張倩茹,朱冬雨,陸征宇,陳準(zhǔn)立,陸玲丹,趙虹
帕金森?。≒arkinson’s disease,PD)是一種常見于老年人的神經(jīng)系統(tǒng)退行性疾病,在全球人口中65歲以上人群發(fā)病率高達(dá)1.5%[1],其主要病理改變是路易小體(Lewy body,LB)形成和多巴胺神經(jīng)元變性缺失,從而產(chǎn)生典型的運(yùn)動(dòng)癥狀:靜止性震顫、肌強(qiáng)直、運(yùn)動(dòng)遲緩和姿勢步態(tài)異常。目前并沒有藥物可有效延緩PD病情的進(jìn)展。近年來對α-突觸核蛋白(α-synuclein,α-Syn)在PD發(fā)病過程中的機(jī)制了解增多,發(fā)現(xiàn)α-Syn是未來治療PD的一個(gè)新靶點(diǎn)。
早在1997年P(guān)olymeropoulos等[2]報(bào)道了家族性PD患者中存在編碼α-Syn的基因(SNCA)突變,具體為SNCAA53T突變,即第53位的精氨酸被替換為蘇氨酸。近年在我國發(fā)現(xiàn)首例SNCAA53T突變的23歲男性PD患者,其母是無癥狀攜帶者[3]。這提示SNCA基因突變在我國PD患者中篩查的必要性?;蛲蛔儠?huì)導(dǎo)致α-Syn超表達(dá),并引起錯(cuò)誤折疊和聚集,而翻譯后的修飾錯(cuò)誤會(huì)促進(jìn)α-Syn形成寡聚體,研究發(fā)現(xiàn)其具有2個(gè)特征性磷酸化位點(diǎn):Ser87和Ser129,尤其后者是LB中α-Syn的主要磷酸化位點(diǎn)[4,5]。
α-Syn由140個(gè)氨基酸構(gòu)成,可分為3個(gè)部分:N端結(jié)構(gòu)域(殘基1-60)、中央NAC域(殘基71-82)和一個(gè)C-末端結(jié)構(gòu)域(殘基96-140)。NAC域是α-Syn聚集過程的一個(gè)關(guān)鍵部位[6]。暴露于環(huán)境毒素、病毒及細(xì)菌感染或基因突變會(huì)使α-Syn錯(cuò)誤折疊形成寡聚體,從而聚集成不溶性纖維蛋白沉淀。Lashuel等[7]提出寡聚體是導(dǎo)致不溶性纖維蛋白沉淀形成的主要途徑。另外,α-Syn寡聚體可與脂質(zhì)結(jié)合,從而增加線粒體、溶酶體和細(xì)胞膜的通透性[8-10],影響這些細(xì)胞器的正常功能。研究證明α-Syn通過調(diào)控突觸囊泡的釋放來調(diào)節(jié)突觸活動(dòng)[11],如α-Syn的寡聚體能抑制SNARE蛋白介導(dǎo)的突觸囊泡膜與突觸前膜的融合[12],進(jìn)而影響細(xì)胞內(nèi)外多巴胺水平,最終導(dǎo)致多巴胺神經(jīng)元死亡。
根據(jù)Braak病理分期[13],在PD患者腦部的不同區(qū)域都有α-Syn沉積,并且相互聯(lián)系。現(xiàn)證據(jù)表明α-Syn病理沉積起源于外周(可能是胃腸道系統(tǒng))。一些體內(nèi)研究發(fā)現(xiàn)錯(cuò)誤折疊的α-Syn可被神經(jīng)元釋放,然后被臨近的神經(jīng)元再攝取,從而誘導(dǎo)LB形成,類似于朊蛋白形式在腦內(nèi)傳播[14]。Recasens等[15]提取PD患者黑質(zhì)致密部包含α-Syn的LB,并接種到鼠和猴的腹腔內(nèi),結(jié)果導(dǎo)致宿主黑質(zhì)紋狀體內(nèi)α-Syn病理性聚集,最終引起神經(jīng)元變性。Peelaerts等[16]將α-Syn注入嚙齒動(dòng)物模型的靜脈中,發(fā)現(xiàn)其可越過血腦屏障分布到中樞神經(jīng)系統(tǒng)。在此之前的動(dòng)物研究也發(fā)現(xiàn),肌肉或胃內(nèi)注射α-Syn可從外周到達(dá)腦組織。因此筆者認(rèn)為α-Syn可能通過自行擴(kuò)散促進(jìn)PD病情進(jìn)展。
研究表明α-Syn是由泛素-蛋白酶體(UPS)和自噬-溶酶體系統(tǒng)(ALP:包括自噬和分子伴侶介導(dǎo)的自噬-CAM)降解[17,18]。在人體內(nèi)錯(cuò)誤折疊的α-Syn主要是通過UPS途徑降解,而其聚集形成的不溶性纖維蛋白沉淀則是通過ALP降解。研究發(fā)現(xiàn)在散發(fā)型PD患者和基因突變動(dòng)物模型的腦組織中,存在蛋白酶體和溶酶體減少的現(xiàn)象。另外,在PD患者的黑質(zhì)細(xì)胞中存在內(nèi)質(zhì)網(wǎng)、線粒體和溶酶體等細(xì)胞器功能缺陷,導(dǎo)致α-Syn的清除異常。這都支持一個(gè)假設(shè):蛋白質(zhì)質(zhì)量控制缺陷導(dǎo)致PD的發(fā)生[19,20]。因此,各種因素導(dǎo)致錯(cuò)誤折疊的蛋白產(chǎn)生量超過細(xì)胞的降解能力,最終促進(jìn)LB形成,引起多巴胺神經(jīng)元退行性變。
隨著對α-Syn分子結(jié)構(gòu)的逐步研究,阻斷α-Syn的翻譯后異常修飾的治療措施成為一個(gè)熱點(diǎn),目前主要針對α-Syn的Ser129磷酸化位點(diǎn)。Oueslati等[21]發(fā)現(xiàn)在大鼠遺傳模型中,Polo樣激酶2(polo-like ki-nases,PLK2)過度表達(dá)使Ser129位點(diǎn)磷酸化,出現(xiàn)α-Syn自噬增強(qiáng)、積聚降低,結(jié)果能抑制多巴胺能神經(jīng)元變性,具有神經(jīng)保護(hù)作用。然而,過度表達(dá)的G蛋白偶聯(lián)受體激酶6(G protein-coupled receptor kinase 6,GRK6)使PD小鼠模型的Ser129磷酸化,導(dǎo)致神經(jīng)退行性變加重[22]。這種相反的研究結(jié)果,促使我們需要進(jìn)一步研究來闡明ser129磷酸化的意義,以及它是否能作為治療干預(yù)靶點(diǎn)。
抑制α-Syn聚集仍然是非常有吸引力的藥物開發(fā)目標(biāo),研究發(fā)現(xiàn)在酵母菌中聚集與分子伴侶有關(guān),包括熱休克蛋白(heat shock protein,HSP)40、70和104。在PD果蠅模型中過度表達(dá)或藥物激活HSP70能降低α-Syn寡聚體濃度,從而抑制其毒性作用[23,24]。此外,在PD大鼠模型中過度表達(dá)HSP104能降低α-Syn聚集。近年來發(fā)現(xiàn)一些抑制α-Syn聚集的化合物,如茶多酚提取物表沒食子兒茶素沒食子酸酯(Epigallocatechin gallate,EGCG)[25]、脯氨酰寡肽抑制劑kyp-2047[26,27]能降低α-Syn水平并抑制其聚集,以及被譽(yù)為“分子鑷子”的CLR01[28]能與α-Syn結(jié)合并阻止其聚集。Nagner等[29]發(fā)現(xiàn)在PD小鼠模型中,聚合物抑制劑anle138b能強(qiáng)烈抑制α-Syn寡聚體積聚,阻止神經(jīng)元變性和疾病進(jìn)展。此外,Marotta等[30]使用合成的N-乙酰葡糖胺對α-Syn蘇氨酸殘基進(jìn)行糖基化修飾,發(fā)現(xiàn)能明顯抑制其聚集和毒性作用,這些令人興奮的結(jié)果強(qiáng)調(diào)了進(jìn)一步理解α-Syn聚集過程,尋找有效的抑制劑是一個(gè)非常有潛力的治療目標(biāo)。
通過之前一些研究表明,α-Syn具有朊蛋白樣擴(kuò)散特性,擴(kuò)散過程依賴于其可以在細(xì)胞外穩(wěn)定存在。因此,以細(xì)胞外α-Syn為靶點(diǎn)的免疫治療是阻止PD病程進(jìn)展的一個(gè)新策略,現(xiàn)已成為疾病治療干預(yù)的焦點(diǎn)[31]。Shahaduzzaman等[32]在大鼠PD模型中,接種針對α-Syn N末端區(qū)域的抗體進(jìn)行被動(dòng)免疫,發(fā)現(xiàn)可以減少多巴胺神經(jīng)元的丟失。說明被動(dòng)免疫方法可有效積阻止α-Syn的毒性作用。為阻斷α-Syn在神經(jīng)系統(tǒng)的擴(kuò)散,我們需要進(jìn)一步了解其清除和擴(kuò)散的具體過程,進(jìn)行更多有效的實(shí)驗(yàn)研究,以便尋找最佳的干預(yù)措施。
PD病變程度與α-Syn的負(fù)荷明顯相關(guān),因此,增加α-Syn清除率或許是阻止神經(jīng)元退行性變的有效方法。鑒于α-Syn的降解主要發(fā)生在溶酶體,所以針對溶酶體功能恢復(fù)和增強(qiáng)的策略,可能有益于PD的治療[33]。Xilouri等[34]在轉(zhuǎn)基因PD小鼠體內(nèi),通過誘導(dǎo)CAM降低了α-Syn水平。一些小的自噬激活分子被研究者發(fā)現(xiàn),如雷帕霉素能抑制哺乳動(dòng)物mTOR蛋白的活性,增強(qiáng)體內(nèi)對α-Syn的自噬活動(dòng),從而抑制PD中多巴胺神經(jīng)元的死亡[35]。然而,長期使用會(huì)產(chǎn)生不良反應(yīng),如間質(zhì)性肺炎、高甘油三酯的水平、傷口愈合減慢,原因可歸咎于免疫抑制作用,這將不利于其在PD患者中的長期應(yīng)用[36]。此外,雙糖海藻糖可以通過改變mTOR活性而激活自噬活動(dòng),在一些神經(jīng)退行性變的動(dòng)物模型中能減輕其病變程度,并且當(dāng)雙糖海藻糖與雷帕霉素合用時(shí)能產(chǎn)生疊加效應(yīng),增強(qiáng)自噬作用[37]。這些自噬激活分子的研究證明,如果能發(fā)現(xiàn)特異性促進(jìn)自噬并且安全的化合物,將是治療PD的一個(gè)成功策略。
綜上所述,從分子水平解釋PD的發(fā)病機(jī)制,以α-Syn為治療靶點(diǎn)是一種可行的方法。近年來的研究多集中在α-Syn翻譯后修飾、聚集、擴(kuò)散和降解途徑,但α-Syn導(dǎo)致多巴胺神經(jīng)元死亡的機(jī)制十分復(fù)雜,目前發(fā)現(xiàn)一些化合物可以阻止α-Syn聚集或增加其清除率,并在動(dòng)物模型上取得了較好的實(shí)驗(yàn)效果,但距離臨床應(yīng)用還有一段距離。未來應(yīng)深入基因和分子水平的研究,擴(kuò)大實(shí)驗(yàn)規(guī)模,著重尋找阻止α-Syn異常折疊、聚集的藥物,以期能做到綜合性多途徑抑制α-Syn的毒性作用。
[1] Meissner NG,F(xiàn)rasier M,Gasser T,et al.Priorities in Parkinson’s disease research[J].Nat Rev Drug Discov,2011,10:377-393
[2] Polymeropoulos MH,Lavedan C,Leroy E,et al.Mutation in the alphasynuclein gene identified in families with Parkinson's disease[J].Science,1997,276:2045-2047.
[3] Xiong NX,Sun YM,Guan RY,et al.The heterozygous A53T mutation in the alpha-synuclein gene in a Chinese Han patient with Parkinson disease:case report and literature review[J].J Neurol,2016,263:1984-1992.
[4] Fujiwara H,Hasegawa M,Dohmae N,et al.alpha-Synuclei is phosphorylated in synucleinopathy lesions[J].Nat Cell Biol,2002,4:160-164.
[5] Anderson JP,Nalker DE,Goldstein JM,et al.Phosphorylation of Ser-129 is the dominant pathological modification of alpha-synuclein in familial and sporadic Lewy body disease[J].J Biol Chem,2006,281:29739-29752.
[6] Giasson BI,Murray IV J,Trojanowski JQ,et al.A hydrophobic stretch of 12 amino acid residues in the middle of alpha-synuclein is essential for filament assembly[J].J Biol Chem,2001,276:2380-2386.
[7] Lashuel HA,Overk CR,Oueslati A,et al.The many faces of α-synuclein:from structure and toxicity to therapeutic target[J].Nat Rev Neurosci,2013,14:38-48.
[8] Danzer KM,Haasen D,Karow AR,et al.Different species of alphasynuclein oligomers induce calcium influx and seeding[J].J Neurosci,2007,27:9220-9232.
[9] van Rooijen BD,Claessens MM,Subramaniam V.Membrane Permeabilization by Oligomeric α-Synuclein:In Search of the Mechanism[J].PLoS One,2010,5:e14292.
[10] Freeman D,Cedillos R,Choyke S,et al.Alpha-synuclein induces lysosomal rupture and cathepsin dependent reactive oxygen species following endocytosis[J].PLoS One,2013,8:e62143.
[11] Bendor JT,Logan TP,Edwards RH.The function of α-synuclein[J].Neuron,2013,79:1044-1066.
[12] Choi BK,Choi MG,Kim JY,et al.Large α-synuclein oligomers inhibit neuronal SNARE-mediated vesicle docking[J].Proc Natl Acad Sci USA,2013,110:4087-4092.
[13] Braak H,Del Tredici K,Rüb U,et al.Staging of brain pathology related to sporadic Parkinson's disease[J].NeurobiolAging,2003,24:197-211.
[14]Kalia LV,Lang AE.Parkinson disease in 2015:Evolving basic,pathological and clinical concepts in PD[J].Nat Rev Neurol,2016,12:65-66.
[15] Recasens A,Dehay B,Bové J,et al.Lewy body extracts from Parkinson disease brains trigger α-synuclein pathology and neurodegeneration in mice and monkeys[J].Ann Neurol,2014,75:351-362.
[16] Peelaerts N,Bousset L,Van der Perren A,et al.α-Synuclein strains cause distinct synucleinopathies after local and systemic administration[J].Nature,2015,522:340-344.
[17] Nebb JL,Skepper JN,Rubinsztein DC,et al.Alpha-Synuclein is degraded by both autophagy and the proteasome[J].J Biol Chem,2003,278:25009-25013.
[18] Cuervo AM,Stefanis L,F(xiàn)redenburg R,et al.Impaired degradation of mutant alpha-synuclein by chaperone-mediated autophagy[J].Science,2004,305:1292-1295.
[19] Dehay B,Bové J,Rodríguezmuela N,et al.Pathogenic lysosomal depletion in Parkinson's disease[J].J Neurosci,2010,30:12535-12544.
[20] Chu Y,Dodiya H,Aebischer P,et al.Alterations in lysosomal and proteasomal markers in Parkinson's disease:relationship to alpha-synuclein inclusions[J].Neurobiol Dis,2009,35:385-398.
[21] Oueslati A,Schneider B L,Aebischer P,et al.Polo-like kinase 2 regu-lates selective autophagic α-synuclein clearance and suppresses its toxicity in vivo[J].Proc NatlAcad Sci USA,2013,110:E3945-3954.
[22] Sato H,Arawaka S,Hara S,et al.Authentically phosphorylated αsynuclein at Ser129 accelerates neurodegeneration in a rat model of familial Parkinson's disease[J].J Neurosci,2011,31:16884-16894.
[23] Auluck PK,Chan HY,Bonini NM.Chaperone suppression of alphasynuclein toxicity in a Drosophila model for Parkinson's disease[J].Science,2002,295:865-868.
[24] Klucken J,Shin Y,Masliah E,et al.Hsp70 Reduces alpha-Synuclein Aggregation and Toxicity[J].J Biol Chem,2004,279:25497-25502.
[25] Bieschke J,Russ J,F(xiàn)riedrich RP,et al.EGCG remodels mature alphasynuclein and amyloid-beta fibrils and reduces cellular toxicity[J].Proc NatlAcad Sci USA,2010,107:7710-7715.
[26] Savolainen MH,Richie CT,Harvey BK,et al.The beneficial effect of a prolyl oligopeptidase inhibitor,KYP-2047,on alpha-synuclein clearance and autophagy inA30P transgenic mouse[J].Neurobiol Dis,2014,68:1-15.
[27] My?h?nen TT,Hannula MJ,Van Elzen R,et al.A prolyl oligopeptidase inhibitor,KYP-2047,reduces α-synuclein protein levels and aggregates in cellular and animal models of Parkinson's disease[J].Br J Pharmacol,2012,166:1097-1113.
[28] Prabhudesai S,Sinha S,AttarA,et al.Anovel"molecular tweezer"inhibitor of α-synuclein neurotoxicity in vitro and in vivo[J].Neurotherapeutics,2012,9:464-476.
[29] Nagner J,Ryazanov S,Leonov A,et al.Anle138b:a novel oligomer modulator for disease-modifying therapy of neurodegenerative diseases such as prion and Parkinson’s disease[J].Acta Neuropathol,2013,125:795-813.
[30] Marotta NP,Lin YH,Lewis YE,et al.O-GlcNAc modification blocks the aggregation and toxicity of the protein α-synuclein associated with Parkinson's disease[J].Nature Chemistry,2015,7:913-920.
[31] Tyson T,Steiner JA,Brundin P.Sorting out release,uptake and processing of alpha-synuclein during prion-like spread of pathology[J].J Neurochem,2016,139 Suppl 1:275-289.
[32] Shahaduzzaman M,Nash K,Hudson C,et al.Anti-human α-synuclein N-terminal peptide antibody protects against dopaminergic cell death and ameliorates behavioral deficits in an AAV-α-synuclein rat model of Parkinson's disease[J].PLoS One,2015,10:e0116841.
[33] Xilouri M,Brekk OR,Stefanis L.Autophagy and Alpha-Synuclein:Relevance to Parkinson's Disease and Related Synucleopathies[J].Mov Disord,2016,31:178-192.
[34] Xilouri M,Brekk OR,Landeck N,et al.Boosting chaperone-mediated autophagy in vivo mitigates α-synuclein-induced neurodegeneration[J].Brain,2013,136:2130-2146.
[35] Malagelada C,Jin ZH,Jackson-Lewis V,et al.Rapamycin protects against neuron death in in vitro and in vivo models of Parkinson's disease[J].J Neurosci,2010,30:1166-1175.
[36] Bové J,Martínez-Vicente M,Vila M.Fighting neurodegeneration with rapamycin:mechanistic insights[J].Nat Rev Neurosci,2011,12:437-452.
[37] Castillo K,Nassif M,Valenzuela V,et al.Trehalose delays the progression of amyotrophic lateral sclerosis by enhancing autophagy in motoneurons[J].Autophagy,2013,9:1308-1320.