈣離子濃度引起血管收縮。前列環(huán)素是另一種強(qiáng)效血管舒張劑,糖皮質(zhì)激素可使其生成受到抑制[26]。因此,糖皮質(zhì)激素能通過調(diào)節(jié)血管活性物質(zhì)及血管的反應(yīng)性,引起股骨頭內(nèi)血管收縮性,導(dǎo)致股骨頭血供不足。
3.4 對(duì)脂肪代謝的影響
糖皮質(zhì)激素已被證明可造成嚴(yán)重的髓內(nèi)脂肪浸潤(rùn)[27]。髓內(nèi)脂肪填塞造成脂肪細(xì)胞聚集在血管竇表面,使股骨頭內(nèi)的有效血管供血面積減少,引起繼發(fā)壞死[28]。Yin等[29]發(fā)現(xiàn),地塞米松可以直接誘導(dǎo)骨髓間質(zhì)細(xì)胞向脂肪細(xì)胞分化,同時(shí)抑制成骨分化。Jones等[30]發(fā)現(xiàn)在股骨頭壞死中,骨髓脂肪細(xì)胞損傷后會(huì)釋放液態(tài)脂肪、凝血活酶及其他血管活性物質(zhì),進(jìn)而損傷血管內(nèi)皮細(xì)胞。以上實(shí)驗(yàn)均表明糖皮質(zhì)激素可能通過影響髓內(nèi)脂肪代謝使股骨頭血供減少。
4 危險(xiǎn)因素與潛在疾病
糖皮質(zhì)激素能加重內(nèi)源性皮質(zhì)醇增多癥(Cushing綜合征)的影響,此疾病已被證明可以增加股骨頭壞死的患病風(fēng)險(xiǎn)[31],但外源性糖皮質(zhì)激素對(duì)股骨頭壞死發(fā)展的影響更大[32],這可能是由于外源性糖皮質(zhì)激素與受體的結(jié)合力更高。在接受特定劑量糖皮質(zhì)激素治療的患者中,只有部分患者發(fā)生股骨頭壞死,這表明對(duì)糖皮質(zhì)激素的敏感性存在個(gè)體差異。此外,在糖皮質(zhì)激素誘導(dǎo)股骨頭壞死患者中,一些研究發(fā)現(xiàn)存在凝血異常發(fā)病率相比對(duì)照組有所增加的現(xiàn)象[33-36],也有另一些研究發(fā)現(xiàn)相當(dāng)比例的患者不盡如此[37-38]。并非所有應(yīng)用糖皮質(zhì)激素治療且有血栓形成傾向的患者都發(fā)生了股骨頭壞死[9],甚至有研究報(bào)道在糖皮質(zhì)激素治療或替代治療方案應(yīng)用前,患者已經(jīng)發(fā)生了股骨頭壞死[39-42]。很難判斷股骨頭壞死發(fā)生在有潛在風(fēng)險(xiǎn)因素的人群是否實(shí)際上是由于潛在風(fēng)險(xiǎn)因素本身造成,而不是應(yīng)用糖皮質(zhì)激素引起。
5 結(jié)論
股骨頭壞死的發(fā)病機(jī)制是多因素的,教科書上的模型是一個(gè)“多重命中理論”,大量風(fēng)險(xiǎn)因素會(huì)增加股骨頭壞死風(fēng)險(xiǎn)[43],因此預(yù)防其發(fā)展的策略是減少潛在風(fēng)險(xiǎn)因素。包括使用抗血栓藥物改善血管內(nèi)皮細(xì)胞的功能,通過醫(yī)療干預(yù)促進(jìn)血管生成,降脂藥和抗凋亡藥物的應(yīng)用也可能對(duì)治療有益。更多的研究發(fā)現(xiàn)將有助于揭示糖皮質(zhì)激素在股骨頭壞死的作用機(jī)制,在未來將更好地服務(wù)于股骨頭壞死的藥物研制和治療管理。
[參考文獻(xiàn)]
[1] Assouline-Dayan Y,Chang C,Greenspan A,et al. Pathog?鄄enesis and natural history of osteonecrosis [J]. Semin Art?鄄hritis Rheum,2002,32(2):94-124.
[2] Felson DT,Anderson JJ. Across-study evaluation of association between steroid dose and bolus steroids and avascular necrosis of bone [J]. Lancet,1987,1(8538):902-906.endprint
[3] Zadegan F,Raould A,Bizot P,et al. Osteonecrosis after allogeneic bone marrow transplantation [J]. Clin Orthop Relat Res,2008,466(2):287-293.
[4] Kerachian MA,Harvey EJ,Cournoyer D,et al. Avascular necrosis of the femoral head:vascular hypotheses [J]. Endothelium,2006,13(4):237-244.
[5] Bejar J,Peled E,Boss JH,et al. Vasculature deprivation-induced osteonecrosis of the rat femoral head as a model for therapeutic trials [J]. Theor Biol Med Model,2005,2:24.
[6] Calder JD,Buttery L,Revell PA,et al. Apoptosis——a significant cause of bone cell death in osteonecrosis of the femoral head [J]. J Bone Joint Surg Br,2004,86(8):1209-1213.
[7] Weinstein RS,Chen JR,Powers CC,et al. Promotion of osteoclast survival and antagonism of bisphosphonate-induced osteoclast apoptosis by glucocorticoids [J]. J Clin Invest,2002,109(8):1041-1048.
[8] Weinstein RS,Jilka RL,Par?覱tt AM,et al. Inhibition of osteoblastogenesis and promotion of apoptosis of osteoblasts and osteocytes by glucocorticoids,Potential mechanisms of their deleterious effects on bone [J]. J Clin Invest,1998, 102(2):274-282.
[9] Zalavras C,Shah S,Birnbaum MJ,et al. Role of apoptosis in glucocorticoid-induced osteoporosis and osteonecrosis [J]. Crit Rev Eukaryot Gene Expr,2003,13(2-4):221-235.
[10] Harper RN,Moore MA,Marr MC,et al. Arteriolar rarefaction in the conjunctiva of human essential hypertensives [J]. Microvasc Res,1978,16(3):369-372.
[11] Boss JH,Misselevich I. Osteonecrosis of the femoral head of laboratory animals:the lessons learned from a comparative study of osteonecrosis in man and experimental animals [J]. Vet Pathol,2003,40(4):345-354.
[12] He W,Xu C,F(xiàn)anY,et al. Effects of the Chinese drugs for activating blood circulation on plasma TXB2 and 6-keto-PGF1alpha contents in rabbits with glucocorticoid-induced femoral head necrosis [J]. J Tradit Chin Med,2004, 24(3):233-237.
[13] Gray E,Thomas S,Mistry Y,et al. Inhibition of tissue factor and cytokine release [J]. Haemostasis,1996,26(Suppl 1):92-95.
[14] Minneci PC,Deans KJ,Banks SM,et al. Meta-analysis:the effect of steroids on survival and shock during sepsis depends on the dose [J]. Ann Intern Med,2004,141(1):47-56.
[15] Van Giezen JJ,Jansen JW. Correlation of in vitro and in vivo decreased fibrinolytic activity caused by dexamethasone [J]. Ann N Y Acad Sci,1992,667:199-201.
[16] Van Giezen JJ,Brakkee JG,Dreteler GH,et al. Dexamethasone affects platelet aggregation and fibrinolytic activity in rats at different doses which is reflected by their effect on arterial thrombosis [J]. Blood Coagul Fibrinolysis,1994,5(2):249-255.endprint
[17] Zangari M,Anaissie E,Barlogie B,et al. Increased risk of deep-vein thrombosis in patients with multiple myeloma receiving thalidomide and chemotherapy [J]. Blood,2001,98(5):1614-1615.
[18] Smith DW. Is avascular necrosis of the femoral head the result of inhibition of angiogenesis?[J]. Med Hypotheses,1997,49(6):497-500.
[19] Yamamoto Y,Ishizu A,Ikeda H,et al. Dexamethasone increased plasminogen activator inhibitor-1 expression on human umbilical vein endothelial cells:an additive effect to tumor necrosis factor-alpha [J]. Pathobiology,2004,71(6):295-301.
[20] Yang C,Yang S,Du J,et al. Vascular endothelial growth factor gene transfection to enhance the repair of avascular necrosis of the femoral head of rabbit [J]. Chin Med J (Engl),2003,116(10):1544-1548.
[21] Yang C,Yang S,Du J,et al. Experimental study of vascular endothelial growth factor gene therapy for avascular necrosis of the femoral head [J]. J Huazhong Univ Sci Technolog Med Sci,2003,23(3):297-299,316.
[22] Li X,Jin L,Cui Q,et al. Steroid effects on osteogenesis through mesenchymal cell gene expression [J]. Osteoporos Int,2005,16(1):101-108.
[23] Wada M,Kumagai K,Murata M,et al. Warfarin reduces the incidence of osteonecrosis of the femoral head in spontaneously hypertensive rats [J]. J Orthop Sci,2004,9(6):585-590.
[24] Akaike M,Matsumoto T. Glucocorticoid-induced reduction in NO bioavailability and vascular endothelial dysfunction [J]. Clin Calcium,2007,17(6):864-870.
[25] Drescher W,Li H,Lundgaard A,et al. Endothelin-1-induced femoral head epiphyseal artery constriction is enhanced by long-term corticosteroid treatment [J]. J Bone Joint Surg Am,2006,88(Suppl 3):173-179.
[26] Drescher W,Varoga D,Liebs TR,et al. Femoral artery constriction by norepinephrine is enhanced by methylprednisolone in a rat model [J]. J Bone Joint Surg Am,2006, 88(Suppl 3):162-166.
[27] Miyanishi K,Yamamoto T,Irisa T,et al. Bone marrow fat cell enlargement and a rise in intraosseous pressure in steroid-treated rabbits with osteonecrosis [J]. Bone,2002, 30(1):185-190.
[28] Zhou Q,Li Q,Yang L,et al. Changes of blood vessels in glucocorticoid-induced avascular necrosis of femoral head in rabbits [J]. Zhonghua Wai Ke Za Zhi,2000,38(3):212-215.
[29] Yin L,Li YB,Wang YS. Dexamethasone-induced adipogenesis in primary marrow stromal cell cultures:mechanism of steroid-induced osteonecrosis [J]. Chin Med J (Engl),2006,119(7):581-588.endprint
[30] Jones JP,Ramirez S,Doty SB. The pathophysiologic role of fat in dysbaric osteonecrosis [J]. Clin Orthop Relat Res,1993(296):256-264.
[31] Korompilias AV,Gilkeson GS,Seaber AV,et al. Hemorrhage and thrombus formation in early experimental osteonecrosis [J]. Clin Orthop Relat Res,2001(386):11-18.
[32] Koch CA,Tsigos C,Patronas NJ,et al. Cushing's disease presenting with avascular necrosis of the hip:an orthopedic emergency [J]. J Clin Endocrinol Metab,1999,84(9):3010-3012.
[33] Posan E,Harsfalvi J,Szepesi K,et al. Increased platelet activation and decreased fibrinolysis in the pathogenesis of aseptic necrosis of the femoral head [J]. Platelets,1998, 9(3-4):233-235.
[34] Ferrari P,Schroeder V,Anderson S,et al. Association of plasminogen activator inhibitor-1 genotype with avascular osteonecrosis in steroid-treated renal allograft recipients [J]. Transplantation,2002,74(8):1147-1152.
[35] Jones JP. Coagulopathies and osteonecrosis [J]. Acta Orthop Belg,1999,65(Suppl 1):5-8.
[36] Jones LC,Mont MA,Le TB,et al. Procoagulants and osteonecrosis [J]. J Rheumatol,2003,30(4):783-791.
[37] Asano T,Takahashi KA,F(xiàn)ujiokM,et al. Relationship between postrenal transplant osteonecrosis of the femoral head and gene polymorphisms related to the coagulation and fibrinolytic systems in Japanese subjects [J]. Transplantation,2004,77(2):220-225.
[38] Seguin C,Kassis J,Busque L,et al. Non-traumatic necrosis of bone(osteonecrosis)is associated with endothelial cell activation but not thrombophilia [J]. Rheumatology (Oxford),2008,47(8):1151-1155.
[39] Khan A,Illiffe G,Houston DS,et al. Osteonecrosis in a patient with Crohn's disease unrelated to corticosteroid use [J]. Can J Gastroenterol,2001,15(11):765-768.
[40] Freeman HJ,Kwan WC. Brief report:non-corticosteroid-associated osteonecrosis of the femoral heads in two patients with inflammatory bowel disease [J]. N Engl J Med,1993,329(18):1314-1316.
[41] Koller E,Mann M,Malozowski S,et al. Aseptic necrosis in HIV seropositive patients:a possible etiologic role for megestrol acetate [J]. AIDS Patient Care STDS,2000,14(8):405-410.
[42] Scribner AN,Troia-Cancio PV,Cox BA,et al. Osteonecrosis in HIV:a case-control study [J]. J Acquir Immune Defic Syndr,2000,25(1):19-25.
[43] Schulte CM,Beelen DW. Vascular osteonecrosis after allogeneic hematopoietic stem-cell transplantation:diagnosis and gender matter [J]. Transplantation,2004,78(7):1055-1063.
(收稿日期:2017-09-01 本文編輯:程 銘)endprint
中國(guó)醫(yī)藥導(dǎo)報(bào)2017年34期