国产日韩欧美一区二区三区三州_亚洲少妇熟女av_久久久久亚洲av国产精品_波多野结衣网站一区二区_亚洲欧美色片在线91_国产亚洲精品精品国产优播av_日本一区二区三区波多野结衣 _久久国产av不卡

?

經(jīng)顱電刺激在卒中后運(yùn)動(dòng)康復(fù)領(lǐng)域的研究進(jìn)展

2018-02-05 05:02穆思雨許敏鵬張力新
關(guān)鍵詞:興奮性半球經(jīng)顱

穆思雨 許敏鵬 何 峰 張力新 明 東

(天津大學(xué)精密儀器與光電子工程學(xué)院,天津 300072)

引言

經(jīng)顱電刺激(transcranial electric stimulation, TES)是一種非侵入式大腦功能調(diào)控手段,通過微弱的電流作用于大腦皮層來調(diào)節(jié)突觸可塑性、神經(jīng)元興奮性以及個(gè)體行為表現(xiàn),具有無痛、安全、操作便捷等優(yōu)點(diǎn),近年來受到廣泛關(guān)注。目前已有較多研究證實(shí),TES能夠提高大腦的工作記憶[1]、注意力[2]和學(xué)習(xí)能力[2]等認(rèn)知功能,改善癲癇[3-4]、抑郁[5-6]、失語[7-8]、纖維肌痛[9-10]、成癮[11-13]等臨床病癥,特別是對(duì)腦卒中后的運(yùn)動(dòng)功能康復(fù)具有積極的作用。

腦卒中(stroke)俗稱“中風(fēng)”,是導(dǎo)致成年人殘疾的首要病因[14]。30%~66%的患者在發(fā)病6個(gè)月之后仍會(huì)遺留不同程度的運(yùn)動(dòng)功能障礙,嚴(yán)重影響其生活自理能力和社會(huì)參與能力[15],因此提出有效的治療方法十分必要。TES作為一種新興的治療方式已被用于卒中后的運(yùn)動(dòng)功能康復(fù)過程。相較于傳統(tǒng)卒中康復(fù)方式,TES能夠靶向性地調(diào)節(jié)皮層興奮性,提高突觸效率,從而更加有效地改善卒中患者的運(yùn)動(dòng)功能[16-19]。

本研究將先從TES的類型參數(shù)、安全性問題、神經(jīng)作用機(jī)制以及刺激后效應(yīng)等方面展開闡明TES的相關(guān)基本知識(shí),重點(diǎn)介紹TES對(duì)卒中后運(yùn)動(dòng)功能康復(fù)的作用原理和目前已取得的成果,最后總結(jié)該領(lǐng)域亟待解決的重要問題。

1 經(jīng)顱電刺激的類型參數(shù)及安全性問題

1.1 經(jīng)顱電刺激的類型參數(shù)

TES主要包括經(jīng)顱直流電刺激(transcranial direct current stimulation,tDCS)和經(jīng)顱交流電刺激(transcranial alternating current stimulation,tACS)兩大類。刺激方式通常為雙電極刺激(陽極或稱刺激電極,陰極或稱參考電極),其刺激電流大小一般為1~2 mA。當(dāng)刺激開始施加時(shí),電流從0 mA緩慢上升到設(shè)定值,該過程通常持續(xù)15 s左右,稱為上升期(fall in);當(dāng)刺激結(jié)束時(shí),電流從設(shè)定值緩慢下降到0 mA,該過程通常也持續(xù)15 s左右,稱為下降期(fall out)。目前研究所采用的tDCS/tACS刺激時(shí)程通常為10~30 min[20-21]。電極的擺放位置是影響刺激電流空間分布及流向的重要因素,很大程度上決定了刺激的有效性[20,22]。例如,增大電極間的距離能夠提高刺激電流的作用強(qiáng)度和深度[23]。電極位置的選定可參考國際10~20系統(tǒng)的電極坐標(biāo),也可借助基于經(jīng)顱磁刺激(transcranial magnetic stimulation,TMS)的神經(jīng)導(dǎo)航系統(tǒng)來完成[24-25]。TES所使用的電極片面積一般為15~35 cm2。減小刺激電極的面積可提高刺激電流的聚焦度,與此同時(shí)增大參考電極的面積則將進(jìn)一步改善其聚焦性[20]。但是由于TES的靶向精度低,刺激電極面積過小將會(huì)影響刺激電流對(duì)靶區(qū)的覆蓋程度。

tDCS有陽極刺激、陰極刺激和偽刺激等3種方式。陽極tDCS指將陽極放在靶區(qū),如初級(jí)運(yùn)動(dòng)區(qū)、背外側(cè)前額葉等,陰極放在參考區(qū)域,一般選為對(duì)側(cè)的眶上區(qū)域、肩部或者頸部。陰極tDCS與之相反,即陰極放在靶區(qū),陽極放在參考區(qū)域。偽刺激不會(huì)產(chǎn)生后效應(yīng),一般作為對(duì)照實(shí)驗(yàn)來消除實(shí)驗(yàn)過程中的安慰劑效應(yīng),除刺激時(shí)長(一般為30 s)外其他刺激參數(shù)與實(shí)驗(yàn)組相同。

卒中后的運(yùn)動(dòng)功能康復(fù)研究一般采用陽極刺激作用于患者的患側(cè)運(yùn)動(dòng)皮層,結(jié)合電極片面積的大小,選用1~2 mA電流,單次刺激15 min或連續(xù)重復(fù)刺激若干天[26]。

1.2 經(jīng)顱電刺激的安全性問題

目前研究認(rèn)為,合理使用經(jīng)顱電刺激不會(huì)對(duì)人體產(chǎn)生傷害。McCreery等證明電流密度小于25 mA/cm2的電刺激不會(huì)損壞大腦組織。以1 mA電流強(qiáng)度,35 cm2刺激面積的tDCS為例,測(cè)量得到的靶點(diǎn)(刺激電極中心位置下12 mm處)電流密度接近0.1 mA/cm2,因此,經(jīng)顱電刺激是相對(duì)安全的[27-28]。tDCS的副作用一般表現(xiàn)為刺激區(qū)域相應(yīng)頭皮的輕微不適感,該現(xiàn)象在刺激結(jié)束后消失。tACS的副作用一般表現(xiàn)為短暫的光幻視現(xiàn)象(Phosphene)。不同刺激區(qū)域、強(qiáng)度、頻率以及受試者基礎(chǔ)狀態(tài)都會(huì)導(dǎo)致不同程度的光幻視現(xiàn)象[29]。例如,在睜眼靜息狀態(tài)下,對(duì)受試者施加tACS(刺激電極置于枕區(qū),參考電極置于對(duì)側(cè)眶上區(qū)域),相同強(qiáng)度的20 Hz刺激比10 Hz刺激誘發(fā)的光幻視現(xiàn)象更明顯;而在閉眼靜息狀態(tài)下,10 Hz刺激比20 Hz刺激誘發(fā)的光幻視現(xiàn)象更明顯。Kanai等認(rèn)為光幻視現(xiàn)象的產(chǎn)生是由于交流電流通過頭皮的容積傳導(dǎo)效應(yīng)(volume conduction effects)刺激到了視網(wǎng)膜細(xì)胞[30]。

目前研究表明,TES作用于卒中患者的運(yùn)動(dòng)功能康復(fù)是相對(duì)安全的,只有在極少數(shù)情況下,患者會(huì)產(chǎn)生短暫的癢感、刺痛感或者頭痛等癥狀[26]。

2 經(jīng)顱電刺激的作用機(jī)制及后效應(yīng)

2.1 經(jīng)顱電刺激的作用機(jī)制

研究證實(shí)tDCS能夠改變神經(jīng)元的靜息電位,其刺激效果具有極性特點(diǎn)。當(dāng)施加陽極tDCS時(shí),神經(jīng)元發(fā)生去極化效應(yīng),即細(xì)胞膜電位差減小,激活神經(jīng)元活性;當(dāng)施加陰極tDCS時(shí),神經(jīng)元發(fā)生超極化效應(yīng),即細(xì)胞膜電位差增大,抑制神經(jīng)元的活性。

tDCS對(duì)于神經(jīng)元膜電位的影響主要通過改變局部離子濃度以及神經(jīng)元放電頻率來實(shí)現(xiàn)。藥理學(xué)研究證實(shí),鈉離子和鈣離子通道阻斷劑可使tDCS的即時(shí)效應(yīng)消失[31]。Hiromu等利用鈣離子成像技術(shù)對(duì)活體小鼠觀察,發(fā)現(xiàn)tDCS作用期間的星形細(xì)胞鈣離子濃度大幅上升[32]。神經(jīng)生理學(xué)實(shí)驗(yàn)證明,神經(jīng)元處于靜態(tài)電場(chǎng)(直流電場(chǎng))時(shí)放電頻率將發(fā)生改變。當(dāng)陽極tDCS靠近神經(jīng)元胞體或樹突時(shí),神經(jīng)元自發(fā)放電頻率增加;當(dāng)陰極靠近時(shí),放電頻率減少[33]。

tDCS對(duì)于神經(jīng)元活動(dòng)的激活與抑制可以通過經(jīng)顱磁刺激誘導(dǎo)相應(yīng)軀體產(chǎn)生的運(yùn)動(dòng)誘發(fā)電位(motor evoked potential,MEP)來評(píng)估。MEP的潛伏期、波幅等能夠?qū)崟r(shí)反映快傳播性皮質(zhì)脊髓束的激活性、皮質(zhì)興奮性神經(jīng)傳導(dǎo)通路的完整性以及上運(yùn)動(dòng)神經(jīng)元細(xì)胞膜的興奮性[34]。當(dāng)逐漸增大刺激強(qiáng)度時(shí),MEP波幅與其所對(duì)應(yīng)的經(jīng)顱磁刺激強(qiáng)度所組成的曲線稱為募集曲線(recruitment curve,RC),其斜率與被激活的皮質(zhì)脊髓神經(jīng)元數(shù)量相關(guān)[34],反映了皮質(zhì)內(nèi)以及皮質(zhì)運(yùn)動(dòng)傳導(dǎo)通路中神經(jīng)突觸連接的效能和強(qiáng)度[35]。對(duì)受試者的初級(jí)運(yùn)動(dòng)皮層施加陽極tDCS,同時(shí)結(jié)合經(jīng)顱磁刺激測(cè)量對(duì)側(cè)第一背側(cè)骨間肌(first dorsal interosseous,F(xiàn)DI)的MEP,發(fā)現(xiàn)陽極tDCS使其MEP幅值升高[16],RC曲線的斜率增大,而陰極tDCS使得MEP幅值降低[36],證明陽極tDCS能夠增強(qiáng)初級(jí)運(yùn)動(dòng)皮層的興奮性,陰極tDCS能夠抑制其興奮性。

此外,也有研究發(fā)現(xiàn)tDCS會(huì)引起局部腦血流量(regional cerebral blood flow,rCBF)[37]、突觸效率[38]以及神經(jīng)營養(yǎng)因子表達(dá)的變化[39]。結(jié)合MRI成像的tDCS研究證實(shí),在刺激結(jié)束后陽極tDCS能顯著增加局部腦血流量,陰極tDCS則顯著減少局部腦血流量[40]。Fritsch等證實(shí)陽極tDCS能夠增強(qiáng)突觸可塑性,改善運(yùn)動(dòng)技能學(xué)習(xí)[39],同時(shí)促進(jìn)腦源性神經(jīng)營養(yǎng)因子(brain-derived neurotrophic factor,BDNF)的表達(dá),抑制GABA(γ-氨基丁酸,是一種中樞神經(jīng)系統(tǒng)的抑制性傳遞物質(zhì),能夠降低神經(jīng)元活性)的分泌[41-42]。

目前tACS的作用原理尚不明確,現(xiàn)有觀點(diǎn)認(rèn)為tACS以頻率特異的方式,通過對(duì)神經(jīng)元網(wǎng)絡(luò)的同步/去同步來改變大腦振蕩節(jié)律。一定頻率的tACS能夠調(diào)制神經(jīng)元的放電頻率,與之發(fā)生諧振效應(yīng)。對(duì)受試者枕區(qū)施加alpha頻段(8~13 Hz)的tACS后,發(fā)現(xiàn)其alpha頻段的能量增加,且這種作用持續(xù)了至少30 min[43]。類似地,當(dāng)對(duì)受試者施加10 Hz的tACS后,受試者的alpha頻段能量峰值頻率更接近10 Hz[44]。

2.2 刺激后效應(yīng)

經(jīng)顱電刺激結(jié)束之后,其對(duì)大腦皮層的效應(yīng)不會(huì)立刻消失,而將保持一段時(shí)間,這種現(xiàn)象稱為后效應(yīng)(aftereffects)。后效應(yīng)的持續(xù)時(shí)間受刺激類型、強(qiáng)度以及時(shí)程等因素的影響[17,45-47]。經(jīng)過15~20 mintDCS作用后產(chǎn)生的后效應(yīng)時(shí)間通常不少于30 min。重復(fù)性tDCS相對(duì)于單次tDCS的后效應(yīng)持續(xù)時(shí)間更長。后效應(yīng)的產(chǎn)生是因?yàn)閠DCS促進(jìn)了N-甲基-D-天冬氨酸(N-methyl-D-aspartic acid,NMDA)受體激活以及BDNF的表達(dá),從而增強(qiáng)了長時(shí)程增強(qiáng)效應(yīng)(long-time potentiation,LTP)[39]。實(shí)驗(yàn)證明,對(duì)小鼠進(jìn)行美沙芬(一種NMDA受體對(duì)抗藥)處理后再施加經(jīng)顱電刺激,刺激結(jié)束后不產(chǎn)生后效應(yīng)[17,48-49]。對(duì)攜帶Val66Met基因的小鼠(BDNF分泌水平低于正常小鼠)施加tDCS,其后效應(yīng)持續(xù)時(shí)間相對(duì)于正常小鼠縮短[50]。

目前對(duì)于tACS后效應(yīng)的研究較少,其產(chǎn)生原因尚未得出明確結(jié)論。Neuling等證明,作用于頂葉皮層的1.5 mA、alpha頻段tACS能夠使得睜眼靜息狀態(tài)受試者的alpha波能量增強(qiáng)并至少持續(xù)30 min,同樣的實(shí)驗(yàn)條件下,處于閉眼狀態(tài)的受試者持續(xù)時(shí)間則少于30 min。該作者認(rèn)為tACS的后效應(yīng)持續(xù)時(shí)間與背景腦電的能量有關(guān),睜眼狀態(tài)的背景alpha頻段腦電能量相較于閉眼狀態(tài)更低,較低的背景alpha頻段腦電能量狀態(tài)下能夠獲得更長的后效應(yīng)時(shí)間[51]。

3 經(jīng)顱電刺激對(duì)卒中后運(yùn)動(dòng)功能康復(fù)的作用

突觸可塑性與神經(jīng)系統(tǒng)的發(fā)育、損傷后修復(fù)以及學(xué)習(xí)記憶等功能有著密切的聯(lián)系。卒中后突觸功能發(fā)生消極變化,如興奮性降低、連接失控等,阻礙了患者運(yùn)動(dòng)功能的康復(fù)。因此,通過TES改善突觸可塑性將有助于其運(yùn)動(dòng)功能的康復(fù)。陽極tDCS能夠使神經(jīng)元發(fā)生去極化,解除鎂離子對(duì)NMDA受體通道的阻滯作用,從而使得鈣離子進(jìn)入突觸后膜。鈣離子是誘發(fā)LTP的初始信號(hào),可促進(jìn)神經(jīng)遞質(zhì)的釋放,調(diào)節(jié)突觸可塑性。此外,陽極tDCS還能夠促進(jìn)BDNF的表達(dá)和分泌。卒中后BDNF的生成和釋放能夠?yàn)椴≡钪車钠べ|(zhì)神經(jīng)提供再生環(huán)境,改善神經(jīng)元的病理狀態(tài),調(diào)節(jié)突觸傳遞效率和突觸可塑性,從而促進(jìn)卒中后的運(yùn)動(dòng)功能康復(fù)[52]。

在腦卒中慢性期,患者左右半球間經(jīng)胼胝體的失衡狀態(tài)是阻礙患側(cè)半球皮層運(yùn)動(dòng)區(qū)功能重組的另一個(gè)原因[53]。健康人左右半球運(yùn)動(dòng)皮層神經(jīng)元的興奮性是平衡的,即處于激活狀態(tài)的初級(jí)運(yùn)動(dòng)皮層通過胼胝體通路抑制對(duì)側(cè)半球初級(jí)運(yùn)動(dòng)皮層的活性。腦卒中發(fā)生之后,患側(cè)大腦半球的運(yùn)動(dòng)皮層對(duì)健側(cè)大腦半球的半球間抑制作用減弱,導(dǎo)致腦卒中發(fā)病后健側(cè)半球皮層活動(dòng)過于活躍,而患側(cè)半球皮層興奮性減弱。調(diào)節(jié)卒中患者的大腦皮層興奮性能夠改善其運(yùn)動(dòng)訓(xùn)練表現(xiàn)[54]。

針對(duì)腦卒中患者運(yùn)動(dòng)障礙的成因及其恢復(fù)機(jī)制,目前主要有3種經(jīng)顱電刺激模式。第一種是陽極tDCS刺激患側(cè)半球,以提高其興奮性。對(duì)健康被試進(jìn)行陽極tDCS研究,其易化作用主要表現(xiàn)為運(yùn)動(dòng)速度(或反應(yīng)時(shí)間)的改善或執(zhí)行任務(wù)正確率的提高[55-56]。同樣地,陽極tDCS作用于患側(cè)半球的初級(jí)運(yùn)動(dòng)皮層能夠改善輕微偏癱腦卒中患者的手部運(yùn)動(dòng)功能,使其執(zhí)行任務(wù)時(shí)間縮短,同時(shí)檢測(cè)到的MEP幅值也有所升高[49];作用于下肢運(yùn)動(dòng)皮層,可以使皮層興奮性提高,MEP幅值升高,下肢的夾緊力增大[57-58],最大伸膝長度短暫增加,證明陽極tDCS對(duì)中風(fēng)偏癱病人運(yùn)動(dòng)功能康復(fù)有潛在應(yīng)用[59]。第二種是陰極tDCS刺激健側(cè)半球,以抑制其興奮性。陰極tDCS作用于腦卒中患者健側(cè)半球的初級(jí)運(yùn)動(dòng)皮層能夠顯著減少患者完成JTT任務(wù)的時(shí)間,顯著改善患者的上肢運(yùn)動(dòng)功能評(píng)分(upper extremity fugl-meyer,UEFM)和運(yùn)動(dòng)范圍,同時(shí)健側(cè)半球皮層興奮性降低[60]。第三種是雙極tDCS,即陽極刺激患側(cè)半球,同時(shí)陰極刺激刺激健側(cè)半球,以此來達(dá)到均衡左右半球皮層興奮性的目的[18]。Fregni等發(fā)現(xiàn)對(duì)患者的初級(jí)運(yùn)動(dòng)皮層施加雙極tDCS,JTT測(cè)試結(jié)果有了顯著的改善[19]。

也有研究將tDCS和運(yùn)動(dòng)康復(fù)療法相結(jié)合,治療后患者的運(yùn)動(dòng)功能得到明顯改善。陽極tDCS結(jié)合運(yùn)動(dòng)康復(fù)療法與僅進(jìn)行陽極tDCS相比,受試者的運(yùn)動(dòng)功能顯著提高,由此證明運(yùn)動(dòng)康復(fù)療法和tDCS結(jié)合能夠更大程度上易化運(yùn)動(dòng)表現(xiàn)[61-62]。此外接受雙極tDCS和運(yùn)動(dòng)康復(fù)療法的患者相較于只進(jìn)行運(yùn)動(dòng)康復(fù)療法的患者,有更顯著的運(yùn)動(dòng)功能改善,且后效應(yīng)至少持續(xù)1周[63]。

腦卒中的康復(fù)效果受許多因素的影響,如患者的年齡、性別、利手情況,以及腦卒中的類型、病灶位置、病灶大小、卒中程度、缺血受損害的嚴(yán)重性等[63]。例如,患側(cè)半球錐體束是否完整是影響tDCS作用效果的一個(gè)重要因素。將陰極tDCS作用于健側(cè)半球之后,患側(cè)半球錐體束完整的受試者的運(yùn)動(dòng)功能得到了顯著改善,而錐體束受損不完整的受試者的運(yùn)動(dòng)功能并沒有得到明顯改善[64]。

由于腦卒中病灶的大小、位置等的不確定以及評(píng)判標(biāo)準(zhǔn)的不一致,經(jīng)顱電刺激對(duì)于腦卒中患者的運(yùn)動(dòng)功能康復(fù)結(jié)果不盡相同,但是大部分研究都表明,經(jīng)顱電刺激對(duì)于腦卒中患者的運(yùn)動(dòng)功能障礙具有一定的改善作用,且相對(duì)安全。

4 總結(jié)與展望

總之,TES是一種無創(chuàng)、安全的大腦活動(dòng)調(diào)控手段,能夠調(diào)節(jié)皮層興奮性、突觸可塑性以及個(gè)體行為學(xué)表現(xiàn),對(duì)于亞急性以及慢性腦卒中患者的運(yùn)動(dòng)功能康復(fù)具有積極的作用,在科學(xué)研究以及臨床治療方面得到了廣泛的應(yīng)用,但是目前仍存在一些亟待解決的問題。首先,TES的神經(jīng)機(jī)制尚不明確,大多研究成果來自于動(dòng)物實(shí)驗(yàn),是否適用人腦有待取證。其次,由于現(xiàn)有技術(shù)設(shè)備的限制,較難開展TES下的腦電信號(hào)分析,從而無法實(shí)時(shí)觀察TES作用下大腦活動(dòng)的變化。再次,目前大多數(shù)TES研究只針對(duì)大腦局部區(qū)域,而較少開展多個(gè)腦網(wǎng)絡(luò)節(jié)點(diǎn)的聯(lián)合刺激,導(dǎo)致TES調(diào)節(jié)全腦網(wǎng)絡(luò)的理論基礎(chǔ)與實(shí)驗(yàn)方法的欠缺。最后,由于無法計(jì)算出TES作用于靶區(qū)的精確計(jì)量,導(dǎo)致刺激效果因時(shí)因人而異,穩(wěn)定性差。因此,解決以上問題將會(huì)更加有效地指導(dǎo)TES開展運(yùn)動(dòng)功能康復(fù)治療。

[1] Ulam F, Shelton C, Richards L, et al. Cumulative effects of transcranial direct current stimulation on EEG oscillations and attention/working memory during subacute neurorehabilitation of traumatic brain injury[J]. Clinical Neurophysiology, 2015, 126(3): 486-496.

[2] Coffman BA, Clark VP, Parasuraman R. Battery powered thought: enhancement of attention, learning, and memory in healthy adults using transcranial direct current stimulation[J]. Neuroimage, 2014, 85: 895-908.

[3] Liebetanz D, Klinker F, Hering D, et al. Anticonvulsant Effects of Transcranial Direct-current Stimulation (tDCS) in the Rat Cortical Ramp Model of Focal Epilepsy[J]. Epilepsia, 2006, 47(7): 1216-1224.

[4] Auvichayapat N, Rotenberg A, Gersner R, et al. Transcranial direct current stimulation for treatment of refractory childhood focal epilepsy[J]. Brain Stimulation, 2013, 6(4): 696-700.

[5] Bennabi D, Nicolier M, Monnin J, et al. Pilot study of feasibility of the effect of treatment with tDCS in patients suffering from treatment-resistant depression treated with escitalopram[J]. Clinical Neurophysiology, 2015, 126(6): 1185-1189.

[6] Shiozawa P, da Silva ME, Cordeiro Q. Transcranial direct current stimulation for treating depression in a patient with right hemispheric dominance: a case study[J]. The journal of ECT, 2015, 31(3): 201-202.

[7] Shah-Basak PP, Norise C, Garcia G, et al. Individualized treatment with transcranial direct current stimulation in patients with chronic non-fluent aphasia due to stroke[J]. Frontiers in Human Neuroscience, 2015, 9: 201.

[8] Fridriksson J, Richardson J D, Baker J M, et al. Transcranial direct current stimulation improves naming reaction time in fluent aphasia a double-blind, sham-controlled study[J]. Stroke, 2011, 42(3): 819-821.

[9] Fagerlund AJ, Hansen OA, Aslaksen PM. Transcranial direct current stimulation as a treatment for patients with fibromyalgia: a randomized controlled trial[J]. Pain, 2015, 156(1): 62-71.

[10] Castillo-Saavedra L, Gebodh N, Bikson M, et al. Clinically effective treatment of fibromyalgia pain with high-definition transcranial direct current stimulation: phase II open-label dose optimization[J]. The Journal of Pain, 2016, 17(1): 14-26.

[11] den Uyl T E, Gladwin T E, Wiers R W. Transcranial direct current stimulation, implicit alcohol associations and craving[J]. Biological Psychology, 2015, 105: 37-42.

[12] da Silva MC, Conti CL, Klauss J, et al. Behavioral effects of transcranial direct current stimulation (tDCS) induced dorsolateral prefrontal cortex plasticity in alcohol dependence[J]. Journal of Physiology-Paris, 2013, 107(6): 493-502.

[13] Wietschorke K, Lippold J, Jacob C, et al. Transcranial direct current stimulation of the prefrontal cortex reduces cue-reactivity in alcohol-dependent patients[J]. Journal of Neural Transmission, 2016, 123(10): 1173-1178.

[14] Hummel FC, Celnik P, Pascual-Leone A, et al. Controversy: noninvasive and invasive cortical stimulation show efficacy in treating stroke patients[J]. Brain Stimulation, 2008, 1(4): 370-382.

[15] Kwakkel G, Kollen BJ, van der Grond J, et al. Probability of regaining dexterity in the flaccid upper limb impact of severity of paresis and time since onset in acute stroke[J]. Stroke, 2003, 34(9): 2181-2186.

[16] Hummel F, Celnik P, Giraux P, et al. Effects of non-invasive cortical stimulation on skilled motor function in chronic stroke[J]. Brain, 2005, 128(3): 490-499.

[17] Nitsche MA, Seeber A, Frommann K, et al. Modulating parameters of excitability during and after transcranial direct current stimulation of the human motor cortex[J]. The Journal of Physiology, 2005, 568(1): 291-303.

[18] Nitsche MA, Paulus W. Excitability changes induced in the human motor cortex by weak transcranial direct current stimulation[J]. The Journal of Physiology, 2000, 527(3): 633-639.

[19] Fregni F, Boggio P S, Mansur CG, et al. Transcranial direct current stimulation of the unaffected hemisphere in stroke patients[J]. Neuroreport, 2005, 16(14): 1551-1555.

[20] Ho K A, Taylor JL, Chew T, et al. The effect of transcranial direct current stimulation (tDCS) electrode size and current intensity on motor cortical excitability: evidence from single and repeated sessions[J]. Brain Stimulation, 2016, 9(1): 1-7.

[21] Murray LM, Edwards DJ, Ruffini G, et al. Intensity dependent effects of transcranial direct current stimulation on corticospinal excitability in chronic spinal cord injury[J]. Archives of Physical Medicine and Rehabilitation, 2015, 96(4): S114-S121.

[22] Been G, Ngo T T, Miller S M, et al. The use of tDCS and CVS as methods of non-invasive brain stimulation[J]. Brain Research Reviews, 2007, 56(2): 346-361.

[23] Miranda PC, Lomarev M, Hallett M. Modeling the current distribution during transcranial direct current stimulation[J]. Clinical Neurophysiology, 2006, 117(7): 1623-1629.

[24] Barwood CHS, Murdoch BE, Whelan BM, et al. Improved language performance subsequent to low-frequency rTMS in patients with chronic non-fluent aphasia post-stroke[J]. European Journal of Neurology, 2011, 18(7): 935-943.

[25] De Ridder D, De Mulder G, Walsh V, et al. Magnetic and electrical stimulation of the auditory cortex for intractable tinnitus: case report[J]. Journal of Neurosurgery, 2004, 100(3): 560-564.

[26] Russo C, Souza Carneiro MI, Bolognini N, et al. Safety review of transcranial direct current stimulation in stroke[J]. Neuromodulation: Technology at the Neural Interface, 2017, 20(3):215-222.

[27] McCreery DB, Agnew WF, Yuen TGH, et al. Charge density and charge per phase as cofactors in neural injury induced by electrical stimulation[J]. IEEE Transactions on Biomedical Engineering, 1990, 37(10): 996-1001.

[28] Miranda PC, Faria P, Hallett M. What does the ratio of injected current to electrode area tell us about current density in the brain during tDCS?[J]. Clinical Neurophysiology, 2009, 120(6): 1183-1187.

[29] Kanai R, Chaieb L, Antal A, et al. Frequency-dependent electrical stimulation of the visual cortex[J]. Current Biology, 2008, 18(23): 1839-1843.

[30] Schwiedrzik C M. Retina or visual cortex? The site of phosphene induction by transcranial alternating current stimulation[J]. Frontiers in Integrative Neuroscience, 2009, 3: 6.

[31] Nitsche MA, Schauenburg A, Lang N, et al. Facilitation of implicit motor learning by weak transcranial direct current stimulation of the primary motor cortex in the human[J]. Journal of Cognitive Neuroscience, 2003, 15(4): 619-626.

[32] Monai H, Ohkura M, Tanaka M, et al. Calcium imaging reveals glial involvement in transcranial direct current stimulation-induced plasticity in mouse brain[J]. Nature Communications, 2016, 11100, 7.

[33] 楊遠(yuǎn)濱, 肖娜, 李夢(mèng)瑤, 等. 經(jīng)顱磁刺激與經(jīng)顱直流電刺激的比較[J]. 中國康復(fù)理論與實(shí)踐, 2011, 17(12): 1131-1135.

[34] 黃珺, 黃彬鑒. 運(yùn)動(dòng)誘發(fā)電位[J]. 國外醫(yī)學(xué): 物理醫(yī)學(xué)與康復(fù)學(xué)分冊(cè), 2005, 25(2): 56-58.

[35] 劉浩, 賈延兵, 王旭豪, 等. 周圍神經(jīng)電刺激對(duì)腦卒中患者運(yùn)動(dòng)皮質(zhì)興奮性的影響[J]. 中國康復(fù)醫(yī)學(xué)雜志, 2016, 31(8): 878-883.

[36] Ardolino G, Bossi B, Barbieri S, et al. Non-synaptic mechanisms underlie the after-effects of cathodal transcutaneous direct current stimulation of the human brain[J]. The Journal of Physiology, 2005, 568(2): 653-663.

[37] Zheng Xin, Mathys C, Alsop DC, et al. Modulating Regional Cerebral Blood Flow With Transcranial Direct Current Stimulation (tDCS)[J]. Neuroimage, 2009, 47(47):S173-S173.

[38] Barton-Rowledge L. Long term effects of transcranial direct current stimulation on NMDA receptor[J]. Alyssa Caparelli, 2016,1:116-123.

[39] Fritsch B, Reis J, Martinowich K, et al. Direct current stimulation promotes BDNF-dependent synaptic plasticity: potential implications for motor learning[J]. Neuron, 2010, 66(2): 198-204.

[40] Zheng Xin, Alsop DC, Schlaug G. Effects of transcranial direct current stimulation (tDCS) on human regional cerebral blood flow[J]. Neuroimage, 2011, 58(1): 26-33.

[41] Kim S, Stephenson MC, Morris PG, et al. tDCS-induced alterations in GABA concentration within primary motor cortex predict motor learning and motor memory: A 7T magnetic resonance spectroscopy study[J]. Neuroimage, 2014, 99: 237-243.

[42] Stagg CJ, Bachtiar V, Johansen-Berg H. The role of GABA in human motor learning[J]. Current Biology, 2011, 21(6): 480-484.

[43] Zaehle T, Rach S, Herrmann CS. Transcranial alternating current stimulation enhances individual alpha activity in human EEG[J]. PLoS ONE, 2010, 5(11): e13766.

[44] Vossen A, Gross J, Thut G. Alpha power increase after transcranial alternating current stimulation at alpha frequency (α-tACS) reflects plastic changes rather than entrainment[J]. Brain Stimulation, 2015, 8(3): 499-508.

[45] Nitsche M A, Fricke K, Henschke U, et al. Pharmacological modulation of cortical excitability shifts induced by transcranial direct current stimulation in humans[J]. The Journal of Physiology, 2003, 553(1): 293-301.

[46] Csifcsak G, Antal A, Hillers F, et al. Modulatory effects of transcranial direct current stimulation on laser-evoked potentials[J]. Pain Medicine, 2009, 10(1): 122-132.

[47] Liebetanz D, Fregni F, Monte-Silva KK, et al. After-effects of transcranial direct current stimulation (tDCS) on cortical spreading depression[J]. Neuroscience Letters, 2006, 398(1): 85-90.

[48] Monte-Silva K, Kuo MF, Hessenthaler S, et al. Induction of late LTP-like plasticity in the human motor cortex by repeated non-invasive brain stimulation[J]. Brain Stimulation, 2013, 6(3): 424-432.

[49] Liebetanz D, Nitsche MA, Tergau F, et al. Pharmacological approach to the mechanisms of transcranial DC-stimulation-induced after-effects of human motor cortex excitability[J]. Brain, 2002, 125(10): 2238-2247.

[50] Monte-Silva K, Kuo MF, Liebetanz D, et al. Shaping the optimal repetition interval for cathodal transcranial direct current stimulation (tDCS)[J]. Journal of Neurophysiology, 2010, 103(4): 1735-1740.

[51] Neuling T, Rach S, Herrmann CS. Orchestrating neuronal networks: sustained after-effects of transcranial alternating current stimulation depend upon brain states[J]. Frontiers in Human Neuroscience, 2013, 7:161.

[52] 樊京京, 徐秦嵐, 郭莉, 等. 經(jīng)顱直流電刺激在腦卒中后康復(fù)的應(yīng)用[J]. 臨床神經(jīng)病學(xué)雜志, 2016, 29(1): 76-77.

[53] 紀(jì)愛輝. 重復(fù)經(jīng)顱磁刺激治療對(duì)腦卒中患者運(yùn)動(dòng)功能及 MEP 的影響[D]. 濟(jì)南:山東大學(xué), 2014.

[54] Peters HT, Edwards DJ, Wortman-Jutt S, et al. Moving forward by stimulating the brain: transcranial direct current stimulation in post-stroke hemiparesis[J]. Frontiers in Human Neuroscience, 2016, 10:394.

[55] Pérez-Fernández C, Sánchez-Kuhn A, Cánovas R, et al. The effect of transcranial direct current stimulation (tDCS) over human motor function[C]//International Conference on Bioinformatics and Biomedical Engineering. Berlin: Springer International Publishing, 2016: 478-494.

[56] Cantarero G, Spampinato D, Reis J, et al. Cerebellar direct current stimulation enhances on-line motor skill acquisition through an effect on accuracy[J]. The Journal of Neuroscience, 2015, 35(7): 3285-3290.

[57] Jeffery DT, Norton JA, Roy FD, et al. Effects of transcranial direct current stimulation on the excitability of the leg motor cortex[J]. Experimental Brain Research, 2007, 182(2): 281-287.

[58] Tanaka S, Hanakawa T, Honda M, et al. Enhancement of pinch force in the lower leg by anodal transcranial direct current stimulation[J]. Experimental Brain Research, 2009, 196(3): 459-465.

[59] Tanaka S, Takeda K, Otaka Y, et al. Single session of transcranial direct current stimulation transiently increases knee extensor force in patients with hemiparetic stroke[J]. Neurorehabilitation and Neural Repair, 2011, 25(6): 565-569.

[60] Nair D, Renga V, Hamelin S, et al. Improving motor function in chronic stroke patients using simultaneous occupational therapy and tDCS[J]. Stroke, 2008, 39:542-542.

[61] Reis J, Fritsch B. Modulation of motor performance and motor learning by transcranial direct current stimulation[J]. Current Opinion in Neurology, 2011, 24(6): 590-596.

[62] Celnik P, Paik NJ, Vandermeeren Y, et al. Effects of combined peripheral nerve stimulation and brain polarization on performance of a motor sequence task after chronic stroke[J]. Stroke, 2009, 40(5): 1764-1771.

[63] Lindenberg R, Renga V, Zhu LL, et al. Bihemispheric brain stimulation facilitates motor recovery in chronic stroke patients[J]. Neurology, 2010, 75(24): 2176-2184.

[64] Hummel FC, Voller B, Celnik P, et al. Effects of brain polarization on reaction times and pinch force in chronic stroke[J]. BMC Neuroscience, 2006, 7 (1):1-10.

猜你喜歡
興奮性半球經(jīng)顱
經(jīng)顱電刺激技術(shù)對(duì)運(yùn)動(dòng)性疲勞作用效果的研究進(jìn)展
1例新生兒小腦半球出血并破入腦室手術(shù)案例
經(jīng)顱直流電刺激技術(shù)在阿爾茨海默癥治療中的研究進(jìn)展
基于頻域約束子空間法的經(jīng)顱磁刺激信號(hào)去噪
準(zhǔn)備活動(dòng)在田徑運(yùn)動(dòng)中的作用
經(jīng)顱磁刺激對(duì)脊髓損傷后神經(jīng)性疼痛及大腦皮質(zhì)興奮性的影響分析
經(jīng)顱磁刺激定位方法的研究進(jìn)展
興奮性氨基酸受體拮抗劑減輕宮內(nèi)窘迫誘發(fā)的新生鼠Tau蛋白的過度磷酸化和認(rèn)知障礙
蔗糖鐵對(duì)斷奶仔豬生產(chǎn)性能及經(jīng)濟(jì)效益的影響
半球缺縱向排列對(duì)半球缺阻流體無閥泵的影響