許崇新,徐樊浩
(國網(wǎng)山東省電力公司煙臺供電公司,山東 煙臺 264001)
作為一種具有大規(guī)模應(yīng)用的清潔能源,風(fēng)能發(fā)電在電網(wǎng)滲透率日益增高。風(fēng)電機(jī)組作為風(fēng)能發(fā)電的核心設(shè)備,保證其安全穩(wěn)定運行顯得至關(guān)重要。而風(fēng)電機(jī)組運行環(huán)境相對惡劣,且安裝位置高,不便于檢修。為此,研究人員開展了一系列有關(guān)風(fēng)電機(jī)組的狀態(tài)監(jiān)測研究工作,盡早發(fā)現(xiàn)故障,避免事故擴(kuò)大[1]。風(fēng)電機(jī)組多個部位裝配有軸承,諸如主軸、齒輪箱等,軸承故障在風(fēng)電機(jī)組故障中所占比例很高[2]。
振動信號分析方法是軸承等機(jī)械設(shè)備狀態(tài)監(jiān)測與故障診斷的主要方法之一。目前,快速傅里葉變換FFT(Fast Fourier Transform)[3]、小波變換[4]、經(jīng)驗?zāi)B(tài)分解[5-6](Empirical Mode Decomposition,EMD)等方法常被用來分析軸承等機(jī)械設(shè)備的振動信號。但是這些方法存在一定的缺陷,諸如FFT只適合處理平穩(wěn)信號、小波變換中小波基的選取對結(jié)果影響較大、經(jīng)驗?zāi)B(tài)分解存在模態(tài)混疊等。為解決模態(tài)混疊問題,Huang等人提出的EEMD方法在需要分解的信號中引入白噪聲,不但可以抑制EMD方法中存在的模態(tài)混疊問題,而且可以將需要分解的信號與白噪聲當(dāng)作一個整體進(jìn)行EMD分解。因此,利用EEMD方法對測得的風(fēng)電機(jī)組軸承故障振動信號進(jìn)行自適應(yīng)分解,并選取能體現(xiàn)軸承故障特征的本征模函數(shù)(Intrinsic Mode Function,IMF),對于提取軸承故障振動信號特征具有重要價值[7]。此外,這些方法均是直接分析測得的變壓器振動混合信號,得到的信號特征成分比較復(fù)雜,不易于辨識具體的異常狀況。
基于參考信號的獨立分量分析方法(Constrained Independent Component Analysis,CICA) 是在獨立分量分析(Independent Component Analysis,ICA)的基礎(chǔ)上發(fā)展而來,近年來普遍應(yīng)用在生物醫(yī)療、圖像以及語音信號處理等問題上。其應(yīng)用先驗知識建立能夠表征目標(biāo)信號時間特性的參考信號,將其引入基于參考信號的獨立分量分析運算中,形成某種約束限制算法的收斂方向,從而可以從多異?;旌闲盘栔械玫侥繕?biāo)異常的特征信息。文獻(xiàn)[8]采用CICA方法從人臉圖像和功能磁共振數(shù)據(jù)中提取了有效特征信息;文獻(xiàn)[9]利用感興趣信號的周期特性,建立脈沖參考信號,從而采用CICA方法分離出軸承故障信號。但是在實際應(yīng)用中,有些時候軸承的先驗知識不容易確定,并不能建立較好的參考信號,從而限制了該方法的應(yīng)用。
為解決上述問題,提出基于EEMD和CICA的風(fēng)電機(jī)組軸承故障特征提取方法對風(fēng)電機(jī)組軸承故障振動信號進(jìn)行分析。根據(jù)EEMD方法分解信號的特點,并結(jié)合信號獨立性要求,建立參考信號。然后利用CICA方法提取軸承故障中包含的信號特征,并進(jìn)行包絡(luò)解調(diào)得到包絡(luò)譜。分析實測實驗數(shù)據(jù)表明,該方法不僅能夠?qū)崿F(xiàn)信號特征提取,而且可以實現(xiàn)故障與正常振動信號特征的分離。
風(fēng)電機(jī)組軸承故障振動信號EEMD方法具體步驟為:
1)初始化EMD次數(shù)N,選擇加入白噪聲的幅值系數(shù)k。
2)向測得的軸承故障振動信號x(t)中加入 N次均值為0,幅值系數(shù)為k的高斯白噪聲序列ni(t)(i=1,2,…,N),即
3)對得到的xi(t)分別進(jìn)行 EMD 分解,得到各個IMF分量和殘余項,即
式中:cij為第 i次引入高斯白噪聲信號后,對 xi(t)進(jìn)行分解得到的第j個IMF分量;rin為第i次加入高斯白噪聲后,對xi(t)進(jìn)行分解后的余項;n為分解層數(shù)。
4)將通過上述步驟得到的IMF分量進(jìn)行總體平均運算,抵消引入高斯白噪聲信號所帶來的影響,最終得到EEMD方法對應(yīng)的IMF分量為
式中:cj(t)為EEMD方法分解軸承故障振動信號后所得到的第j個IMF分量。
CICA算法的基本模型為[10]
目標(biāo)函數(shù):
約束條件:
式中:ρ為正常量;w為使目標(biāo)函數(shù)極大的估計系數(shù)矩陣;E{·}為期望值;z為輸入信號;y=wTz為輸出信號;r為參考信號;v為零均值、單位方差的高斯變量;G(·)為任意一個非二次方程;g(w)為相似性測度參數(shù);ξ為閾值參數(shù);ε(y,r)為源估計 y 和 r之間的廣義距離函數(shù);h(w)為獨立分量等式約束。根據(jù)高斯性的不同,G(·)可以取以下函數(shù):
式中:1≤a1≤2,a2≈1。 根據(jù) y和 r的差異程度的不同,可以選擇或者ε(y,r)=-(E{(yr)})。 ξ是門限,用于區(qū)分目標(biāo)信號與其他信號,其取值范圍為
為了獲得在條件式(5)約束下目標(biāo)函數(shù)式(4)的最優(yōu)解,首先建立拉格朗日函數(shù)
極大化拉格朗日函數(shù)式(9),即可獲得單元CICA的Newton-like算法為
其中,
式中:G′y(y)、G″y(y)和 g′(w)、g″(w)分別為 Gy(y)、g(w)的一階導(dǎo)數(shù)和二階導(dǎo)數(shù);μ、λ為拉格朗日因子,由以下迭代算法得到:
采用EEMD方法對軸承故障振動信號x(t)進(jìn)行分解,得到若干 IMF 分量 ci(t)(i=1,2,…,d)及殘余項。將及其IMF分量重新組合,得到一個虛擬的多通道傳感器觀測信號則虛擬信號xIMF(t)的協(xié)方差矩陣Rx可表示為
對協(xié)方差矩陣進(jìn)行奇異值分解,可以有效消除軸承故障振動信號中包含的噪聲成分,得到相對純凈的特征信號。協(xié)方差矩陣Rx的奇異值分解為
式中:Λs=diag{λ1,…,λd}表示為 d 個按照遞減順序排列的主特征值;ΛZ=diag{λd+1,…,λv}表示為 v-d 個噪聲特征值。
由于主特征值與噪聲特征值之間閾值難以設(shè)定,因此采用鄰近奇異值差值法對源信號數(shù)進(jìn)行估計。其以協(xié)方差矩陣的奇異值分解為基礎(chǔ),計算得到鄰近奇異值的差值統(tǒng)計量為
當(dāng) λi和 λj都是噪聲奇異值時,Λij比較??;λi當(dāng)和λj其中的一個或兩個都是信號奇異值時,Λij比較大。從最小奇異值開始比較,相鄰奇異值差值較大的分界處,就是軸承故障振動信號子空間和噪聲子空間的分界面。從而估計出軸承故障振動源信號個數(shù)m。
由政府主導(dǎo),行業(yè)協(xié)會指導(dǎo),跨境電商領(lǐng)軍型企業(yè)牽頭,在共享供應(yīng)鏈的基礎(chǔ)上,以跨境物流聯(lián)盟的形式共建海外倉。針對義烏跨境電商產(chǎn)業(yè)中跨境物流成本高的問題,一方面通過引導(dǎo)義烏中小跨境電商出口企業(yè)在共創(chuàng)品牌提升產(chǎn)品附加值的基礎(chǔ)上提高海外倉的應(yīng)用,加強(qiáng)海外倉物流信息的可視化和透明化,讓賣家更好掌控物流、運營、財務(wù)等狀況;另一方面需要加強(qiáng)規(guī)范化建設(shè),主動為企業(yè)提供海外倉政策、法律、稅收等咨詢服務(wù),提供融資、審批、資格認(rèn)證等政策支持,可通過政府專項資金幫助義烏中小跨境電商出口企業(yè)體驗海外倉帶來的便利和業(yè)績提升,提升義烏小商品的產(chǎn)品附加值和競爭力。
由于EEMD方法分析軸承故障振動信號x(t)所得IMF分量能體現(xiàn)源信號特征信息,若IMF分量統(tǒng)計獨立性越高,則其能夠體現(xiàn)源信號獨立成分,越適合用于建立參考信號。由于互信息是衡量一組隨機(jī)變量之間獨立性的重要準(zhǔn)則,因此將其當(dāng)作IMF分量選取的準(zhǔn)則?;バ畔⒅悼梢愿鶕?jù)互累積量近似得到[11],即
式中:cum(*,*)、cum(*,*,*)、cum(*,*,*,*)分別為xi(t)的二、三、四階互累積量。
通過計算IMF分量的歸一化互信息值,根據(jù)估計的源信號個數(shù)m,選取互信息值較小的m個IMF分量組成參考信號提取軸承故障振動信號特征。
對測得的軸承故障振動信號進(jìn)行去均值等預(yù)處理,削弱噪聲信號的影響;利用EEMD對風(fēng)電機(jī)組軸承故障振動信號x(t)進(jìn)行分解,獲得若干IMF分量;利用鄰近奇異值差值法估算源信號的個數(shù)m;根據(jù)式(16)分別計算各個IMF分量的歸一化互信息值,選取歸一化互信息值最小的m個IMF分量建立參考信號;利用CICA方法提取軸承故障信號,并進(jìn)行包絡(luò)解調(diào),得到軸承故障特征。
本實例使用來源于Western Reserve University的軸承故障數(shù)據(jù)[12]。測試平臺包括發(fā)電機(jī)、轉(zhuǎn)矩傳感器等設(shè)備,如圖1所示。
圖1 測試實驗臺
實驗中,采樣頻率為12 000 Hz,軸承轉(zhuǎn)速為1 749 r/min。軸承具體參數(shù)如表1所示。
表1 軸承參數(shù)
計算軸承內(nèi)外圈故障的公式為
式中:f1、f2分別為內(nèi)圈、外圈故障頻率;r為轉(zhuǎn)速;n為滾動體個數(shù);d為滾動體直徑;D為軸承節(jié)徑;α為接觸角角度。
進(jìn)而,可得軸承正常與故障時特征頻率,如表2。
表2 軸承特征頻率 Hz
主軸承外圈早期故障時,傳感器采集振動信號,經(jīng)取均值、去噪等預(yù)處理后,到的時域波形與頻譜如圖2所示。從圖中雖然可以看出故障特征頻率成
分,但幅值相對較小,不容易分辨。
圖2 主軸承外圈故障時域波形與頻譜圖
對測得的主軸承外圈故障信號x1(t)進(jìn)行EEMD分解,得到 IMF 分量 c1(t),…,c10(t)以及殘余分量r10(t)。 圖 3 表示 x1(t)經(jīng)分解后得到的前 7 階 IMF分量圖。
圖 3 IMF 分量(c1~c7)
將故障信號x1(t)與得到的IMF分量組成新的多維信號 xIME(t)=(x1(t),c1(t),…,c10(t),r10(t)),并進(jìn)一步計算對應(yīng)的相關(guān)矩陣然后對Rx進(jìn)行奇異值分解,得到特征值按照從大到小的順序排列的矢量 Λ=diag{λ1,…,λ12}。 根據(jù)鄰近奇異值差值法,計算相鄰特征值之差,如圖4所示,可知源信號個數(shù)為2個。
圖4 多維信號奇異值差值分布
根據(jù)前文所述參考信號選取方法,選取歸一化互信息值最小的前兩IMF分量作為參考信號,提取故障數(shù)據(jù)中包含的故障特征,并進(jìn)行包絡(luò)解調(diào),得到圖5所示包絡(luò)譜。
圖5 軸承外圈故障提取信號包絡(luò)譜
從圖5可以看出,利用所述方法得到的信號包絡(luò)譜中,在104.8 Hz頻率成分及其二倍頻、三倍頻(209.6 Hz、314.6 Hz)位置處幅值明顯較大,且與計算所得軸承外圈故障特征頻率值及其倍頻基本一致。據(jù)此,可以得知軸承外圈存在故障。同時,y2中還包含有軸承的旋轉(zhuǎn)頻率(29.16 Hz),說明所提方法同時也能夠?qū)崿F(xiàn)軸承故障與正常振動信號特征的分離。
主軸承內(nèi)圈故障時,傳感器采集振動信號,圖6為經(jīng)預(yù)處理后軸承內(nèi)圈故障時域波形及頻譜,從圖中也很難辨識出內(nèi)圈故障特征頻率。
圖6 主軸承內(nèi)圈故障時域波形與頻譜
與軸承外圈故障特征提取類似,利用本文所提方法得到提取信號的包絡(luò)譜,如圖7所示。
圖7 軸承內(nèi)圈故障提取信號包絡(luò)譜
從圖7可以看出,在155.6 Hz頻率成分及其二倍頻、三倍頻(311.2 Hz、466.9 Hz)位置處幅值明顯較大,且與計算所得軸承內(nèi)圈故障特征頻率值及其倍頻基本一致。據(jù)此,可以得知軸承內(nèi)圈存在故障。同時,軸承內(nèi)圈故障提取信號y2中也還包含有軸承的旋轉(zhuǎn)頻率(29.16 Hz),以及三倍頻,進(jìn)一步驗證所提方法的有效性。
利用基于EEMD和CICA的風(fēng)電機(jī)組軸承故障特征提取方法分別提取軸承外圈、內(nèi)圈故障振動信號中包含的特征信息,并對提取信號進(jìn)行包絡(luò)解調(diào),得到明顯的軸承內(nèi)、外圈故障特征頻率成分。因此,所提方法可以有效突出軸承故障特征信息,實現(xiàn)對不同軸承故障特征的有效提取,有利于避免軸承故障的擴(kuò)大。
[1]HAMEED Z,HONG Y S,CHO Y M,et al.Condition monitoring and fault detection of wind turbines and related algorithms:A review[J].Renewable and Sustainable Energy Reviews,2009,13(1):1-39.
[2]趙明浩.風(fēng)力機(jī)故障特征分析與實驗研究[D].北京:清華大學(xué),2010.
[3]BAFROUI HH,OHADI A.Application of wavelet energy and Shannon entropy for feature extraction in gearbox fault detection under varying speed conditions [J].Neurocomputing,2014,133(8):437-445.
[4]嚴(yán)如強(qiáng),錢宇寧,胡世杰,等.基于小波域平穩(wěn)子空間分析的風(fēng)力發(fā)電機(jī)齒輪箱故障診斷[J].機(jī)械工程學(xué)報,2014,50(11):9-16.
[5]郭艷平,顏文俊,包哲靜,等.基于經(jīng)驗?zāi)B(tài)分解和散度指標(biāo)的風(fēng)力發(fā)電機(jī)滾動軸承故障診斷方法[J].電力系統(tǒng)保護(hù)與控制,2012,40(17):83-87,93.
[6]林近山.基于經(jīng)驗?zāi)J椒纸夂妥V峭度的滾動軸承故障診斷[J].機(jī)械傳動,2012,36(9):76-79.
[7]胡愛軍,馬萬里,唐貴基.基于集成經(jīng)驗?zāi)B(tài)分解和峭度準(zhǔn)則的滾動軸承故障特征提取方法[J].中國電機(jī)工程學(xué)報,2012,32(11):106-111,153.
[8]LU W,RAJAPAKSE J C.Approach and applications of constrained ICA[J].IEEE Transactions on Neural Networks,2005,16(1):203.
[9]王志陽,陳進(jìn),肖文斌,等,基于約束獨立成分分析的滾動軸承故障診斷[J].振動與沖擊,2012,31(9):118-122.
[10] WEI L,RAJAPAKSE JC.ICA with reference [J].Neurocomputing,2006,69(16-18):2 244-2 257.
[11] CARDOSO J F.Dependence,correlation and Gaussianity in independent component analysis[J].Journal of Machine Learning Research,2003,4(4):1 177-1 203.
[12] Case Western Reserve University.Bearing data center[EB/OL].http://csegroups.case.edu/bearingdatacenter/pages/,2013-07-15.