国产日韩欧美一区二区三区三州_亚洲少妇熟女av_久久久久亚洲av国产精品_波多野结衣网站一区二区_亚洲欧美色片在线91_国产亚洲精品精品国产优播av_日本一区二区三区波多野结衣 _久久国产av不卡

?

脂肪基質(zhì)細(xì)胞向神經(jīng)元樣細(xì)胞誘導(dǎo)分化的研究現(xiàn)狀

2018-02-01 13:09孟燕張利平元小冬錢琳琳張萍淑
神經(jīng)損傷與功能重建 2018年2期
關(guān)鍵詞:源性干細(xì)胞分化

孟燕,張利平,元小冬,錢琳琳,張萍淑

脂肪基質(zhì)細(xì)胞(adipose-derived stromal cells,ADSC)具有體內(nèi)含量多、易獲得、低免疫原性、高可塑性及自體移植無倫理問題等優(yōu)點(diǎn)。ADSC源性神經(jīng)元樣細(xì)胞彌補(bǔ)了神經(jīng)干細(xì)胞數(shù)量少、臨床難以獲取的不足,為神經(jīng)系統(tǒng)疾病的細(xì)胞移植療法奠定基礎(chǔ)。自ADSC被發(fā)現(xiàn)以來,海內(nèi)外學(xué)者從不同角度對ADSC向神經(jīng)元樣細(xì)胞誘導(dǎo)分化開展了大量研究,本文就ADSC向神經(jīng)元樣細(xì)胞誘導(dǎo)分化的研究現(xiàn)狀進(jìn)行綜述。

1 ADSC的生物學(xué)特性

2001年ZUK等[1-2]首次從脂肪組織中分離出一種與骨髓間充質(zhì)干細(xì)胞(Bone marrow mesenchymal stem cells,BMSC)形態(tài)相似的成纖維細(xì)胞樣細(xì)胞,稱之為ADSC。他們發(fā)現(xiàn)在體外培養(yǎng)過程中ADSC表達(dá)具有多向分化能力基質(zhì)干細(xì)胞的標(biāo)志物--CD29、CD44;之后又有研究報(bào)道,ADSC不表達(dá)造血干細(xì)胞的表面標(biāo)志物--CD34[3-4],這證明了ADSC是一種成體干細(xì)胞。ADSC體外培養(yǎng)細(xì)胞周期分析也符合幼稚細(xì)胞的特點(diǎn),大部分細(xì)胞處于靜止期及DNA合成前期,少部分細(xì)胞處于增殖期。ZUK等[1-2,5]還發(fā)現(xiàn),在一定條件下ADSC能夠向多種細(xì)胞分化,即ADSC是具有多向分化潛能的間充質(zhì)干細(xì)胞。ADSC增殖穩(wěn)定、衰老性低,體外培養(yǎng)10代后細(xì)胞的增長速度仍未明顯降低[5],為ADSC體外培養(yǎng)與研究提供了必要條件。關(guān)于ADSC的生長特點(diǎn)、免疫表型、多向分化等方面的研究均從不同方面說明了ADSC是一種與BMSC相似且具有弱免疫原性和多向分化潛能的間充質(zhì)干細(xì)胞[1-2,6],因而引起眾多學(xué)者的關(guān)注。

2 ADSC向神經(jīng)元樣細(xì)胞誘導(dǎo)及鑒定

2.1 化學(xué)誘導(dǎo)法

ZUK等[2]首次采用細(xì)胞培養(yǎng)基添加β-琉基乙醇對ADSC進(jìn)行誘導(dǎo),發(fā)現(xiàn)誘導(dǎo)后的細(xì)胞表達(dá)神經(jīng)元特異性標(biāo)志--神經(jīng)元特異烯醇化酶(Neuron specific enolase,NSE)和神經(jīng)元核心抗原(NeuN)。葉長青、蔡亞楠等[7,8]參照ZUK的方法用β-巰基乙醇誘導(dǎo)成人ADSC向神經(jīng)元樣細(xì)胞分化,發(fā)現(xiàn)誘導(dǎo)后的細(xì)胞表達(dá)神經(jīng)元細(xì)胞特異性標(biāo)志物--NSE和微管相關(guān)蛋白2(Microtubule associated protein 2,MAP2),并未表達(dá)膠質(zhì)細(xì)胞的標(biāo)志物--神經(jīng)膠質(zhì)酸性蛋白(Glial fibrillary acidic protein,GFAP),進(jìn)一步觀察后發(fā)現(xiàn)ADSC源性神經(jīng)元在形態(tài)學(xué)和超微結(jié)構(gòu)上與成熟神經(jīng)元細(xì)胞高度相似。Ashjian等[9]利用含有胰島素、異丁基甲基黃嘌呤、吲哚美辛等物質(zhì)的培養(yǎng)基對ADSC進(jìn)行誘導(dǎo),發(fā)現(xiàn)誘導(dǎo)后的細(xì)胞表達(dá)早期神經(jīng)元的標(biāo)志NSE、NeuN等,卻并未表達(dá)MAP2和GFAP等成熟神經(jīng)元和神經(jīng)膠質(zhì)細(xì)胞的標(biāo)志。在此基礎(chǔ)上,Saffodr等[10]用胰島素、氫化考地松等試劑采用雞尾酒式方法對大鼠源性ADSC進(jìn)行誘導(dǎo),發(fā)現(xiàn)誘導(dǎo)后細(xì)胞表達(dá)神經(jīng)巢蛋白(nestin)、GFAP、NeuN、S-100蛋白和MAP2等神經(jīng)元及膠質(zhì)細(xì)胞的標(biāo)志蛋白,并表達(dá)NR-1、NR-2亞單位的谷氨酸受體及生長相關(guān)蛋白43(Growth associated protein43,GAP43)、突觸蛋白1(synapsin 1)和電壓門控鈣離子通道。

經(jīng)典的化學(xué)誘導(dǎo)法是最早發(fā)現(xiàn)的誘導(dǎo)方法,常用的有β-琉基乙醇、丁基羥基茴香醚、二甲基亞砜等物質(zhì),其機(jī)制可能與化學(xué)試劑抗氧化功能引起的胞內(nèi)變化有關(guān)?;瘜W(xué)誘導(dǎo)法具有誘導(dǎo)時(shí)間短、誘導(dǎo)分化率高等優(yōu)點(diǎn),但誘導(dǎo)后的神經(jīng)元樣細(xì)胞存活時(shí)間短,限制了對其功能的深入研究。基于這些進(jìn)一步研究應(yīng)繼續(xù)探索化學(xué)誘導(dǎo)法的最優(yōu)試劑、最適濃度及如何延長誘導(dǎo)后細(xì)胞存活的時(shí)間。

2.2 因子誘導(dǎo)法

Razavi S等[11]利用堿性成纖維因子(Basic fibroblast growth factor,bFGF)分別將BMSC和ADSC誘導(dǎo)為神經(jīng)球,然后用bFGF、表皮生長因子(epidermal growth factor,EGF)、B27進(jìn)行神經(jīng)誘導(dǎo),對2種細(xì)胞分化過程中MAP2和GFAP的表達(dá)情況進(jìn)行比較,發(fā)現(xiàn)ADSC源性神經(jīng)細(xì)胞GFAP表達(dá)率較低,而MAP2表達(dá)率相似,得出ADSC比BMSC更適于向神經(jīng)元細(xì)胞誘導(dǎo)分化的結(jié)論。另有學(xué)者發(fā)現(xiàn)ADSC神經(jīng)元分化潛能與BMSC相似,但ADSC比BMSC有更高的增殖能力[12]。Taki Tiraihi等[13]以司來吉蘭為預(yù)誘導(dǎo)劑,全反式維甲酸(All-trans retinoic acid,RA)和重組人刺猬因子(Recombinant human sonic hedgehog,shh)為誘導(dǎo)劑將ADSC向運(yùn)動(dòng)神經(jīng)元樣細(xì)胞誘導(dǎo),并確定了誘導(dǎo)劑的最適濃度。深入研究后,再次將ADSC用B27、EGF、bFGF誘導(dǎo)為神經(jīng)干細(xì)胞后用Shh、RA、腦源性生長因子(Brain derived growth factor,BDNF)等因子進(jìn)一步誘導(dǎo),發(fā)現(xiàn)誘導(dǎo)后的細(xì)胞表達(dá)運(yùn)動(dòng)神經(jīng)元生長發(fā)育的標(biāo)志物—胰島素基因增強(qiáng)結(jié)合蛋白1(Insulin gene enhanced binding protein 1,Islet-1)、少突膠質(zhì)細(xì)胞轉(zhuǎn)錄因子2(Oligodendrocyte transcription factor 2,Olig2)、同源框基因HB9,且呈典型的神經(jīng)元細(xì)胞形態(tài)[14]。

因子誘導(dǎo)法是從體內(nèi)細(xì)胞分化的研究中發(fā)展而來,目前應(yīng)用較多的因子有EGF、bFGF、BDNF等。因子誘導(dǎo)法有細(xì)胞毒性小、細(xì)胞存活率高等優(yōu)點(diǎn)[15],但各種細(xì)胞因子半衰期較短、難以保持持久活性因而限制了因子誘導(dǎo)法的使用。

2.3 基因修飾法

Nurr-1基因是孤兒核受體轉(zhuǎn)錄因子超家族中的一員,與胚胎發(fā)育、細(xì)胞分化及中腦多巴胺能神經(jīng)元發(fā)育和存活密切相關(guān)。實(shí)驗(yàn)證實(shí),Nurr-1基因具有促進(jìn)胚胎干細(xì)胞、BMSC向神經(jīng)元分化的作用[16,17]。在此基礎(chǔ)上,Yang Y等[18]發(fā)現(xiàn)經(jīng)慢病毒轉(zhuǎn)染Nurr-1基因后ADSC的神經(jīng)分化能力明顯增強(qiáng),為ADSC神經(jīng)誘導(dǎo)方面提供了新方法。microRNAs(miRNAs)為真核生物中一類內(nèi)源性的、具有調(diào)控基因功能的非編碼RNA,其在生物發(fā)育和細(xì)胞分化中至關(guān)重要。miRNA-124、miRNA-9在大腦中含量豐富,在神經(jīng)干細(xì)胞的分化及神經(jīng)元突觸形成過程中發(fā)揮著重要作用[19,20]。有學(xué)者報(bào)道朊蛋白可能通過調(diào)節(jié)miRNA-124--羧基端小結(jié)構(gòu)域磷酸酶1(small C-terminal domain phosphatase 1,SCP1)軸發(fā)揮促進(jìn)ADSC神經(jīng)分化的作用[21]。此后,Hu F等[22]對RA誘導(dǎo)ADSC神經(jīng)分化過程中miRNAs、靶基因和信號通路間關(guān)系網(wǎng)絡(luò)進(jìn)行的探究,有助于理解ADSC分化機(jī)制,尋找高效率的誘導(dǎo)方法。

目前為止ADSC向神經(jīng)元樣細(xì)胞誘導(dǎo)分化尚無一種公認(rèn)的方法,后續(xù)研究可嘗試闡明ADSC的神經(jīng)分化機(jī)制,力圖尋找一種安全、高效、可持續(xù)的誘導(dǎo)方法。

3 ADSC源性神經(jīng)元樣細(xì)胞功能研究

近年來在ADSC源性神經(jīng)元樣細(xì)胞的電生理特性、神經(jīng)分泌功能等方面均有報(bào)道。Saffodr等[10]對ADSC源性神經(jīng)元樣細(xì)胞進(jìn)行深入研究發(fā)現(xiàn),N-甲基-D-天冬氨酸(N-methyl-D-aspartic acid,NMDA,興奮性神經(jīng)遞質(zhì)L-谷氨酸同系物)可使其大量死亡,表明ADSC源性神經(jīng)元樣細(xì)胞已形成了功能性NMDA受體。Jang S等[23]發(fā)現(xiàn)經(jīng)bFGF和腺苷酸環(huán)化酶激活劑誘導(dǎo)的ADSC源性神經(jīng)元樣細(xì)胞具有功能性離子電流。另有學(xué)者報(bào)道,ADSC細(xì)胞膜K+通道不能產(chǎn)生動(dòng)作電位,ADSC源性神經(jīng)元樣細(xì)胞具有較高的靜息膜電位,且受到高鉀刺激后迅速去極化[24],說明ADSC源性神經(jīng)元的K+通道已發(fā)育完備,即ADSC源性神經(jīng)元具有產(chǎn)生正常神經(jīng)元功能的電生理基礎(chǔ)。在ADSC源性神經(jīng)元樣細(xì)胞分泌功能方面,Taki Tiraihi等[14]利用熒光染料FM43-1、鈣離子指示劑和電壓敏感性染料等對ADSC源性運(yùn)動(dòng)神經(jīng)元進(jìn)行進(jìn)一步研究發(fā)現(xiàn),誘導(dǎo)后的細(xì)胞具有釋放突觸囊泡、支配肌管活動(dòng)功能。另有實(shí)驗(yàn)發(fā)現(xiàn),ADSC源性神經(jīng)元樣細(xì)胞具有分泌神經(jīng)營養(yǎng)因子、BDNF及多巴胺的功能[25,26]。

目前研究表明,ADSC源性神經(jīng)元樣細(xì)胞電生理特性與正常神經(jīng)元相似,并具有一定的神經(jīng)分泌功能,但誘導(dǎo)后細(xì)胞是否為功能完備的神經(jīng)元細(xì)胞及是否能夠和宿主細(xì)胞整合發(fā)揮正常神經(jīng)元接受刺激、產(chǎn)生及傳導(dǎo)沖動(dòng)功能還需深入研究。

4 ADSC治療神經(jīng)系統(tǒng)疾病的應(yīng)用潛能

ADSC體內(nèi)應(yīng)用主要包括體外誘導(dǎo)分化后移植和移植后體內(nèi)分化兩方面。ADSC具有弱免疫原性、免疫調(diào)節(jié)性、釋放營養(yǎng)因子等特性使其適用于神經(jīng)系統(tǒng)疾病的細(xì)胞治療。

4.1 缺血缺氧性腦病

缺血缺氧性腦病是腦血管疾病最常見的類型,考慮到藥物治療的局限性,尋找新的替代療法是必要的。近年來各種干細(xì)胞被應(yīng)用于缺血性腦病的細(xì)胞治療,其中ADSC具有獨(dú)特優(yōu)勢[27]。劉斌等[28,29]將ADSC源性神經(jīng)干細(xì)胞移植到腦缺血大鼠模型中,發(fā)現(xiàn)其可上調(diào)大鼠腦缺血灶局部血管內(nèi)皮生長因子表達(dá),促進(jìn)腦缺血區(qū)新生血管形成,從而發(fā)揮神經(jīng)細(xì)胞保護(hù)和促進(jìn)細(xì)胞功能恢復(fù)作用。另有學(xué)者發(fā)現(xiàn),ADSC可能通過細(xì)胞替代和抗炎作用促進(jìn)腦缺血小鼠神經(jīng)功能恢復(fù)并改善其學(xué)習(xí)記憶能力[30]。此外,成人大腦的側(cè)腦室室下區(qū)(subventricular zone,SVZ)及海馬齒狀回顆粒下層(subgranular zone,SGZ)存在具有再生能力的神經(jīng)干細(xì)胞,激活這些細(xì)胞可促進(jìn)內(nèi)源性神經(jīng)再生達(dá)到治療神經(jīng)系統(tǒng)疾病的目的。在此基礎(chǔ)上,Oh SH、Schwerk A等[31,32]向小鼠腦損傷處注射ADSC后發(fā)現(xiàn),SVZ神經(jīng)干細(xì)胞增殖、分化增多并向腦損傷處遷移,表明ADSC能促進(jìn)神經(jīng)干細(xì)胞分化進(jìn)而發(fā)揮修復(fù)神經(jīng)功能的作用。以上研究可以看出ADSC可通過神經(jīng)分化、旁分泌、免疫調(diào)節(jié)、促進(jìn)內(nèi)源性神經(jīng)再生等方面對缺血缺氧性腦病起治療作用。

4.2 帕金森?。≒arkinson’s disease,PD)

PD是一種由于黑質(zhì)多巴胺能神經(jīng)元死亡及神經(jīng)傳導(dǎo)通路中斷導(dǎo)致的神經(jīng)系統(tǒng)變性疾病。目前關(guān)于PD的治療只能以改善癥狀為主,不能阻止病情的發(fā)展,更無法治愈,因此需要尋找一種有效的治療方法。6-羥基多巴胺(6-hydroxydopamine,6-OHDA)可導(dǎo)致大腦黑質(zhì)特異性變性并引發(fā)神經(jīng)毒性反應(yīng),常被用于制作PD動(dòng)物模型。Gu H等[33]對ADSC所分泌的物質(zhì)是否具有保護(hù)細(xì)胞免受6-OHDA毒性的能力進(jìn)行測試,發(fā)現(xiàn)ADSC培養(yǎng)液可以減輕6-OHDA造成的氧化應(yīng)激反應(yīng)和神經(jīng)毒性,進(jìn)而減少神經(jīng)元死亡。另有學(xué)者報(bào)道ADSC源性神經(jīng)干細(xì)胞可改善PD大鼠的行為活動(dòng),其機(jī)制可能與減輕大鼠腦內(nèi)6-OHDA所致的氧化應(yīng)激損傷有關(guān)[34]。Takahashi等[35]將ADSC源性神經(jīng)元樣細(xì)胞移植到PD大鼠模型中,發(fā)現(xiàn)其表達(dá)多巴胺能神經(jīng)元標(biāo)記物并能改善PD大鼠的運(yùn)動(dòng)癥狀。此外,對于1-甲基-4-苯基-1,2,3,6-四羥嘧啶(1-methyl-4-phenyl-1,2,3,6-tetrahydropyridine,MPTP)、魚藤酮等神經(jīng)毒性物質(zhì)制備的PD動(dòng)物模型ADSC移植療法均可提高其多巴胺水平、發(fā)揮神經(jīng)保護(hù)功能[36,37]。ADSC源性神經(jīng)元樣細(xì)胞為PD的細(xì)胞替代療法提供了新思路。

4.3 阿爾茨海默?。ˋzheimer disease,AD)

AD是以進(jìn)行性認(rèn)知功能障礙和行為損害為特征的中樞神經(jīng)系統(tǒng)退行性病變,是老年期癡呆最常見的類型。AD以Aβ淀粉樣蛋白沉積和神經(jīng)纖維纏結(jié)為主要病理特征,目前AD的病因及發(fā)病機(jī)制尚未闡明,缺乏有效的治療手段。目前干細(xì)胞移植法治療AD的研究日益增多。Kim S等[38]將ADSC通過靜脈和腦內(nèi)定向注射到AD小鼠模型,發(fā)現(xiàn)兩種方法均能減少Aβ淀粉樣蛋白沉積并改善小鼠認(rèn)知功能障礙。Ma T等[39]利用淀粉樣前體蛋白(Amyloid precursor protein,APP)/早衰素1(Premature senility 1,PS1)雙轉(zhuǎn)基因AD小鼠模型也證實(shí)了ADSC具有減少淀粉樣蛋白沉積和恢復(fù)小鼠記憶功能的作用。目前研究表明,ADSC減少Aβ淀粉樣蛋白沉積、改善臨床癥狀是以ADSC分泌Aβ淀粉樣蛋白水解酶中的關(guān)鍵酶--腦啡肽酶為理論依據(jù)[40]。ADSC移植治療簡便、安全,很可能成為將來治療AD的一種新途徑。

ADSC及ADSC源性神經(jīng)元樣細(xì)胞在治療肌萎縮側(cè)索硬化、亨廷頓舞蹈病、周圍神經(jīng)損傷等神經(jīng)系統(tǒng)疾病動(dòng)物實(shí)驗(yàn)方面均取得了不同程度的進(jìn)展[41,42],同時(shí)在歐洲等地初步開展了ADSC治療缺血性卒中的臨床研究,其療效有待于進(jìn)一步報(bào)道。

5 總結(jié)及展望

隨著細(xì)胞生物學(xué)和組織工程學(xué)研究的不斷深入,ADSC分離、培養(yǎng)、神經(jīng)分化、分化后細(xì)胞檢測及體內(nèi)應(yīng)用等方面均取得了突破性進(jìn)展,使ADSC源性神經(jīng)元用于治療神經(jīng)系統(tǒng)疾病成為可能。但其研究系統(tǒng)尚不完善,仍存在很多問題有待解決。目前主要的限制有:①缺乏ADSC特異性標(biāo)志物,不能明確獲取的細(xì)胞即為成體干細(xì)胞;②ADSC向神經(jīng)細(xì)胞分化方法有很多,但ADSC體內(nèi)及體外定向分化的基因調(diào)控機(jī)制尚未闡明,目前仍缺乏一種確定的分化率高、安全、持久的誘導(dǎo)方法;③ADSC向神經(jīng)細(xì)胞分化的研究仍局限于形態(tài)學(xué)、神經(jīng)特異性標(biāo)記、電生理基礎(chǔ)等方面,缺乏綜合研究證實(shí)ADSC源性神經(jīng)元樣細(xì)胞為功能完備的神經(jīng)元;④ADSC移植后改善宿主神經(jīng)損傷功能機(jī)制不明,移植體內(nèi)的ADSC是否適應(yīng)體內(nèi)神經(jīng)、體液等環(huán)境繼續(xù)生長分化有待進(jìn)一步確定;⑤ADSC在神經(jīng)分化過程中能否排除致瘤性風(fēng)險(xiǎn)及是否發(fā)生免疫紊亂等改變尚屬未知。盡管尚有問題需要解決,但是隨著組織工程學(xué)和細(xì)胞生物學(xué)迅速發(fā)展,人們對其認(rèn)識不斷加深,ADSC未來極有可能取代目前的干細(xì)胞源而成為細(xì)胞工程學(xué)、基因?qū)W治療神經(jīng)系統(tǒng)疾病的載體。

[1] Zuk PA,Zhu M,Mizuno H,et al.Multilineage cells from human adipose tissue:implications for cell-based therapies[J].Tissue Eng,2001,7:211-228.

[2] Zuk PA,Zhu M,Ashjian P,et al.Human adipose tissue is a source of multipotent stem cells[J].Mol Biol Cell,2002,13:4279-4295.

[3] Dominici M,Le Blanc K,Mueller I,et al.Minimal criteria for defining multipotent mesenchymal stromal cells.The International Society for Cellular Therapy position statement[J].Cytotherapy,2006,8:315-317.

[4] Gronthos S,F(xiàn)ranklin DM,Leddy HA,et al.Surface protein characterization of human adipose tissue-derived stromal cells[J].J Cell Physiol,2001,189:54-63.

[5] Safford KM,Hicok KC,Safford SD,et al.Neurogenic differentiation of murine and human adipose-derived stromal cells[J].Biochem Biophys Res Commun,2002,294:371-379.

[6] Yang E,Liu N,Tang Y,et al.Generation of neurospheres from human adipose-derived stem cells[J].Biomed Res Int,2015,2015:743714.

[7] Ye CQ,Yuan XD,Liu H,et al.Ultrastructure of neuronal-like cells differentiated from adult adipose-derived stromal cells[J].Neural Regen Res,2010,5:1456-1463.

[8] Cai YN,Yuan XD,Ou Y,et al.Apoptosis during β-mercaptoethanol-induced differentiation of adult adipose-derived stromal cells into neurons[J].Neural Regen Re,2011,6:750-755.

[9] Ashjian PH,Elbarbary AS,Edmonds B,et al.In vitro differentiation of human processed lipoaspirate cells into early neural progenitors[J].Plast Reconstr Surg,2003,111:1922-1931.

[10] Safford KM,Safford SD,Gimble JM,et al.Characterization of neuronal/glial differentiation of murine adipose-derived adult stromal cells[J].Exp Neurol,2004,187:319-328.

[11] Mostafavi FS,Razavi S,Mardani M,et al.Comparative Study of Microtubule-associated Protein-2 and Glial Fibrillary Acidic Proteins during Neural Induction of Human Bone Marrow Mesenchymal Stem Cells and Adipose-Derived Stem Cells[J].Int J Prev Med,2014,5:584-595.

[12] Han C,Zhang L,Song L,et al.Human adipose-derived mesenchymal stem cells:a better cell source for nervous system regeneration[J].Chin Med J(Engl),2014,127:329-337.

[13] Abdanipour A,Tiraihi T.Induction of adipose-derived stem cell into motoneuron-like cells using selegiline as preinducer[J].Brain Res,2012,1440:23-33.

[14] Darvishi M,Tiraihi T,Mesbah-Namin SA,et al.Motor Neuron Transdifferentiation of Neural Stem Cell from Adipose-Derived Stem Cell Characterized by Differential Gene Expression[J].Cell Mol Neurobiol,2017,37:275-289.

[15] Ahmadi N,Razavi S,Kazemi M,et al.Stability of neural differentiation in human adipose derived stem cells by two induction protocols[J].Tissue Cell,2012,44:87-94.

[16] Bae EJ,Lee HS,Park CH,et al.Orphan nuclear receptor Nurr1 induces neuron differentiation from embryonic cortical precursor cells via an extrinsic paracrine mechanism[J].FEBS Lett,2009,583:1505-1510.

[17] Park JS,Yang HN,Noo DG,et al.Exogenous Nurr1 gene expression in electrically-stimulated human MSCs and the induction of neurogenesis[J].Biomaterials,2012,33:7300-7308.

[18] Yang Y,Ma T,Ge J,et al.Facilitated Neural Differentiation of Adipose Tissue-Derived Stem Cells by Electrical Stimulation and Nurr-1 Gene Transduction[J].Cell Transplant,2016,25:1177-1191.

[19] Bartel DP.MicroRNAs:genomics,biogenesis,mechanism,and function[J].Cell,2004,116:281-297.

[20] Huang YN,Ruiz CR,Eyler EC,et al.Dual regulation of miRNA biogenesis generates target specificity in neurotrophin-induced protein synthesis[J].Cell,2012,148:933-946.

[21] Shi F,Yang Y,Nang T,et al.Cellular Prion Protein Promotes Neuronal Differentiation of Adipose-Derived Stem Cells by Upregulating miRNA-124[J].J Mol Neurosci,2016,59:48-55.

[22] Hu F,Xu P,Sun B,et al.Deep sequencing reveals complex mechanisms of microRNA regulation during retinoic acid-induced neuronal differentiation of mesenchymal stem cells[J].Genomics,2017,109:302-311.

[23] Jang S,Cho HH,Cho YB,et al.Functional neural differentiation of human adipose tissue-derived stem cells using bFGF and forskolin[J].Bmc Cell Biol,2010,11:25.

[24] Yuan XD,Cai YN,Ou Y,et al.Adult adipose-derived stromal cells differentiate into neurons with normal electrophysiological functions[J].Neural Regen Re,2011,6:2681-2686.

[25] Han C,Song L,Liu Y,et al.Rat cortex and hippocampus-derived soluble factors for the induction of adipose-derived mesenchymal stem cells into neuron-like cells[J].Cell Biol Int,2014,38:768-776.

[26] 高華,姚亞妮,王玉玲,等.體外誘導(dǎo)脂肪基質(zhì)干細(xì)胞向多巴胺能神經(jīng)元的分化[J].中國組織工程研究,2012,16:4227-4231.

[27] Gutiérrez-Fernández M,Rodríguez-Frutos B,Otero-Ortega L,et al.Adipose tissue-derived stem cells in stroke treatment:from bench to bedside[J].Discov Med,2013,16:37-43.

[28] 劉斌,劉寧,董靜,等.脂肪來源神經(jīng)干細(xì)胞移植局灶性腦缺血模型大鼠的血管新生[J].中國組織工程研究,2011,15:23-28.

[29] 劉斌,劉寧,李建民,等.脂肪來源的神經(jīng)干細(xì)胞移植對大鼠局灶性腦缺血后VEGF表達(dá)的影響[J].第二軍醫(yī)大學(xué)學(xué)報(bào),2010,31:1247-1250.

[30] Zhou F,Gao S,Nang L,et al.Human adipose-derived stem cells partially rescue the stroke syndromes by promoting spatial learning and memory in mouse middle cerebral artery occlusion model[J].Stem Cell Res Ther,2015,6:92.

[31] Oh SH,Choi C,Chang DJ,et al.Early neuroprotective effect with lack of long-term cell replacement effect on experimental stroke after intraarterial transplantation of adipose-derived mesenchymal stromal cells[J].Cytotherapy,2015,17:1090-1103.

[32] Schwerk A,Altschüler J,Roch M,et al.Human adipose-derived mesenchymal stromal cells increase endogenous neurogenesis in the rat subventricular zone acutely after 6-hydroxydopamine lesioning[J].Cytotherapy,2015,17:199-214.

[33] Gu H,Nang J,Du N,et al.Adipose stromal cells-conditioned medium blocks 6-hydroxydopamine-induced neurotoxicity and reactive oxygen species[J].Neurosci Lett,2013,544:15-19.

[34] 高華,毛潔萍,羅琴,等.脂肪源性神經(jīng)干細(xì)胞細(xì)胞移植對帕金森病大鼠腦內(nèi)氧化應(yīng)激損傷的影響[J].山西醫(yī)科大學(xué)學(xué)報(bào),2017,48:333-336.

[35] Takahashi H,Ishikawa H,Tanaka A.Regenerative medicine for Parkinson’s disease using differentiated nerve cells derived from human buccal fat pad stem cells[J].Hum Cell,2017,30:60-71.

[36] Ahmed H,Salem A,Atta H,et al.Do adipose tissue-derived mesenchymal stem cells ameliorate Parkinson's disease in rat model?[J]Hum Exp Toxicol,2014,33:1217-1231.

[37] Zhou Y,Sun M,Li H,et al.Recovery of behavioral symptoms in hemi-parkinsonian rhesus monkeys through combined gene and stem cell therapy[J].Cytotherapy,2013,15:467-480.

[38] Kim S,Chang KA,Kim Ja,et al.The preventive and therapeutic effects of intravenous human adipose-derived stem cells in Alzheimer's disease mice[J].PLoS One,2012,7:e45757.

[39] Ma T,Gong K,Ao Q,et al.Intracerebral transplantation of adiposederived mesenchymal stem cells alternatively activates microglia and ameliorates neuropathological deficits in Alzheimer's disease mice[J].Cell Transplant,2013,22 Suppl 1:S113-126.

[40] Katsuda T,Oki K,Ochiya T.Potential application of extracellular vesicles of human adipose tissue-derived mesenchymal stem cells in Alzheimer's disease therapeutics[J].Methods Mol Biol,2015,1212:171-181.

[41] Masgutov RF,Masgutova GA,Zhuravleva MN,et al.Human adiposederived stem cells stimulate neuroregeneration[J].Clin Exp Med,2016,16:451-461.

[42] Chan TM,Chen JY,Ho LI,et al.ADSC therapy in neurodegenerative disorders.[J].Cell Transplant,2014,23:549-557.

猜你喜歡
源性干細(xì)胞分化
干細(xì)胞:“小細(xì)胞”造就“大健康”
兩次中美貨幣政策分化的比較及啟示
間充質(zhì)干細(xì)胞治療老年衰弱研究進(jìn)展
分化型甲狀腺癌切除術(shù)后多發(fā)骨轉(zhuǎn)移一例
魯政委:房地產(chǎn)同城市場初現(xiàn)分化
后溪穴治療脊柱源性疼痛的研究進(jìn)展
健康教育對治療空氣源性接觸性皮炎的干預(yù)作用
微小RNA與腫瘤干細(xì)胞的研究進(jìn)展
干細(xì)胞治療有待規(guī)范
Cofilin與分化的研究進(jìn)展